
A Multiple Snapshot Attack on Deniable Storage
Systems

Kyle Fredrickson, Austen Barker, and Darrell D. E. Long
University of California, Santa Cruz

Abstract—While disk encryption is suitable for use in most
situations where confidentiality of disks is required, stronger
guarantees are required in situations where adversaries may
employ coercive tactics to gain access to cryptographic keys.
Deniable volumes are one such solution in which the security
goal is to prevent an adversary from discovering that there is an
encrypted volume. Multiple snapshot attacks, where an adversary
is able to gain access to two or more images of a disk, have often
been proposed in the deniable storage system literature; however,
there have been no concrete attacks proposed or carried out. We
present the first multiple snapshot attack, and we find that it
is applicable to most, if not all, implemented deniable storage
systems. Our attack leverages the pattern of consecutive block
changes an adversary would have access to with two snapshots,
and demonstrate that with high probability it detects moderately
sized and large hidden volumes, while maintaining a low false
positive rate.

Index Terms—Security, Steganography, Storage

I. INTRODUCTION

Conventional disk encryption has been very successful at
ensuring the confidentiality and integrity of disks. In many
applications reducing these properties to corresponding key
management problems is sufficient to ensure security. However,
when faced with adversaries capable of using coercive tactics
to reveal keys, conventional encryption comes up short. In
these situations the possession of an encrypted drive can
be considered suspicious enough to justify coercive attacks
euphemistically known as rubber hose attacks. These situations
require that the mere presence of encrypted data be unknown
to the adversary to avoid the use of coercive tactics. Deniable
storage systems have been developed in response to this threat.
These systems are used to create a hidden volume on the
user’s device, the existence of which is plausibly deniable. One
common strategy among deniable storage systems is to encrypt
data and randomly write it throughout the disk’s free space.
Assuming that the free space is filled with pseudorandom bytes,
this renders hidden data indistinguishable from unallocated
blocks. This achieves the goal of deniability when an adversary
is restricted to viewing the disk at one point in time and there
are no other sources of information leakage.

A multiple snapshot attack is an attack on a hidden volume
where an adversary is able to gain access to a machine and make
observations at two or more points in time. Information gained
from comparing these snapshots would then be analyzed for

This research was supported in part by the National Science Foundation
grant number IIP-1266400, award CNS-1814347, and by the industrial partners
of the Center for Research in Storage Systems.

abnormalities that could imply the existence of a hidden volume.
In many circumstances where a deniable volume may be used
multiple snapshot attacks are feasible. As an example, suppose
a journalist is entering a repressive country with the intent
to exfiltrate some data. The adversary first takes a snapshot
of all devices entering the country, the journalist collects the
data to be exfiltrated and constructs a hidden volume to hide
it, then the adversary takes another snapshot when the device
leaves the country. This leaves the pattern of changes on the
file system as a new source of information leakage.

While multiple snapshot attacks on hidden volumes have
been described in the literature and defenses against them
proposed [1]–[4], to our knowledge there has never been a
thoroughly described or attempted example of this class of
attack. Among the reasons for this are not only the difficulty
in obtaining enough disk images to establish what a normal
pattern of changes is, but also the difficulty in identifying
meaningful features in observed change patterns that would be
invariant across normal use cases.

Using features derived from the change patterns on disks, we
have defined and implemented the first multiple snapshot attack
against deniable storage systems. The main contribution of our
work is to affirm the relevance of multiple snapshot attacks to
deniable storage systems by demonstrating a practical attack,
while also identifying the limitations of our techniques. We
propose analyzing the distribution on the lengths of consecutive
block changes, which we call chains, as a new metric for
quantifying disk behavior, and leverage this information to
distinguish between disks containing hidden volumes and those
that do not. Specifically we attack Artifice [5], a deniable
storage system, but our attack if broadly applicable, and is
able to reveal most, if not all, implemented deniable storage
systems. In response to this attack we propose additional design
requirements for deniable systems, and discuss the implications
of these requirements on Artifice. Through this work we hope
to guide the design and implementation of future systems,
improving their security even against powerful adversaries
with the ability to gain access to devices at several points in
time.

We first give background on deniable storage systems,
going into detail on Artifice, and describe past attacks on
these systems. We then propose our attack, describe our data
collection and simulation methods, and give results of the
attack on our dataset. Finally, we describe mitigation schemes
and conclude.

