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Abstract 

store data in large repositories of removable media 
volumes. Management of the removable volumes is 
performed by a software module hown  as a Physical 
Volume Library (PVL). To meet performance and 
scalability requirements, a PVL may be asked to mount 
multiple removable media volumes for use by a single 
client for parallel data transfer. Mounting sets of 
volumes creates an environment in which it is possible 
for multiple client requests to deadlock while attempting 
to gain access to storage resources. 

Scenarios leading to deadlock in a PVL include 
multiple client requests that contend for the same 
cartridge(s), and client requests that vie for a limited set 

Most modem high performance storage systems 

of drive resources. These deadlock scenarios are further 
complicated by the potential for out-of-order volumes to 
be mounted (for example, by Automatic Cartridge 
Loaders or human operators). 

This paper begins by introducing those PVL 
requirements which create the possibility of deadlock. 
Next we examine traditional approaches to deadlock 
resolution and how they might be applied in a PVL. 
This leads to a design for a PVL which addresses 
deadlock scenarios. Following the design presentation is 
a discussion of possible design enhancements. We end 
with a case study of an actual implementation of the 
PVL design in the High Performance Storage System 
(HPSS). 

1. Introduction 
Processing power and data collection abilities have 

been increasing faster than storage system bandwidth and 
capacity for many years [1,2]. This growing gap has 
caused the storage system to become a botdeneck for 
more and more applications. While techniques such as 
third party transfer and network attached peripherals 131 
address this bottleneck, existing storage systems 
continue to fall short of meeting the present and predicted 
data storage and retrieval needs of supercomputers, 
massively parallel processors. and networks of 
workstations. 

In response, researchers working on the next 
generation of storage systems are looking for innovative, 
open solutions which will narrow the storage gap. The 
IEEE Reference Model for Open Storage Systems 
Interconnection (Project 1244) [41 defmes a storage 
architecture which addresses the needs of high-end storage 
clients. The reference model defmes a set of cooperating 
modules and interfaces which combine to form a 
functional storage system. The focus of this paper deals 
mostly with the design aspects of one of these modules 
known as the Physical Volume Library (PVL). 

module and those modules most closely associated with 
the PVL is necessary: - 

A quick overview of the reference model's PVL 

Physical Volume Library (PVL) 
A PVL is responsible for mounting and 
dismounting physical volumes (tape, optical 
disk, magnetic disk) and queuing mount requests 
when requjred drives and media are in use. The 
PVL accomplishes any physical movement of 
media that might be necessary by making 
requests to a Physical Volume Repository. 

Physical Volume Repository (PVR) 
A PVR manages the agent, robotic or human, 
responsible for mounting and dismounting 
storage media [5]. 

The Virtual Storage Server (VSS) 
The VSS maps virtual storage, including s&iped 
and mirrored data, onto physical storage media. 
The virtual storage server issues requests to the 
Physical Volume Library to mount physical 
volumes. 

The Mover 
A mover transfers data between clients and 
storage media 161. The mover is used by the 
Physical Volume Library to read internal media 
labels. 



At this point we need to define few other terms that 
we will using throughout the paper: 

Cartridge 
A cartridge is a transportable object managed by 
a PVL and physically mounted by a PVR. 

Physical Volume 
A physical volume (often called a volume in 
this paper) is the portion of a cartridge which 
can be contiguously accessed when mounted. 

Media 
Media is any readable andor writeable data 
storage area. 

Virtual Volume 
A virtual volume is one or more physical 
volumes which are logically combined to 
represent a single data storage area. 

While a physical volume mount request maps 
directly to a request to mount medii the cartridge 
containing the media may hold one or more physical 
volumes. For example, with some optical platters, the 
transportable object (the camidge) is the optical platter 
itself. If the platter is capable of storing data on each of 
its sides, the cartridge could be considered to hold two 
physical volumes represented by the two sides of the 
platter. Tape cartridges capable of partitioned access may 
similarly be configured to contain multiple physical 
volumes. 

The PVL is the enterprise wide manager of volume 
and drive resources and is responsible for queuing mount 
requests to prevent resource contention. The PVL 
translates client (VSS) requests to mount a physical 
volume into requests to mount a specific media. When a 
volume is requested the PVL identifies the PVR which 
manages the media. It then allocates the requested media 
and drive resources (using one of many possible queuing 
and allocation schemes) and issues mount commands to 
the PVR. When the PVR has mounted the media, the 
PVL verifies the internal media label via requests to a 
mover. 

