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Scientific Data 

Abstract 

fanagement in the Environmental Molecular Sciences 
Laboratory 

Peter R. Berard and Thomas L. Keller 
Pacific Northwest Laboratory, Richland, Washington 

The Environmental Molecular Sciences Laboratory 
(EMSL) is currently under construction a t  Pacific 
Northwest Laboratory (PNL) for the U.S. Department of 
Energy (DOE). This laboratory will be used for molecular 
and environmental sciences research to identify 
comprehensive solutions to DOE'S environmental 
problems. Major facilities within the EMSL include the 
Molecular Sciences Computing Facility (MSCF), a laser- 
surface dynamics laboratory, a high-field nuclear magnetic 
resonance (NMR) laboratory, and a mass spectrometry 
laboratory. The EMSL is scheduled to open early in 1997 
and will house about 260 resident and visiting scientists. 

It is anticipated that at least six (6) terabytes of data 
will be archived in the first year of operation. Both the 
size of individual datasets and the total amount of data 
each researcher will manage is expected to become 
unwieldy and overwhelming for researchers and archive 
administrators. An object-oriented database management 
system (OODBMS) and a mass storage system will be 
integrated to provide an intelligent, automated mechanism 
to manage data. The resulting system, called the DataBase 
Computer System (DBCS), will provide total scientific 
data management capabilities to EMSL users. 

The initial steps in implementing a production 
DBCS are complete. A prototype mass storage system 
based on the National Storage Laboratory's (NSL) 
UniTree has been procured and is in limited use. This 
system consists of two independent hierarchies of storage 
devices. One hierarchy of lower capacity, slower speed 
devices provides support for smaller files transferred over 
the Fiber Distributed Data Interface (FDDI) network. Also 
part of the system is a second hierarchy of higher capacity, 
higher speed devices that will be used to support high 
performance clients (e.g., a large scale parallel processor). 
The Objectstore OODBMS will be used to manage 
metadata for archived datasets, maintain relationships 
between archived datasets, and hold small, duplicate 
subsets of archived datasets (Le., derivative data). Metadata 
and derived data managed by the OODBMS will enable 
sophisticated command line, graphical, and programming 
language interfaces for organizing and efficiently accessing 
archived datasets. The resulting interim system is called 
DBCS, Phase 0 (DBCS-0). 

The production system for the EMSL, DBCS Phase 
I (DBCS-I), will be procured and installed in the summer 
of 1996. The procurement of the DBCS-1 system is 
currently in progress. The scientific data management 
software developed on DBCS-0 wilI be ported to this 
production system in the fall of 1996. 

This paper describes all efforts associated with 
DBCS-0 and DBCS-1, including software development, 
key lessons learned, and long term goals. 

I 

INTRODUCTION 

Environmental Molecular Sciences Laboratory 
(EMSL) 

The Environmental Molecular Sciences Laboratory 
(EMSL) is currently being constructed at Pacific 
Northwest Laboratory (PNL) under the aegis of the U. S. 
Department of Energy (DOE). The EMSL will house both 
permanent and visiting scientists in a 200,000-square-foot 
facility equipped with state-of-the-art instrumentation and 
computational resources. It will be a collaborative research 
facility, serving both its own staff and the scientific 
community at universities, industrial sites, and other 
government laboratories. This new facility will be a key 
element in PNL'S' response to DOE'S environmental 
initiatives. 

: The facility will house the equipment and tools 
needed to perform advanced research (i.e., state-of-the-art, 
laboratories, experimental equipment, and computers) in a 
single building. Facilities within the EMSL include the 
Molecular Science Computing Facility (MSCF), a 
laserhrface dynamics laboratory, a high-field nuclear 
magnetic resonance (NMR) laboratory, an environmental 
surface science laboratory, a mass spectrometry laboratory, 
and a host of additional instruments to support research 
activities. In this unique setting, scientists and engineers 
from a wide variety of disciplines (physical, 
environmental, chemical, materials, biological, and 
computational sciences) will collaborate in experimental 
and theoretical research in support of environmental 
restoration and waste management. 