1

ar
X

iv
:2

11
0.

04
61

8v
1

 [
cs

.C
R

]
 9

 O
ct

 2
02

1

II. BACKGROUND AND RELATED WORK

As previously stated, the goal of a deniable storage system
is to conceal the existence of a volume from an adversary
that would otherwise view an encrypted volume as suspicious
and consequently coerce the user to disclose their secret keys.
With a hidden volume the user is able to reveal keys to known
encrypted drives while allowing the user to deny that hidden
volumes exist on the device.

Many deniable or steganographic storage systems have been
proposed in past years. One of the key concerns of these
systems has been defending against multiple snapshot attacks.
In this section we will describe existing deniable storage
systems and attacks against those systems.

A. Deniable and Steganographic Storage Systems

Anderson, et al. [6] were the first to propose a steganographic
file system and described two possible approaches. The first
approach consists of a set of cover files filled with random
information, of which a subset are combined with hidden
files using an additive secret sharing scheme. The second
construction hides data within the unallocated space of another
file system. Although the proposal lacked an implementation
of the two ideas, most deniable storage systems follow the
second approach.

McDonald and Kuhn implemented Anderson et al.’s second
scheme as a Linux file system based on ext2 known as
StegFS [7]. Although the scheme provides deniability when
the adversary can only view the device once, McDonald et al.’s
StegFS and similar systems like TrueCrypt [8] or Mobiflage [9]
cannot provide a reasonable defense against an adversary that
can view the disk multiple times and compare snapshots.

Pang, et al. [1], [10] implemented a variant of StegFS that
attempts to defend against multiple snapshot adversaries by
performing dummy operations to the disk that obscure hidden
writes. Similar approaches to this have been implemented using
derivatives of Oblivious RAM [11], [12] or similar techniques
to render accesses to a hidden volume indistinguishable
from accesses to the public volume [2]–[4]. Although these
approaches render hidden and public writes indistinguishable,
they incur other abnormalities such as fully random write
patterns not exhibited by common file systems and significant
performance losses that would betray the existence of a hidden
volume or the ability to construct a hidden volume.

A perennial weakness of many of these systems is that
they do not take measures to hide the existence of the
software used to access the hidden volume, often claiming
that widespread adoption would ensure the ability to create a
hidden volume is not suspicious. The fact that disk encryption,
though widespread, can still be seen as suspicious by many
organizations calls this assumption into doubt.

B. Attacks on Steganographic Storage

Most existing storage systems assume that the adversary
has the ability to closely analyze characteristics of the user’s
device for any clues that the device contains a hidden volume.
With respect to multiple snapshot analysis and related attacks,

previous work [1], [2] has categorized adversary capabilities
into three general categories.
• Single snapshot A single snapshot adversary can only

view a device once. All existing deniable systems have
some level of resilience against this sort of attack.

• Multiple snapshot In this case the adversary can view
the device two or more times. These snapshots can be
compared, and the changes analyzed for anomalies that
could reveal a hidden volume on the user’s device. It is
important to note that in this class of attack the adversary
is only able to view static snapshots of the disk a limited
number of times.

• Continuous observation This is when an adversary
has the ability to continuously observe writes to the
user’s device or make a snapshot of the device for each
write. This adversary capability is sometimes also called
continuous traffic analysis. This sort of attack would likely
require a form of malware to be installed on the user’s
device for the purposes of information gathering. OS level
spyware would be able to monitor writes to the user’s
device.

Proposed attacks and serious attempts to break deniable
storage systems are limited when compared to the variety
of proposed systems. One vulnerability found by Czeskis
et al. when analyzing TrueCrypt was its susceptibility to
leaking information from the hidden to public volumes through
operating system utilities and common applications such as
word processors. Another work by Troncoso et al. describes and
implements a continuous traffic analysis attack against Pang’s
StegFS that exploits repeated write patterns that correspond
to writes made to a hidden volume. While this attack shows
the effectiveness of monitoring disk operations in finding a
hidden volume, it is assumed that the adversary has enough
power to continuously observe the disk. The multiple snapshot
adversary is considerably weaker than the continuous observa-
tion adversary, yet there has been no previous work towards
demonstrating a multiple snapshot attack against a deniable
storage system.