In a high performance storage environment, it is 
often necessary that a single bitfile be striped across 
multiple physical volumes in order to attain an adequate 
data transfer rate. For example, a modem high 
performance tape drive might read and write at about 10 
megabytes-per-second (MB/s) and might store 20 
gigabytes (GB) of data on a cartridge. If a bitfide is 
striped across four such tape drives, the resulting virtual 
volume will appear to the client to read and write at 40 
MBls and to store 80 GB . It should be noted that, while 

the advantages of striping are obvious, deciding when and 
how wide to stripe a bitfile is challenging [7,8,91. 

High performance storage systems that implement 
striping require that sets of volumes be mounted together 
in order to satisfy striped data requests. For this paper we 
make the assumption that striped data can not be accessed 
until all volumes making up the virtual volume are 
mounted. This assumption is necessary in cases such as 
direct tape-to-tape copies (when the source stripe width 
does not match that of the sink) and tape-todisplay 
copies where a system does not typically have enough 
memory to buffer data while awaiting mounts. Sets of 
volumes may also be needed for other purposes such as 
creating mirrored copies of data. It is in the process of 
satisfying atomic mounts of sets of volumes that a 
potential for deadlock arises in a PVL. 

2. Problem statement 
A system is considered to be deadlocked if every 

activity in the system is waiting for an event which can 
only be generated by another activity in the system [lo]. 
Mounting volumes in a high performance storage 
environment can cause deadlock in three different ways: 

Drive resource contention 

Out-of-order mounts 

Multiple requests for the same cartridge 

Non-deadlock scenarios involving clients that 
monopolize resources can also effectively prevent the 
allocation of storage resources. In this section we will 
discuss these scenarios after 6rst investigating the 
potential for deadlock caused by each of the three 
deadlock conditions. 

2.1. Drive resource contention 
A PVL is required to mount multiple physical 

volumes together for striped bitfiie access. In most 
parallel environments all physical volumes must be 
mounted concurrently to satisfy the striped request 
Mounting three out of four cartridges for a striped tape 
request does not typically allow the data to flow, and the 
three drive units occupied by the mounted tapes are not 
free to satisfy other requests during the wait for the 
fourth cartridge. Worse yet is the potential for deadlock if 
the required fourth drive resource will never become 
available because another request, which will not 
complete until one of the drives occupied by the first 
request is relinquished, occupies the remaining drives. 

This simple deadlock scenario is illustrated in 
Figure 1. In this example a PVL managing four drives 
has two separate requests, one for a four-wide stripe and a 
second for a three-wide stripe. The PVL has mounted two 
camidges for each request and is deadlocked waiting for 
drives to free for each request 



Reading data from a 4-wide suipe: 
VOLOO1, VOL002, VOL003, VOL004 

Reading data from a 3-wide stripe: 
VOL095, VOLO96, VOL097 

n VOLOO 1 n VOL096 

Figure 1. Two clients deadlocked waiting for drives 

Another aspect of this deadlock scenario is that, 
even if one of the striped requests is satisfied, data may 
not be able to flow until both mount requests are 
satisfied concurrently. If the two clients in Figure 1 were 
attempting a tape-to-tape copy directly from one set of 
striped tapes to another (Client 1 to Client 2); all source 
and sink tapes would need to be mounted for data to 
flow. If the two clients involved submit their striped 
mount requests separately, even if one of the stripe sets 
is successNly mounted without deadlocking, that striped 
set will occupy drives without moving data until the 
second stripe set is mounted. If the second stripe set is 
unable to mount due to resource contention, PVL 
deadlock is achieved. In fact, the example tape-to-tape 
copy would be impossible given the hardware in Figure 
1, as seven drives would be required for the copy. It 
should be noted that, if the tape-to-tape copy was 
between a like number of tapes (four-wide stripe to four- 
wide stripe) copying could be accomplished by copying 
each stripe independently. 

n VOL003 n VOL097 

2.2. Out-of-order mounts 

mounted creates another deadlock scenario in a PVL. 
Out-of-order volumes are those volumes which have been 
requested by a client (or perhaps will be requested soon 
by a client) but have not yet been requested of the PVR 
by the PVL. In addition to out-of-order volume mounts 
caused by operator and robot error, another common 
mechanism which can cause out-of-order volume mounts 
is the use of a traditional sequential Automatic Cartridge 
Loader, more commonly referred to as a stacker. This 
device mounts the next cartridge in its stack as soon as 
the current cartridge is unloaded. No external command is 
required from the PVL or PVR for such a mount. If the 
PVL keeps the out-of-order volume mounted (possibly to 
satisfy mother queued request) the same type of deadlock 
condition we obsemed previously could OCCUT [see Figure 
21. 