Scientific data management is a primary enabling 
technology for advanced research in many areas of science 
and engineering that are part of the EMSL. EMSL 
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research programs include: 
molecular level studies in the Theory, Modeling, and 
Simulation program 
soil and groundwater transport modeling in the 
Environmental Dynamics and Simulation program 
experimental data reduction and analysis in the 
Macromolecular Structure and Dynamics and 
Chemical Structure and Dynamics programs. 
Some computational experiments in the Theory, 

Modeling, and Simulation and Environmental Dynamics 
and Simulation programs produce large data volumes on a 
large scale parallel processor. In addition, many 
instruments in the Macromolecular Structure and 
Dynamics Program produce large data volumes, including 
the Fourier transform ion cyclotron resonance (FTICR) 
and the NMR instruments. Data archival and retrieval 
supporting post-processing for these codes and 
instruments will be the primary driver of high 
performance database computer system procurements. The 
solutions to the data management problems in EMSL 
require acquisition of state-of-the-art computer networks, 
database management systems, and mass storage systems. 
Data management solutions also require the development 
of software that enables the integration of acquired 
technologies to be applied to individual applications. 
Accordingly, interim computing facilities were acquired 
with system characteristics similar to the envisioned 
production database computer system. (DBCS-I). The 
development database computer system (DBCS-0) [ 13 is a 
core piece of the interim computing facilities. 

In the following sections we briefly discuss the 
current system, DBCS-0, and follow with a detailed 
discussion of the production system, DBCS-1, that is 
currently being procured. Next, an overview of the EMSL 
users' data projections for future years is presented. 
Finally, an in-depth description of the software 
development effort that is currently underway is provided. 

I 

Mass Storage Systems 

Prototype and Software Development System 

In order to support the scientific data management 
needs of scientists in EMSL, Object Design's ObjectStore 
object-oriented database management system (OODBMS) 
will be integrated with a state-of-the-art mass storage 
system. This integration effort has been underway on a 
prototype and software development system named the 
DataBase Computer System, Phase 0 (DBCS-0) [l]. The 
DBCS-0 system is composed of an IBM RS/6000 980 
server running the National Storage Laboratory's (NSL) 
UniTree and two independent hierarchies of storage 
devices. Initially, this system was configured to support 
low-to-medium performance clients over the FDDI 

network with a hierarchy of storage devices composed of 
SCSI-attached disks and a Comtec 8-mm tape robot. A 
second hierarchy was provided to support high- 
performance clients over the High Performance Parallel 
Interface (HIPPI) network and consisted of an IBM 9570 
HIPPI-attached RAID disk array and a Metrum VHS tape 
robot. 

Due to a lack of HIPPI-connected clients and more 
demanding user requirements, the DBCS-0 storage 
hierarchies were reconfigured to more efficiently support 
the low-to-medium performance clients (refer to Figure 1). 
The SCSI-2 disk space was replaced with a 16-gigabyte 
Cambex RAID disk array and the Metrum tape robot was 
dedicated to supporting the low-to-medium performance 
hierarchy. The high-performance hierarchy still consists of 
the HIPPI-attached RAID disk array, but is lacking a tape . 
robot to support near-line storage. For prototyping 
purposes, the Comtec 8-mm robot may be used for this 
hierarchy. In the event a HIPPI-connected client does 
become a reality in the future, a higher performance tape 
robofwill be acquired for this hierarchy. 

e DataBase C w r  Svstern iDBCS-Q) I 
18M RSI6000 980 

8rnrnTape Robot \ 
\ VHSTapeRobot (250GB) , 
c ~ (696GB) . -  

Figure 1. Prototype DataBase Computer System(DBCS-0) 

Production System: Functional Requirements 
and Characteristics 

The DBCS-0 system will eventually be replaced by 
the production database computer system, DBCS-I. The 
procurement of DBCS-1 is currently underway and the 
system,is planned for delivery in June 1996. Until the 
contract is awarded in February 1996, the architecture and 
specific characteristics of DBCS-1 are unknown. The 
remainder of this section describes architectural concepts 
we believe are important in an enterprise-wide mass 
storage system (DBCS-X). 

DBCS-X will provide the capability for an enterprise- 
wide mass storage.system accessible from the variety of 
the EMSL's client computing platforms. We believe an 
enterprise-wide mass storage system should be 



architecturally designed to efficiently .support the 
respective throughputs, capacities, and file sizes of the 
different classes of client computing platforms. 