C. Artifice

For the purposes of testing a multiple snapshot attack we will
use Artifice as our deniable storage system. Artifice follows
the common model of hiding information in unallocated blocks
but with a few additional features that address some pitfalls of
other existing file systems [5]. Most importantly it addresses
problems with hiding its driver software and provides a layer of
protection against malware and information leakage by putting
the Artifice driver on a separate Linux live USB drive. To
access a hidden volume, the user boots into an Artifice-aware
OS contained on this drive instead of the normal public OS.
This isolation does not leave behind suspicious drivers on
the user’s machine and mitigates the impact of malware and
information leakage.

Artifice writes data by splitting data blocks into pseudo-
random carrier blocks using an information dispersal algorithm
(IDA) such as Shamir Secret Sharing [13]. These carrier blocks

2

Fig. 1: Theoretical probability of consecutive changes when
changes are made uniformly. The probability of c consecutive
changes degrades very quickly, especially when the free space
is large.

are then uniformly distributed throughout the unallocated space
of the drive, which is assumed to be full of pseudorandom
blocks due to a secure deletion utility or similarly deniable
means. Since the public file system is not aware of Artifice,
it is imperative to protect the carrier blocks from accidental
overwrite. IDAs provide Artifice overwrite tolerance by writing
redundant carrier blocks in excess of the number needed to
normally reconstruct the data. This allows Artifice to carry
out self-repair operations whenever accessed by the user and
increases the probability that an Artifice instance will survive
many writes made by the public file system.

Currently, Artifice aims to address the problem of multiple
snapshot attacks through writing hidden blocks under the guise
of a suitable deniable operation, such as defragmentation, where
the contents of a disk are relocated to be contiguous, routine
file deletion, or by operational security measures that render
previous snapshots useless, such as reinstalling the public
operating system or wiping the storage prior to constructing
an Artifice instance.

III. ATTACK FRAMEWORK

The primary goal of an attack on a deniable storage system
is not to recover the plaintext files, but to discover the presence
of hidden volumes. In Artifice’s adversary model, it is assumed
that the adversary can coerce a user to reveal their keys
provided there is sufficient suspicion that a user possesses
a hidden volume [5]. The success of a particular attack then is
dependent on how well the attack can discriminate between
disks containing hidden volumes and those that do not. In
particular, the rates of false positives and false negatives should
both be very low for an attack to be considered successful.

As noted most deniable storage systems achieve their aims by
encrypting and splitting data into redundant shares and writing
these blocks uniformly on the disk [5], [10]. This increases the
odds of survival of the files when the public file system, which
is unaware of their existence, makes its own writes. Other

Fig. 2: Empirical probability of consecutive changes for 52
change records where the changes are made by an ext4 file
system.

approaches write public and hidden data psuedorandomly so
that public and hidden writes are indistinguishable [2], [3].

The commonality between these approaches is that deniable
storage systems make many uniform writes. Depending on the
size of the free space, writes made uniformly are very likely
to result in isolated changes on disk, which we call singletons.
This is in contrast to normal file systems, which do not make
their writes uniformly, and are much more likely to make writes
that are part of longer strings of consecutive changes that we
call chains. We call a chain of c consecutive changes a c-chain.

Example III.1. Say that in a change record a 1 denotes a
change and a 0 denotes no change between two snapshots.
Then in (1) there are two singletons (or 1-chains) and one
3-chain.

1 0 1 0 1 1 1 (1)

An adversary observing the change records produced from a
pair of disk snapshots would be able to observe the lengths of
the chains those changes produce. Crucially if the disk contains
a hidden volume, the adversary would also see changes made
by writes to that volume. In Appendix A we give the theoretical
distribution of chains given the size of the disk and the number
of changes made. We find they are distributed according to
lemma A.1. Fig. 1 shows that as the free space grows relative
to the number of writes, the probability of a singleton increases.
Fig. 2 shows that for real disks, the probability of a singleton
is much smaller, and the tail of the distribution is typically
much heavier. Together they show the disparity between the
distributions of chains due to a hidden volume and the chains
due to a public file system. This becomes more pronounced
as the hidden volume makes more writes. Our task then is to
construct features to distinguish between the distribution of
consecutive changes made by a public file system and changes
made by a public file system and a hidden volume.