The potential for out-of-order volumes being 



Reading data from a Cwide stripe: 
VOLOO1, VOL002, VOL003, VOL004 

Reading data from a 4-wide stripe: 

I CLN002 I 
I VOL095 I I VOL096 1 
I VOLOO1 I IVOL002 I 

VOL097 

Figure 2. Two clients deadlocked due to cartridge order in stackers 

Note that, in Figure 2, there is no way for both 

Another scenario made possible by out-of-order tape 
client requests to succeed without operator intervention. 

mounts is one leading to a state of indefinite 
postponement of a client request (also called livelock 
[ll]). If, when an out-of-order mount occurs, the PVL 
uses the volume to satisfy a queued request, other mount 
requests which may have been older (or of higher 
priority) will be postponed. Theoretically a mount 
request might never be satisfied because out-ofader 
mounts could indef~te ly  monopolize drive resources. 

2.3. Multiple requests for the same cartridge 
It is also possible for a PVL to deadlock based on 

contention for cartridge resources. If two clients are 
mounting striped sets that require different physical 
volumes, but two of the volumes exist on the same 
cartridge then deadlock could occur. This deadlock can 
occur even though clients may be requesting discrete sets 
of volumes, but in fact are requesting overlapping sets of 
cartridges [see Figure 31. 

Client 2 
Reading data from a 2-wide stripe: 
ODOOla, OD002a ODOOlb, OD002b 

Reading data from a 2-wide stripe: 

I I I I  I I I I 

Figure 3. Two clients deadlocked waiting for volumes 

lul 



2.4. Resource monopolization 

how accepting out-of-order mounts could lead to the 
indefinite postponement of requests even if it did not 
cause deadlock. The end result is similar to deadlock in 
that client requests to the storage system are never 
satisfied. Resource monopolization is another condition 
which can lead to indefmite postponement even when it 
does not cause deadlock. 

In some environments it is quite possible that an 
apparently well behaved client may hold a resource 
indefinitely. For example, some persistent process may 
acquire a set of drives and volumes to use as scratch 
space for calculations. Such a process would prevent 
other storage system clients from ever accessing those 
drives. While it is possible for a PVL to force a volume 
to be dismounted, the result can lead to serious emrs in 
the client and corrupted data on the volume. Because of 
this, most systems do not allow a PVL to force a client 
to terminate the use of a drivdvolume combination. For 
the purposes of this paper we assume well behaved 
clients which hold resources for some bounded amount of 
time. 

3. Traditional approaches to deadlock 
Deadlock conditions have been well defmed in 

operating systems research. There are four conditions 
necessary for deadlock to exist, Coffinan et. al. [12] 
introduced these conditions which, defmed simply are: 

A non-sharable resource is held by a process. 
Other processes requesting the resource must 
wait until it is relinquished. 

In the subsection on out-of-order mounts we saw 

Mutual Exclusion 

Hold and Wait 
A process is holding one or more resources and 
is waiting to acquire additional resources. 

No Preemption 
A resource will only be released voluntarily by 
the process which holds it. 

Circular Wait 
There exists a cycle in the dependency graph 
which represents the processes, the resources 
they hold, and the resources they have requested. 
More formally, there exists a set of processes 
(PO, pl ,  ..., pn) such that PO is waiting for a 
resource held by p1, p1 is waiting for a resource 
held by p2, and so on, and pn is waiting for a 
resource held by po [ 101. 

When al l  four of these conditions are satisfied, 
deadlock will occur. AU three of the PVL deadlock cases 

presented in section 2 satisfy all four deadlock 
conditions. 

deadlock. Dietel [ 131 identifes these approaches as: 
There are three major approaches to dealing with 

Deadlock Prevention 

Deadlock Avoidance 

Deadlock Detection and Recovery 
We will now examine each of these approaches and 

their application to a PVL. 

3.1. Deadlock prevention 
Deadlock prevention entails eliminating any 

possibility of a deadlock condition occurring. This is 
done by ensuring that at least one of the four conditions 
neceSSary for deadlock can never occur. 

In a PVL it is impractical to try to eliminate the 
Mutual Exclusion condition because drives can not be 
assumed to be concurrently shared between clients. As 
discussed in section 2.4, preemption is also not practical, 
so the No Preemption condition also holds. Circular 
Wait is generally a function of client requests. Because 
clients do not typically coordinate independent requests 
with one another, there is no way for them to guarantee 
that their requests will never result in a circular wait for 
resources. A PVL can not prevent such a condition as it 
is unaware of all of its clients' higher level 
interdependencies. Because of this we cannot eliminate 
the Circular Wait condition in the PIX. 