A DBCS-X system should be capable of efficiently 
supporting the data storage, search, and retrieval needs of a 
variety of high-performance and medium-performance 
client computing platforms connected to different classes 
of networks within the EMSL facility. High-performance 
clients include a soon-to-be-acquired large scale parallel 
processor named the High-Performance Computer System, 
Phase 1 (HPCS-l), as well as large experiment 
computers, analysis computers, and high-performance 
graphics servers. Medium-performance clients include 
workstation class nodes and servers, as well as compute 
clusters. The experimental instruments in EMSL may be 
considered high- or medium-performance clients, 
depending on the network connection. Lower performance 
clients are defined to be desktop workstations (Le., 
DOSrWindows and Macintosh platforms). All client 
computing platforms in EMSL are candidates for two 
types of DBCS-X services based on their network 
connectivity and the size of files manipulated. The two 
classes of clients are a medium-performance class and a 
high-performance class. Those computing platforms that 
fall under the high-performance class may also qualify for 
the medium-performance class’ services if the client has 
he proper network connection and is manipulating small- 
to medium-sized files. 

The networking structure within the EMSL can be 
logically divided into two levels of performance. A high- 
speed network (e.g., HIPPI, ATM, FCS) called the 
Computer to Computer Network (C2N) will be used to 
support high-performance clients, and multiple medium- 
speed networks (e.g., FDDI, ATM) called the EMSL 
Backbone Information Network (BIN) will be used to 
support medium-performance clients. A DBCS-X system 
must provide sufficient throughput and storage capacity to 
support all classes of client computing platforms that are 
connected on these two networks. 

The HPCS-1 system that is initially deployed in 
EMSL will have multiple (4 to 8) high-performance UO 
channels. This system will likely be upgraded with 
additional high-performance UO channels (possibly up to 
16) in future years. Most high-performance graphics 
servers will only have a single high-performance UO 
channel, although it is possible that some graphics servers. 
may have two or more. It is expected that most medium- 
performance clients will only have one I/O channel 
connected to the medium-performance network (note that 
some medium-performance clients may also be connkcted 
to the high-performance network). A DBCS-X system 
must provide sufficient throughput and capacity to support 
all YO channels of the HPCS-1 system that is deployed in 
1996-1997, as well as the throughput and capacities 
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required of the medium- and low-performance clients. A 
DBCS-X system must be capable of scaling in both 
throughput and storage capacity in future years in order to 
support the increased throughput and storage requirements 
of an upgraded HPCS-1 system, as well as the other 
EMSL computing clients. 

Efficiently supporting two classes of clients within 
the EMSL requires a mechanism to clear and populate the 
client’s disk space in a timely manner to ensure optimal 
use of the client system. The HPCS-1 system, a very 
high-powered large scale parallel processor with 
considerable memory and disk space (several hundred 
gigabytes), will be one of the most demanding DBCS-X 
client computing platforms. Other high-performance 
clients will also require fast access to storage and retrieval 
from a DBCS-X system. High-performance storage 
peripherals are capable of meeting the needs of these high- 
performance clients. These devices are typically optimized 
for handling large files efficiently. Consequently, high- 
performance devices should not be responsible for storing 
smaller files typically associated with lower performance 
clients. A DBCS-X system must also be capable of 
scaling to meet the future needs of these high-perfobance 
clients. This can be realized by the scaling of storage 
capacity in any of three-dimensions: 
1. adding new levels of storage devices within a clms of 

storage (medium- or high-performance storage 

adding new classes of storage with appropriate storage 
devices 
adding more storage capacity to existing levels within 
a class of storage. 
At a minimum, a DBCS-X system should have no 

less than 400 gigabytes of disk cache and 20 terabytes of 
robotically-controlled neq-line (tape) storage. All storage 
peripherals will be dedicated to one of two classes of 
storage. That is, one class of storage will be dedicated to 
supporting the archiving needs of low- to medium- 
performance client computing platforms connected to the 
BIN. In general, these clients will store and retrieve small- 
to medium-sized files (refer to the discussion of “EMSL 
User Data” below). At least 100 gigabytes of disk cache 
and 6 terabytes of near-line storage will be provided to 
support this class of storage. The second class of storage 
will be dedicated to high-performance client computing 
platforms (e.g., HPCS-1) connected to the C2N. Large- to 
very large-files will constitute the bulk of the data stored 
and retrieved by high-performance clients. Even so, these 
clients will generate and manipulate small- to medium- 
sized files and will require those services from a DBCS-X 
system. At least 300 gigabytes of disk cache and 14 
terabytes of near-line storage will be provided to support 
the high-performance class of storage. 

The connectivity of all components internal to 

classes) 
2. 

3. 