3

To carry out this attack, we assume that the attacker has
access to a large set of disk images, both from disks that
contain hidden volumes and from those that do not. Images
in this set will be organized into pairs of images from the
same disk at different points in time. Comparing these pairs of
images results in a change record for a given disk. We will call
pairs that do not have an instance of a hidden volume clean
and those that do dirty. Assuming our adversary is well-funded
and motivated these data requirements are easily attainable.

Since for our proposed attack we only need to determine
whether individual blocks have changed, we can take snapshots
of the clean and dirty disks in a space efficient manner by
hashing each block on the disk, and constructing a Merkle
tree [14] over the hashed blocks. This gives us a very efficient
method of finding changes, and producing change records.
These change records are further processed into lists of integers,
Di, recording the lengths of chains found in each change record.
We will denote these lists of chains {Di} = D.

From D the adversary has several options for constructing
an arbitrary n number of features for use in a classification
algorithm. The first is to remove a set of clean disks that we
will call C. Using C the adversary estimates the probability
of c-changes from 1 to n, the number of features, for
each Di by counting the occurrences of each c-chain and
dividing by the total number of chains in Di. Using these
probabilities on D − C, the adversary can then estimate the
probability of a disk containing more than k c-chains with
the cumulative distribution function (CDF) of the binomial
distribution, F (k;n, pc) where n is the length of the change
record and pc is the estimated probability of a chain of c
consecutive changes. We will denote the event of an adversary
observing k consecutive changes of length c as Xc. Then,

P (Xc > k) = 1− F (k;n, pc). (2)

Using these values we construct our final features F for D.
This method has greater sensitivity to small variations in
probabilities for small disks; however, on large disks it tends to
underflow when computing equation (2). We give pseudocode
for this in algorithm (1).

For large datasets, we take a simpler approach to computing
F by computing the probabilities of chains of length 1 to n
for each Di and feeding these to our classifier.

Recall that the dataset is entirely constructed by the adversary,
so it has ground truth labels describing whether each row in F
corresponds to a disk containing a hidden volume or not. The
adversary now trains a supervised classification algorithm on F
split into standard train and test sets. On new pairs of disks the
adversary runs through the feature construction process, then
runs the classification algorithm on those feature and responds
accordingly. Furthermore, if the adversary can confirm that
some disks did in fact contain a hidden volume, it can update
its model using various online learning techniques [15], further
refining its model.

As a note on selection of the number of features, we observe
from lemma A.1 that when the free space on a disk is large
relative to the number of writes, the vast majority of writes will

result in singleton changes. As a consequence, the adversary
could learn based on a single feature derived from singletons.
This may be desirable in some situations for the sake of
efficiency; however, Artifice could simply be modified so that
when writing blocks they would be grouped in chains of two or
more, thereby defeating the attack as described. The adversary
can in turn thwart this countermeasure by increasing the number
of features, n. We go into more detail regarding this problem
in Section VI.

Algorithm 1: Feature Construction. This method is
suitable for smaller disks, where greater sensitivity is
required, but suffers from underflow on large disks.
Input: D, a set of processed disks; {p1, ..., pc}, the

estimated probabilities of consecutive changes
of length 1...c.

Output: F , a |D| × c matrix.
F := {}
foreach Di ∈ D do

f := {}
foreach ci ∈ {1...c} do

k := number of c-consecutive changes in Di

a := 1− F (k; |Di|, pci)
append(a, f)

end
append(f,F)

end
return F

IV. DATA COLLECTION AND EXPERIMENT METHODOLOGY

As noted previously, one of the challenges of carrying out
a multiple snapshot attack is the availability of pairs of disk
images. These are necessary to learn what normal chains look
like. While collecting hundreds, or thousands, of disk images
may be feasible for a nation state level adversary (or a large
IT department), we were unable to collect such a large amount
of data.

Instead, we have collected several months worth of snapshots
from a 1 TB NVMe SSD formatted with ext4 and in use as
the boot disk of a desktop computer running Ubuntu 18.04. We
collected 53 snapshots in total, giving us 52 change records1

which we have made publicly available. By observing the
distribution of lengths of changes over our collected data
(Figure 2), and the theoretical distribution of consecutive
changes (Figure 1) when changes are made uniformly, the
potential strangeness of a disk running a deniable volume
becomes clear.