Our final chance at eliminating a deadlock condition 
is to prevent the Hold and Wait condition fiom ever 
occurring. As it turns out it would be trivial for a storage 
system to eliminate thii condition and thereby eliminate 
any potential for deadlock. The PVL could simply 
request drives for a client, but never hold drive resources 
while waiting for others to become available. In this 
manner a PVL mounting a four-wide stripe might request 
the drives one at a time, releasing any successful drive 
reservations if any one drive request couldn't be 
immediately satisfied. While this prevention algorithm 
eliminates the potential for deadlock, it represents a very 
inefficient algorithm for obtaining resources. Depending 
on the implementation, it can also lead to job resource 
starvation. 

3.2. Deadlock avoidance 
Given information about how serially reusable 

resources such as cartridges and drives will be used, it is 
possible to construct an algorithm that avoids deadlock. 
Deadlock avoidance algorithms avoid deadlock occurrence 
through the judicious allocation of resources. An 
example of a classical avoidance algorithm is Dijkstra's 
Banker's Algorithm [14]. 

Storage system clients typically know the total 
number of resources a job will require immediately at the 
start of a job. A four-wide stripe requires four drives and 



four volumes. A direct tape-to-tape copy of one four-wide 
stripe to another requires eight drives and eight volumes. 
If a PVL presents an interface allowing clients to provide 
information about what mounts need to occur atomically 
together, PVL deadlock can be avoided and the 
possibility of client level deadlock (circular wait) is 
diminished. Because of this, PVLs are well suited for the 
application of deadlock avoidance algorithms. It should 
be noted that clients which are not well behaved can still 
deadlock themselves by independently requesting mounts 
that are dependent on each other at a level higher than the 
PVL. 

3.3. Deadlock detection and recovery 
Unlike deadlock avoidance, deadlock detection 

algorithms make no effort to prevent deadlock from 
occurring. Instead, the system is periodically examined to 
determine if deadlock has occurred. Detection algorithms 
typically involve checking resource allocation graphs for 

When it is determined that deadlock has occmed, 
deadlock recovery must be invoked. Deadlock recovery 
involves terminating processes or preempting resources 
in order to break the deadlock. Deadlock detection and 
recovery are often used in environments where deadlock 
is unlikely and/or checking for deadlock at each request is 

In order to implement deadlock detection and 
recovery in a PVL it must be possible for the deadlock to 
be broken. As discussed in section 2.4, breaking deadlock 
by preempting resources or by forcibly unmounting 
client tapes in a PVL is at best difficult, and often is not 
allowed. 

cycles [15]. 

impractical. 

4. A design for PVL deadlock avoidance 
We would now like to outline the design of a PVL 

meant to function in a high performance storage (striped 
medii) environment We will concentrate on those 
aspects of the design which address deadlock issues we 
have raised and explain the rationale behind our design 
decisions. 

4.1. Design approach 
We chose to combine deadlock avoidance techniques 

with an algorithm designed to prevent indefinite resource 
postponement. Deadlock prevention was rejected because 
of its dependence on inefficient resource allocation 
algorithms. Deadlock detection and recovery was rejected 
because of the operational ramifications of the 
requirement that a PVL be able to preempt or terminate 
requests in order to recover from deadlock. 

Our design presents a set of transactional 
Application Programming Interfaces (APIs) to the client 
application. These MIS allow a client to atomically 
specify all of the resources which will be needed for a 
single job. The set of required resources is used by the 
deadlock avoidance algorithm to determine if all or part 
of the request should be queued. The queuing mechanism 

is first-come-first-served (non-preemptive) with defined 
precedence rules for reserving storage resources. Out-of- 
order mounts are allowed, but preemption of storage 
resources is tightly controlled. 

4.2. APIs for atomic mounts 

design includes the following MIS: 
In order to allow for atomic mounts, our PVL 

MountNew( *JobID) 
This interface is used to obtain a unique job 
identifier. This identifier must be used in 
subsequent PVL calls to identify a set of 
physical volumes to be mounted in one atomic 
operation. 

MountAdd(VolumeID, JoblD) 
MountAdd is used to add a volume to a list of 
volumes that will be atomically mounted under 
a job identifier. JobID is obtained through a 
previous call to MountNew. MountAdd should 
be called once for each volume in an atomic 
mount request 

MountCommit(JobID) 
This API commits (actually launches) the 
atomic mount request associated with JobID. 
Once the mount request has been built using 
calls to MountAdd, MountCommit signals to 
the PVL that the request building is complete 
and that the job should be submitted. 