DBCS-1 will be decided by the system's integrator. The 
DBCS-1 specifications define the minimum requirements 
for the BIN and C2N networks with options to select 
current network technologies, available at the time of 
contract award. The servers and network-attached 
peripherals must use the networking fabrics available in 
the EMSL. The key objective in designing the internal 
and external connectivity of the system is to maximize 
throughput between the DBCS-1 system and all 
computing client platforms in the EMSL. This implies 
that the vendor has successfully minimized the total 
amount of time required to storehetrieve files of any size 
to/from DBCS-1, independent of which level of storage 
the file resides. To accomplish this, the vendor must: 

maximize utilized bandwidth and minimize latency on 
the given networking fabric 
maximize the aggregate throughput achieved to/from 
high performance computing platforms with multiple 
I/O connections 
minimize the I/O latencies associated with 
staging/migrating files between levels of storage 
devices within a hierarchy. 
The EMSL will be an open facility that is used by 

resident scientists, as well as many visiting scientists. 
Visiting scientists must be able to import data they have 
brought with them into the DBCS-1 system. Likewise, 
these scientists also need the capability to export data 
from the DBCS-1 system ontoremovable media upon 
completion of their work in the laboratory. A facility for 
importing and exporting files in DBCS-1 will be 
provided. DBCS-1 must also provide an imporVexport 
facility whereby users will be able to either import data 
from a given off-line media or export data from DBCS-1 
to a given off-line media to take to locations outside 
EMSL. The facility must be capable of allowing utilities 
to use non-HSM formatted removable media reads and/or 
writes to the off-line media (e.g., UMX tar command). A 
wide variety of removable media types will be supported 
by this facility. 

EMSL User Data 

As shown in Figure 2, the sources of data within the 
EMSL will be from a wide variety of instruments and 
computing platforms. The amount of data archived 
annually by each source is expected to increase 
significantly between 1995 and 2000. The volume of data 
produced by the large scale parallel processor and the 
graphics servers are expected to be dominate consumers of 
the DBCS-1 storage resources. These client computing 
platforms must have ready access to all of their data in 
DBCS-1 with minimum latency, regardless of whether the 
data resides on the DBCS-1 disk cache or tape storage. The 
DBCS-1 system must be designed in such a way that 

minimizes contention for storage resources (e.g., a tape 
cartridge) to ensure a minimum latency. 
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Figure 2. Data archived annually 

As depicted in Figure 3, the total amount of data that 
is archived by all EMSL instruments and computing 
platforms between the years of 1997 and 2000 is expected 
to accumulate at a vei. rapid rate. It is expected that the 
DBCS-1 system will hold in excess of 40 terabytes of data 
by the year 2000. (The reader should note that DBCS-0 
will be used for archived data in years 1995 and 1996. 
This data will be moved to DBCS-1 after deployment). 
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Figure 3. DBCS-1 accumulated data 

While it is difficult to predict the total number of 
files and fire sizes that will comprise this vast amount of 
data, a model based on existing files has been developed. 
This model accounts for files of various sizes that 
correspond to a class of storage. Foi this discussion, files 

. correspond to one of four categories based on their size as 
follows: 

small files - files sized from 1 kilobyte to 50 
megabytes 
medium files - files sized from 51 megabytes to 500 
megabytes 
large files - files sized from 501 megabytes to 1 



gigabyte 
very large files - files sized from 1 gigabyte to 
multi-gigabyte 
Figure 4 provides a graphical representation of the 

files that will likely exist in DBCS-1. This figure 
identifies the volume of DBCS-1 capacity that a particular 
category of files will consume, and identifies the quantity 
of files that constitute each category. The medium- 
performance class of storage will house small- and 
medium-sized files and the high-performance class of 
storage will house large- and very-large files. 
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Figure 4. EMSL data: quantity versus volume 

Once the system is “populated” with user data, it is 
expected that the access pattern of DBCS-1 users in 
EMSL will exhibit periods of peak activity for store 
and/or retrieve operations. Based on intuition, possible 
peak period times may be in the early morning when users 
first arrive at work, near lunch time, and at the end of the 
day just before users leave work. DBCS-1 must provide 
sufficient performance during a peak period of access by: 

providing the throughput required to meet users’ 
storage and retrieval demands 
being capable of maintaining a sufficient amount of 
free space on the DBCS-1 disk cache(s) to 
accommodate the amount of data storedretrieved 
(e.g., reduce the YO bottleneck that exists between 
the disk cache and removable media levels within a 
hierarchy) 