Because just 52 data points are insufficient to train a classifier,
and moreover, would be inconclusive regarding performance of
that classifier, we instead used this data to generate a synthetic
dataset on which to train and test our classifier. While in the
real world different file systems may produce different patterns

1This data is available at https://files.ssrc.us/data/disk-change-data.zip. The
code for these experiments is available at https://github.com/ucsc-ssl/multiple-
snapshot-attack.

4

https://files.ssrc.us/data/disk-change-data.zip
https://github.com/ucsc-ssl/multiple-snapshot-attack
https://github.com/ucsc-ssl/multiple-snapshot-attack

of changes, this does not change the reality that a deniable
volume writing many single blocks, and thereby causing many
singleton chains in the change record, would be considered
abnormal regardless of the public file system in use. Though the
fact that our attack only utilizes data from ext4 file systems
is a limitation, no file system in widespread use writes blocks
randomly, so we expect our attack will generalize to other data
sources.

Our experiments are conservative in terms of the operational
security measures the user of a hidden volume might take. We
discuss them here to motivate our experimental design.

There are several things that the user of a deniable volume
could do to decrease the odds of detection. To start, assume
that a single snapshot has been taken, and no deniable volume
yet exists on the drive. A prudent user would make many
changes to the disk through the public file system. The reason
for this being that if there are overwhelmingly many chains
distributed according to normal disk behavior, the singletons
made by writing to the hidden volume could be made to
look like noise. To illustrate this, consider a user that does
not produce a single change through the public file system
after the deniable volume is created and written to. In this
case the adversary would see, after taking a second snapshot
and computing the differences, only chains produced by the
deniable volume. These chains would be principally singletons,
which would surely be conspicuous. As an extreme measure the
user could simply wipe the disk and then create the deniable
volume, but this may be considered suspicious or may be
undesirable for other reasons. As a less drastic alternative, the
user could produce an overwhelming number of changes to
the disk through the public file system. In our experiments we
chose this middle ground by using our real data to simulate
25 GB worth of public changes on a 1 TB disk with 100 GB of
free space. This produces a sufficient number of public changes
to hide private changes while still behaving as a normal user
might.

Each pair of disk snapshots can be regarded as producing
a distribution over consecutive change lengths, so in order
to construct our synthetic dataset we simply draw chains
from these distributions. Realistically, the fraction of disks
containing hidden volumes would be relatively small, and
the size of hidden volumes would also be variable. For our
hidden volumes, we assume that we have instances that are
from 250 MB to 1.25 GB in increments of 250 MB. In addition
to its realism, this allows us to determine a point at which
the number of uniform writes becomes conspicuous. For our
Artifice parameters we chose those that minimized the number
of writes, while achieving survival probabilities over 80% with
25 GB of cover changes. This led us to copy data blocks 6
times, where the survival of a single block is sufficient for
reconstructing the data. Since our adversary is able to generate
an arbitrary number of disk snapshots with and without hidden
volumes, in order to allow our classifier to learn to distinguish
disks more quickly our training set contains an even split of
disks with and without hidden volumes. However, to reflect
the rarity of hidden volumes in the real world only 5% of our

test set contains disks with a hidden volume. We generate a
training set of size 10000 and a test set of size 2500. We repeat
this generation, training and testing cycle 100 times to ensure
the reliability of our results.

V. RESULTS

By implementing the experimental methodology described
in Section IV and running it against our dataset we collected a
set of results that show the efficacy of our proposed multiple
snapshot attack. It should be noted from the start that at the
core of our implementation is a simple logistic regression that
takes only the probability of a single block change on the
disk into account. In choosing to implement such a simple
learning algorithm we highlight the distinguishing power of
analyzing consecutive block changes in detecting anomalous
disk behavior.

We collected five different metrics on our classifier: accuracy,
precision, recall, false positive rate, and false negative rate.
Because only 5% of our test set contains Artifice instances
accuracy is not a very informative metric, and we include it
for completeness only. Precision is the ratio of true positives
to predicted positives. Recall is the ratio of true positives to
true positives and false negatives, giving the ratio of Artifice
instances that were identified from the test set. False positive
rates and false negative rates are useful for understanding how
frequently our classifier makes errors in both directions. We
consider false classification rates to be the most important
metrics for an attacker.