Using these PVL MIS, a client can build a single 
or multi-volume mount request and submit (commit) it 
to the PVL. The interface also allows a pair of clients to 
work together to create a single atomic mount request for 
applications such as tape-to-tape copying. Imagine two 
Virtual Storage Servers (VSSs) which need to copy data 
from a tape virtual volume managed by one VSS to a 
tape virtual volume managed by the other VSS. As 
mentioned previously, to avoid deadlock and to maximize 
drive utilization, the tape mounts for both VSSs should 
be combined atomically. With our design's MIS, one 
VSS could obtain a job identifier using MountNew. This 
identifier could be shared by both VSS clients m the 
building of a single mount request using calls to 
MountAdd. Once the request was built, one of the VSSs 
would be in charge of actually committing the combined 
mount. Such an algorithm allows clients to avoid a 
possible deadlock situation that the PVL would 
otherwise be unable to prevent. 

In our design the APIs allowing atomic mount 
present an asynchronous interface. In order to notify a 
client that mounts have completed, the design specifies 
an API for client notification of mounts: 



PVLNotifL(Job1D. VolumeID, DriveID) 
PVLNotify is used to asynchronously inform a 
client that the PVL has successfully mounted a 
volume. Included with the notifcation is 
information detailing the drive on which the 
volume was mounted. This API is called by the 
PVL as each volume is mounted. 

4.3. PVL mount queuing 
Internally our design accepts MountAdd requests, 

queuing them until the job is committed. It is a job's 
commit time which is used to initially order mount 
requests (not the time of the MountAdds). Once a 
commit is received for a job, the PVL first verifies that 
the job does not require more resources than exist in the 
system. The PVL also verifies that the job is requesting 
valid volumes and that none of the volumes reside on the 
same carttidge. At that point the PVL returns to the 
client and indicates that the mount is in progress. 

Asynchronously, the PVL begins allocating 
resources. The key to deadlock avoidance is preventing 
circular wait. Our deadlock avoidance algorithm achieves 
this by requiring that the PVL follow a strict precedence 
ordering in reserving resources and that those resources 
be assigned to client requests in a specific order. It is our 
experience that drive resources are typically much more 
scarce than media resources. A typical site might have 
thousands of cartridges and fewer than 20 drives. Because 
drives are more scarce, our PVL first attempts to reserve 
the media necessary for the request before trying to 
reserve drives. 

One aspect of our design is that cartridges, not 
physical volumes, are reserved by the PVL. This is 
important because, as mentioned previously, two or 
more distinct physical volumes may reside on the same 
cartridge. Reserving cartridges ensures that two mount 
requests for physical volumes on the same cartridge are 
not issued to a PVR concurrently. When a cartridge 
resource becomes available, it will be given to the 
appropriate mount job which has the earliest commit 
time. 

Once cartridge resources are reserved, the job is 
placed in a second queue to reserve drive resources. Free 
drive resources axe allocated to requesting jobs based on 
their order in the queue. No preemption of a job for 
better r e s o w  utilization is allowed. This does have 
potential drawbacks including less than optimal 
utilization of drive resources. 

Another important aspect of the design is the fact 
that a particular drive is not reserved for a mount request, 
rather a count of drives of the requested type is kept and 
the mount request reserves a drive by decrementing a 
count of available drives of the appropriate type. This 
allows the PVL to deal with PVRs which do not allow 
preassignment of drive resources. 

An exception in this drive assignment algorithm is 
made when the PVR managing the cartridge in question 

is an operator PVR (human mounted drives). In this case 
the PVL does not do any reservation of drives; rather it 
immediately sends the request to the PVR (an exception 
to this rule will be discussed when we describe how we 
deal with out-of-order volume mounts). The benefits of 
this technique are two-fold. First, allowing an operator to 
see all tape mount requests rather than just the oldest 
optimizes the process of retrieving cartridges from 
vaults. Second, it allows for a more simplistic algorithm 
to deal with out-of-order volume mounts which we will 
discuss shortly. 

When a volume mount has been assigned both its 
cartridge and drive, the PVL asks the PVR to mount the 
cartridge. Because the deadlock avoidance algorithm 
guarantees that drive assignments will not cause 
deadlock, we can mount each cartridge as soon as the 
drive is assigned rather than waiting for drives to be 
reserved for the entire job. When the PVR has 
successfully mounted a cartridge, the PVL verifies the 
internal media label using a mover. If the internal label 
is correct the PVL responds to the client using the 
PVLNotify AFT 

We have shown that this PVL design very simply 
addresses both the problem of atomic mount induced 
deadlock, and that of multiple concurrent requests for the 
same camidge resource. The design presented thus far has 
not addressed the challenge of out-of-order mounts. 

4.4. Out-ofsrder mount handling 

mount to be honored can lead to deadlock and indefinite 
postponement. For our design we chose a simple 
strategy which prevents deadlock due to out-of-order 
mounts, but allows the use of conventional stackers at 
the risk of indefinite postponement 

Before settling on a design, we considered the 
simple algorithm of allowing no preemption of mount 
requests. Under such an algorithm, if a volume is 
mounted which has been requested by a PVL client, but 
hadn't yet been requested to be mounted by PVL, then 
the volume will be dismounted. Such an approach makes 
extremely poor use of ~xaditional stacker devices and 
forces an operator to retrieve a dismounted cartridge and 
place it back m the stacker before the mount can be 
satisfied. This eliminates the primary labor-saving 
advantage of using a stacker. 

of-order mounts to be honored with some restrictions. 
Our design accomplishes this by treating operator 
mounted volumes specially. As we stated previously, our 
deadlock avoidance algorithm sends operator mounted 
volume requests to a PVR as soon as a cartridges are 
reserved rather than first trying to reserve a drive. The 
one exception to this rule is that, once mount requests 
for a multi-volume mount involving an operator PVR 
have begun, all subsequent mount requests for that PVR 
are queued in the PVL until the hand mounted volumes 
involved in the multi-volume mount are mounted. This 

As we discussed earlier, allowing an out-of-order 

Because of this weakness we decided to allow out- 



rule, combined with the rule that mounts are only 
accepted if they have been requested by a PVL, ensures 
that two multi-volume mounts will never deadlock on 
operator controlled drive resources. 

Important to our design is the requirement that 
mount request displays communicate to operators which 
volumes are associated together as part of a multi- 
volume mount. This information is vital in order to 
provide an operator enough information to keep him or 
her from stacking two or more volumes that are part of 
the same multi-volume mount in the same stacker. Also, 
because we assume that most operator mount request 
displays will show how long a particular mount request 
has been outstanding, we depend on the operations staff 
to make sure that the number of preemptions, and hence 
the length of postponement, are minimized. 

5. Possible enhancements to the design 
The PVL design aspects we have presented represent 

an attempt to, in an uncomplicated manner, satisfy 
requirements imposed by a high performance storage 
system while preventing resource deadlock. There are a 
number of enhancements that might be made to this 
design without violating our goal of maintaining PVL 
simplicity. 

5.1. Scheduling and preemption enhancements 
Our PVL design operates fundamentally on a first- 

committed first-served scheduling basis. The only 
preemption allowed takes place when out-of-order 
mounts are allowed in operator PVRS. One can imagine 
any number of prioritization schemes that would allow 
jobs to be scheduled based on an assigned job weight or 
priority. Jobs could be assigned greater priority based on: 

client provided priority, 

system provided priority based on client id, 

client provided projected mount duration, 

statistical informarion on past client mounts, 

9 type of media being mounted, 

which requests would most optimally use 
available drive resources, 

how many preemptions a job had already 
sustained 

As long as the PVL followed the deadlock 
avoidance rule that no circular wait be allowed, then any 
weighted scheduling mechanism could easily be added to 
our design without adding possible deadlock scenarios. 

One can also imagine allowing the preemption of 
jobs that the PVL has already sent to a PVR. This 
preemption might be the result of jobs of a greater 

weight (assigned by a prioritization scheme) arriving at 
the PVL after submission of the original mount request 
to the PVR. Implementing this kind of preemption 
would require the addition of a mechanism to back out 
the drive and cartridge allocation of preempted jobs, as 
well as a mechanism to abort or dismount PVR requests 
that are being preempted. 

All of the priority weighting schemes listed (and 
many more are possible) are very site dependent Each 
site will have different rules and preferences as to how a 
job should be weighted based on their local environment. 
In order to accommodate different weighting 
mechanisms, the priority setring portion of the PVL 
would best be implemented as a sepmte policy module 
that each site could modify. Inputs to the policy module 
would be all information known about the request, and 
the output would be a priority weight to be assigned to 
the job. 

5.2. Adding client deadlock detection 

algorithm is that the PVL is made aware of all resources 
which will be used by the client to satisfy a single 
request. Our PVL APIs allow one or more clients to 
specify a l l  of the resources a request will use; the PVL 
uses this information to prevent deadlock. It is possible 
that a poorly behaved client might deadlock itself by 
issuing sepmte codependent PVL requests. 

While our PVL design does not totally protect a 
client from itself, it could be enhanced to detect when 

One of the key features of our deadlock avoidance 

client induced deadlock might have occurred. This 
detection would rely on watching how long a particular 
job has been mounted, possibly in conjunction with 
client provided mount duration information. Regardless 
of the detection method, the PVL could alarm operators 
and/or clients that a deadlock condition may exist, or the 
PVL could even be given the capability to unmount the 
off ending jobs. 