In our experiments the 250 MB Artifice instances were often
able to pass undetected, implying that 25 GB of cover changes
were sufficient to hide these volumes. However, the largest
four sizes were reliably detected, with the three largest sizes,
0.75 GB, 1.0 GB and 1.25 GB, being detected nearly 100% of
the time. This highlights a feature of our attack, namely that for
25 GB of cover changes every Artifice instance above a certain
size will be detected with high probability. This is because
of our use of logistic regression, and because the probability
of singletons is so overwhelming. Eventually as free space
fills up, Artifice will begin to make changes that are parts of
longer chains, but if the reconstruction threshold is low, this
will severely impact the survivability of the volume.

The presence of a point where the FNR becomes negligible
also offers an explanation for the relatively constant false posi-
tive rate. This being that a certain percentage of simulated clean
disks will naturally have disproportionately many singletons
and thus get misclassified as containing an Artifice volume.
Interestingly, there were very few disks that naturally had
enough singletons to exceed the learned threshold.

Future work may combine the features we use in this attack
with other features. Such as what proportion of changes are
made to blocks in free space versus allocated blocks. The
introduction of more features would serve to better characterize
disk behavior and further improve the efficacy of the attack.

VI. ATTACK MITIGATION

Artifice’s authors propose an operational security based
approach to defend against multiple snapshot attacks [5]. The

5

Fig. 3: Hidden volumes in excess of 0.75 GB are always
identified successfully.

Size (GB) Acc. Precision Recall FPR FNR
0.25 0.981 0.911 0.680 0.004 0.320
0.5 0.993 0.934 0.937 0.004 0.063
0.75 0.997 0.942 0.999 0.003 0.001
1.0 0.996 0.935 1.0 0.004 0.0
1.25 0.997 0.939 1.0 0.004 0.0

Fig. 4: Numeric results from our experiments. These results are
averaged over 100 runs. Furthermore, 95% confidence intervals
for all figures vary only in the thousandths.

rationale being that if the user can produce a deniable reason for
changes to the entire disk, such as re-installing the operating
system or defragmentation, then the adversary’s previously
gathered data would be rendered useless. This defense relies
heavily on the ability of the user to out-maneuver the adversary
and will not always be practical. As a result, it would be prudent
to develop some other countermeasures against our proposed
attack and future types of snapshot analysis.

We can observe in Figure 3 that the FNR of our classifier
decreases as the effective size of the Artifice instance increases
while the amount of data written by the public volume
remains the same. With this in mind we can conclude that
the operational strategy proposed in Section IV, to keep the
proportion of hidden to public writes sufficiently skewed in
favor of the latter, is a viable strategy. Unfortunately, this
severely limits the effective size of Artifice.

While our proposed mitigation technique is a promising
means of defense against snapshot analysis it is still worthwhile
to explore the possibility of a mechanism that does not require
such close user involvement. In order for a deniable storage
system to defend against a snapshot attack without operational
measures, the designer of such a system could attempt to mimic
the distribution of writes that the public file system is making.
Similar to our operational approach, the survivability of a
hidden volume may be impacted by changing the distribution
of writes from uniform to something more closely resembling

a normal file system. In the case of Artifice, the reason
that it writes blocks uniformly is to ensure that any writes
made to the public file system are unlikely to destroy too
many Artifice blocks. As such, system designers need to be
careful when implementing countermeasures to maintain a high
probability of survival when using the public file system while
still successfully mimicking its write behavior.

In our proposed attack, we use only one feature associated
with single block changes to the disk. A naive approach would
be to simply write all blocks in pairs, producing consecutive
changes of two blocks. This would defeat our attack, but the
adversary could expand its feature set to include changes two
blocks long and so on, forcing the user of the hidden volume
to mimic the public file system or risk detection. Furthermore,
given the myriad measurable features in the average file system
and that the adversary is unlikely to publish details of its attack,
we can conclude it would be difficult to accurately determine
what features are and are not being tracked by the adversary,
making mimicry the safest option.