5.3. Limiting the amount of preemption due to 
out-of-order mounts 

By honoring out-of-order mounts in our design, we 
have introduced the possibility of indehnite 
postponement. Possible approaches to minimizing the 
impact of indefinite postponement might involve trying 
to limit the extent or number of postponements allowed. 

Eliminating the extent of a single postponement is 
difficult for a PVL because, as we have seen, a PVL 
typically can not unmount a volume on its own 
prerogative. This fact alone makes any single 
postponement one of indeterminate time and makes any 
enhancement to this aspect of our design difficult. It is 
only in systems where mount durations are well known, 
conuolled, or modifiable by a PVL, that allowing a 
preemption does not entail some amount of 
postponement risk. 

be postponed is an easier challenge. Setting a hard limit 
Managing the number of times a mount request can 



on the number of preemptions, weighted priority 
schemes, and aging algorithms could all be applied to aid 
indefdte postponement detection and recovery with 
some benefit. Unfortunately such algorithms are often 
very dependent on particular site policies, and do not 
eliminate the problem of any single postponement being 
of unknown duration. 

6. A case study - the HPSS PVL 
The PVL design presented in this paper has been 

implemented as part of the National Storage Laboratory's 
[16] High Performance Storage System (HPSS) [17,18] 
under development by the National Storage Laboratoxy. 
HPSS is a storage system that manages scalable, parallel 
storage, possibly petabytes in size, requiring up to 
several gigabytes per second aggregate throughput. 
HPSS is designed to meet the needs of parallel 
computers, traditional supercomputers and workstation 
clusters. HPSS is based upon the DEE Reference Model 
for Open Storage Systems Interconnection and is 
implemented using Open Software Foundation's (OSF) 
Distributed Computing Environment Remote Procedure 
c a l l s  (DCE WCs) [ 191 and Transarc Corporation's 
Encina metadata management and transactional RPC 
software [20]. 

To meet performance and scalability requirements, 
HPSS requires that a PVL mount multiple physical 
volumes in parallel to service a single client request. An 
HPSS PVL must satisfy al l  of the requirements and 
challenges discussed in this paper. Our PVL design was 
implemented for HPSS in the C language in a platform 
independent manner, and currently runs on an IBM 
RS/6000 computer under the AIX operating system. 

top of DCE threads. It uses DCE RPCs to communicate 
with clients, PVRS and Storage System Manager 
applications. Unix sockets are used to communicate with 
Movers. The PVL stores its metadata (internal 
information about configurations, volumes, requests, 
etc.) using Encina's Structured File System (SFS) 
transactional metadata storage system. The PVL 
maintains support interfaces allowing storage system 
management applications access to configuration and 
status. 

superset of the APIs presented in our design above. 
When each request is committed, a job is created in the 
PVL and placed at the end of an ordered job list. A 
second list of all cartridges which have been requested by 
existing jobs is also maintained. These two lists form a 
two dimensional sparse matrix [see Figure 41. 

The HPSS PVL is a multitasking sewer built on 

Our PVL presents an API to its client which is a 
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Note that in Figure 4 VOL003 and VOLOO4 will 
not be mounted even though drives are available. This is 
because a job must have a l l  of its cartridges assigned 
before it can allocate any drives. 

Each node in the matrix is a separate activity. Each 
activity represents a single volume that needs to be, or 
has been, mounted. An activity moves through a set of 
states first acquiring resoutces, then mounting a cartridge 
in a drive, and finally dismounting the cartridge and 
assigning the resources to the next waiting activity. 
Some of the more common activity states, transitions 
between these states, and some expanded implementation 
details are desaiied below: 

UNCOMMIlTED 
Activities in this state represent volume mounts 
that have been added to a job by a call to 
MountAdd, but have not yet been committed by 
the client. 

CART-WAIT 

Once a job has been committed, al l  activities 
within that job are changed from 
UNCOMMITIED to CART-WAIT state. 
Activities in the CART-WAIT state are 
actively attempting to reserve their respective 
cartridges. Once a cartridge is successfully 
reserved for an activity it will transition into the 
CART-ASSIGNED state. 

CART-ASSIGN. 
When a cartridge is assigned to an activity the 
activity waits in the CART-ASSIGNED state 
for all other activities in the job to have a 
cartridge assigned. Once all activities have a 
cartridge assigned the activity transitions to one 
of two states. First, if the volume is to be 
operator mounted, and there are no multi- 
volume mounts pending involving the operator 
PVR, then the activity will transition to a 



MOUNT-PENDING state. This is done because 
operator mounts do not reserve drives in our 
implementation in order to optimize cartridge 
vault management and to allow for out-of-order 
mount handling in operator PVRs. 
If the volume is to be robotically mounted, or if 
a multi-volume mount is pending that involves 
the operator PVR, then the activity transitions 
into DRIVE-WAIT state. Multi-volume 
operator mounts cause all subsequent operator 
mounts to queue in the D W - W A I T  state in 
order to prevent deadlock caused by out-of-order 
mounts. 

DRIVE-WAIT 
AU activities that describe robotic mounts are 
placed into the DRIVE-WAIT state while they 
attempt to reserve drive resources. Available 
drive counts are used to assign drives rather than 
assigning specific drives. This allows the PVR 
to make a selection of which drive to use. The 
PVR may base the selection on criteria like the 
distance of the cartridge from the drive. Since 
the PVL, is unaware of the details of each robots 
configuration, the selection of a specific drive is 
always left up to the PVR. 
A DRIVE-WAIT activity transitions to a 
MOUNT-PENDING state once an appropriate 
drive is reserved. Activities that represent 
operator mounts which are waiting behind 
pending multi-volume mounts wait in 
DRIVE-WAIT state until the multi-volume 
mounts are complete, at which time they also 
transition to the MOUNT-PENDING state. 

MOUNT-PENDING 
Once an activity achieves the 
MOUNT-PENDING state the mount request is 
issued to the appropriate PVR. Activities 
remab in the MOUNT-PENDING state until, 
either the PVR responds that it has mounted the 
cartridge, or the cartridge is found to have been 
mounted when the PVL polled a drive. PVL 
drive polling was implemented to deal both 
with operator mounted drives, and with PVRs 
that don't provide reliable mount notification. 

READ ING-LABEL 
An activity is in this state during the time that 
a PVL takes to verify that a PVR mounted the 
proper volume by reading the internal medii 
label (when such verification is appropriate). 

MOUNTED 
Once the PVL has determined that the PVR has 
correctly mounted a volume, the appropriate 
activity is placed in MOUNTED state until 
either a dismount request is received or an error 
requiring clean-up of an activity occurs. 

Other Stales 
A number of other activity states exist which 
we will not detail here. Included are states to 
deal with dismounting, mors, and states to deal 
with the injection and ejection of cartridges. 

The HPSS implementation of our design currently 
supports StorageTek 4400, IBM 3494, IBM 3495, 
Ampex DSTSOO and operator mounted drives. The next 
release of the HPSS PVL will include enhanced device 
support and will support mounts requested for magnetic 
disk volumes as required by the IEEE Reference Model 
for Open Storage Systems Interconnection. 

Even though HPSS does not currently support any 
optical disk devices, our PVL does support the concept 
of multi-sided cartridges. This is neceSSafy for future 
support of optical devices, but may also be needed by 
tape devices. For example, Ampex DD2 cartridges can be 
divided into multiple partitions and it is possible to 
mount cartridges such that the drive fhnwae enforces 
access to only a specific partition. In this case a single 
DD2 caruidge could be considered to have multiple 
volumes. 

HPSS was successfully demonstrated at 
Supercomputing '94. As pari of that demonstration the 
HPSS PVL was involved in mounting one-way, two- 
way, and four-way media stripes of tape and disk media. 
At the time this paper was written, February 1995, a 
prehinary release of HPSS was being installed and 
tested at several early deployment sites. The preliminary 
release contains support for striped tape. The next release 
of HPSS adds support for striped disk, multiple storage 
hierarchies, and migration and caching between 
hierarchies. 

While the HPSS PVL was implemented to fill the 
need for a PVL satisfying the requirements of a high-end 
storage system, it also served as a proof of concept of 
our PVL design. It showed that expanding upon typical 
PVL interfaces and dealing with deadlock challenges was 
not only possible, but could be accomplished with a 
relatively simple design. With time we are sure that 
some of the enhancements mentioned above will be added 
to the HPSS PVL. However, based upon input from the 
operational sites involved in the development of H P S S ,  
we found that implementing these enhancements will 
have to be done carefully because of their site specific 
nature. 



7. Conclusion 

cause deadlocks three different ways: contention for 
drives, contention for cartridges, and mounting out-of- 
order volumes. There are several well known methods of 
eliminating deadlock when acquiring serially reusable 
resources; we chose deadlock avoidance for our PVL 
design. A PVL is ideally suited to deadlock avoidance 
techniques because its clients are able to specify all of 
the resources which will be used by a single request and 
because deadlock avoidance does not require the 
preemption of resources. The key to our deadlock 
avoidance algorithm is to prevent circular dependencies 
by requiring that the PVL follow a strict precedence 
ordering in reserving resources and that those resources 
be assigned to client requests in a specific order. This 
PVL design has been demonstrated through it's 
implementation as part of the National Storage 
Laboratory's HPSS system. 

A PVL mounting striped, removable media can 
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