In order to accurately mimic expected access patterns, much
more work needs to be done to quantify exactly what a change
pattern for a disk without a deniable volume looks like. A
significant body of work has been published in the context of
network steganography and pattern mimicking cryptography
and could be used to inform designers of future multiple
snapshot resistance systems. For instance, initial work into
format transforming encryption by Dyeret al. [16] showed that
it was possible to efficiently encrypt data so that it would
conform to a target regular expression. An application of this
is found in censorship resistant networking. In this case a
user might be running a blacklisted protocol, such as Tor, but
transforms the protocol messages in such a way that they look
like HTTPS. Similar techniques could be applied to deniable
storage to disguise suspicious write patterns. Unfortunately,
there is also evidence that more capable adversaries utilizing
more sophisticated attacks can easily identify these false
protocols. Houmansadr et al. [17] argue that it is unlikely
that one could mimic a protocol perfectly without running
the actual protocol, because there are often sub-protocols one
would also need to mimic or differences in implementations that
allow for version fingerprinting. Assuming snapshot analysis
becomes more sophisticated it is likely that mimicry techniques
applied to deniable storage would also need to evolve.

Since Artifice relies on pseudorandom data in free space and
the use of secure deletion utilities to produce cover changes,
one way to potentially sidestep the issues of artificial mimicry
could be found in actually using these deleted files. Artifice
could keep track of changes in free space on the public file
system, and when it sees a block added to free space it could
overwrite this with an Artifice block. As noted above this is
not uniformly written and so may risk corruption of files, but
it also may provide stronger mimicry guarantees than other
methods. We leave it to future work to investigate this and the
other techniques we have presented for mitigation.

6

VII. CONCLUSION

We have demonstrated the first implemented multiple snap-
shot attack against deniable storage systems. In doing so we
showed the broad usefulness of change records to an adversary
seeking to detect hidden volumes. Furthermore, we presented a
concrete way to analyze changing disks, even when the contents
and sizes of those disks are radically different. Through our
data collection we were able to show that this measure of
computing consecutive change lengths of a disk is relatively
stable. For our data we collected over fifty images of ext4
disks and used records of changes across these images to train
a classifier on probabilities of chains. We demonstrated that
this classifier is able to differentiate between disks containing
a hidden volume from disks without a hidden volume in a
variety of configurations. In the process we have also identified
limitations to our technique and from those limitations have
proposed possible countermeasures to our attack.

As future work we would like to gather substantially more
data from more varied sources. In addition to covering the
major file systems, collecting data from many different types
of computer users would give us greater confidence in the
stability of our metrics. Finally, the attack we propose has
great potential for expansion. Many more features could be
included, such as number of writes and location of writes in
free and used space. Adding additional features would be trivial,
and have the potential to further improve the performance of
the attack, lowering the false positive rate, and the size of
hidden volumes that can be expected to evade detection.

REFERENCES

[1] X. Zhou, H. Pang, and K. Tan, “Hiding Data Accesses in Steganographic
File System,” in Proceedings 20th International Conference on Data
Engineering, April 2004, pp. 572–583.

[2] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, “Toward Robust
Hidden Volumes Using Write-Only Oblivious RAM,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’14). New York, NY, USA: ACM, 2014, pp. 203–214.

[3] A. Chakraborti, C. Chen, and R. Sion, “DataLair: Efficient Block
Storage with Plausible Deniability against Multi-Snapshot Adversaries,”
Computing Research Repository (CoRR), vol. abs/1706.10276, 2017.

[4] C. Chen, A. Chakraborti, and R. Sion, “PD-DM: An Efficient Locality-
preserving Block Device Mapper with Plausible Deniability,” Proceedings
on Privacy Enhancing Technologies, vol. 2019, pp. 153–171, 01 2019.

[5] A. Barker, Y. Gupta, S. Au, E. Chou, E. L. Miller, and D. D. E. Long,
“Artifice: Data in Disguise,” in Proceedings of the Conference on Mass
Storage Systems and Technologies (MSST ’20), Oct. 2020.

[6] R. Anderson, R. Needham, and A. Shamir, “The Steganographic File
System,” in International Workshop on Information Hiding, D. Aucsmith,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 73–82.

[7] A. D. McDonald and M. G. Kuhn, “StegFS: A Steganographic File
System for Linux,” in International Workshop on Information Hiding.
Springer, 1999, pp. 463–477.

[8] Truecrypt Foundation, “Truecrypt,” http://truecrypt.sourceforge.net.
[9] A. Skillen and M. Mannan, “On Implementing Deniable Storage

Encryption for Mobile Devices,” in 20th Annual Network & Distributed
System Security Symposium, February 2013.

[10] H. Pang, K. Tan, and X. Zhou, “StegFS: A Steganographic File System,”
in Proceedings 19th International Conference on Data Engineering (Cat.
No.03CH37405), March 2003, pp. 657–667.

[11] O. Goldreich, “Towards a Theory of Software Protection and Simulation
by Oblivious RAMs,” in Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing (STOC ’87). ACM, 1987, pp.
182–194.

[12] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on
Oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, May 1996.

[13] A. Shamir, “How to Share a Secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[14] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369–378.

[15] S. Shalev-Shwartz et al., “Online learning and online convex optimization,”
Foundations and trends in Machine Learning, vol. 4, no. 2, pp. 107–194,
2011.

[16] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Protocol
misidentification made easy with format-transforming encryption,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, 2013, pp. 61–72.

[17] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The Parrot is Dead:
Observing Unobservable Network Communications,” in 2013 IEEE
Symposium on Security and Privacy, 2013, pp. 65–79.

APPENDIX

A. Theoretical Probability of Consecutive Changes

Suppose we have an array, A, of size n and we make k
changes to it at random, where 1 denotes a change and 0
denotes no change. What is the probability of selecting a chain
of exactly c consecutive changes? We give an example and
then give the general statement and proof.

Example A.1. When n = 7 and k = 4, what is the probability
of drawing a chain of length 2 from the array?

In this case it is feasible to enumerate all
(
7
4

)
= 35 possible

arrangements of the disk. Doing so we see there are 12 ways to
get arrays with one chain of length 2 and two chains of length 1.
We also see that there are 6 ways to get arrays with two chains
of length 2. Therefore, Pr(C = 2;n = 7, k = 4) = 12

35 ·
1
3+

6
35 ·

2
2

For larger values of n and k this quickly becomes infeasible.
Instead, we describe a method whose complexity only depends
on k.

Lemma A.1. Let A be an array of size n with k ≤ n
entries made at random. Then the probability of a chain of c
consecutive changes in A is

Pr(C = c) =
∑
p∈P

(
n−k+1
|p|

)(
n
k

) Pr(C = c | p), (3)

where P is the set of partitions of k, |p| is the number of
elements in a partition p, and Pr(C = c | p) is the probability
of c in a partition p.

Proof. Let A be an array of length n with k changes made
uniformly at random. Then A can be represented as p =
(p1, p2, ..., pk), an ordered partition of k, where each pi ∈ Z
represents the i-th string of pi consecutive 1s separated by one
or more 0s. Let |p| be the length of the partition of k. By our
construction of p, A is uniquely represented by p and

p1 + p2 + ...+ p|p| = k. (4)

Since any array A can be represented by p ∈ P , where P
is the partition of k, we can compute Pr(C = c) as

Pr(C = c) =
∑
p∈P

Pr(C = c | p) Pr(p), (5)

7

by marginalizing over P , the size of which is
(
2k−1
k−1

)
. We

conclude the proof by computing Pr(p). Since there are
(
n
k

)
possible arrays, counting the number of arrays represented by
p is sufficient to compute Pr(p).

Example A.2. (continued from example A.1) The ordered
partitions of 4 are

(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1).

Taking c = 2, we have (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2) all
contain at least one 2.

Notice that when p = (2, 1, 1), the array will take the form
?110 ? 10 ? 1?, where ? represents zero or more 0s. Therefore,
there is a single 0 whose location is not fixed by p, and there
are

(
4
1

)
= 4 ways to place it.

Arrays that are represented by p must have the form

? 11 · · · 10︸ ︷︷ ︸
p1

? 11 · · · 10︸ ︷︷ ︸
p2

? · · · ? 11 · · · 1︸ ︷︷ ︸
p|p|

?

by our construction. Notice that there are k 1s and |p| − 1 0s
in the string above, so there are n− k − (|p| − 1) 0s whose
locations are unfixed. There are

(
n−k−1
|p|

)
different ways to

place these 0s, thus

Pr(p) =

(
n−k−1
|p|

)(
n
k

) , (6)

completing the proof.

8

	I Introduction
	II Background and Related Work
	II-A Deniable and Steganographic Storage Systems
	II-B Attacks on Steganographic Storage
	II-C Artifice

	III Attack Framework
	IV Data Collection and Experiment Methodology
	V Results
	VI Attack Mitigation
	VII Conclusion
	References
	Appendix
	A Theoretical Probability of Consecutive Changes