Scientific Data Management Software 

The architecture, hardware, and HSM software 
described above provides the foundation for a scientific 
data management system. However, the data management 
requirements of scientific applications and instruments in 
EMSL are only partially satisfied by hardware and driver 
software. To fulfill EMSL data management requirements, 
a software system that integrates a database management 
system with the mass storage system must be developed. 
This section describes a core component of the scientific 

data management software development. 
Scientific data management researchers and scientists 

are aware of shortcomings of using file systems, such as 
the UNM file system, for long-term storage of data files. 
A few of the reasons file systems are inappropriate for.  
managing scientific data files are their insufficient storage 
capacity and long-term unreliability. Mass storage 
systems offer solutions to storage capacity limitations and 
provide reliable long-term storage of data files. When 
considering data file management for scientific 
applications, however, the issue is not only the storage of 
data files but also the efficient access, browsing, and 
retrieval of data files and their contents. With nothing 
more than file system type functionality; the onus of file 
management falls upon the scientist; essentially requiring 
scientists to spend an ever increasing portion of their time 
managing (storing, organizing, searching, and retrieving) 
data files. Some examples of the things we have observed 
scientists doing in attempts to manage their data are: . 
1. 

2. 

3. 

Describing a data file’s contents in the file name: The 
file 18~6-Cs-2water-631pgs-hybrid.log describes 
molecules (8c6-Cs-2water) and experiment 
parameters(63 lpgs-hybrid). 
Problems: Most systems have a limited file name 
length. Not all metadata can be placed within a file 
name. For example, the file name given does not 
indicate the application that produced the file 
(NWCHEM). It is difficult to develop a naming 
convention that will convey all metadata that might 
be of interest. Encrypted file names inhibit the 
sharing of data files. 
Describing file format (file type)  in file name 
extension: A file named ethane.car would be 
interpreted as Biosym CAR formatted file. 
Problems: Extensions don’t distinguish different 
versions of a single format. File format alone doesn’t 
describe the data contained within the file or the 
conditions that were used to produce the file. Some 
extensions; such as “.log”, are used by many legacy 
applications. Output file format for many scientific 
applications is determined by input parameters, so a 
single file extension per application would not 
sufficiently describe a file’s format. 
Spending a significant amount of time searching for 
data values: 
One chemist, when asked for an optimized ethane 
molecule geometry, took 15. minutes searching 
through 3 directories and 2000 files for less than 1K 
of data. 
Problems: Eventually any data search resorts to 
scanning a set of files to determine the one that 
contains the data (file names alone are not selective 
enough). 
Our project, as other projects (Intelligent Archive[2], 

. . -  I 



OFTIMAS[3,4]), is attempting to address some or all of 
the shortcomings not solved by HSM software alone. Our 
approach, as in other approaches, uses a database 
management system to fill in gaps not usually handled by 
mass storage systems. We present our approach as an 
evolution from managing files, to adding simple file-type 
metadata to files, to full integration with an experiment 
management data model. Our development activities, 
however, do not follow the evolutionary path, but are 
targeted directly at the final integration of experiment 
management data model with combined database-HSM 
software. 

One of the obvious goals in designing the integrated 
database-HSM software layer is to create a design that is 
independent of underlying technologies. The underlying 
technologies that we are required to include are the UNIX 
file system, the HSM software, and the Object-Oriented 
database management system software. 
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Figure 5. High-level architecture for Database-HSM 
(DBHSM) software 

An overview of our high-level design is given in 
Figure 5. The uppermost layer, or application layer, 
provides the sole access path. to the Database-HSM 
(DBHSM) system. We provide command-line utilities 
similar to UMX file system commands, graphical user. 
interfaces, and applications interfaces (APIs) in 
C++(including C access) and FORTRAN. All end-user 
and administrator utilities are built upon a single API to 
the DBHSM component. The single DBHSM API is 
expressed as an object-oriented data model of a unified file 
system (WS). We will describe the UFS data model in 
greater detail in the following section. . 

Between the external applications and the underlying 
third-party components is the DBHSM software layer we 
are currently developing. The DBHSM component 
manages external requests, handles the translation of 
requests to underlying component interfaces, and provides 
management capabilities that enhance the underlying 
system's capabilities. Underneath the DBHSM software is 

the software provided by the archive vendor, OODBMS 
vendor, and the UNIX file system. Currently the 
underlying software systems are NSL-UniTree and 
Objects tore. 

Any combined mass storage-database system strategy 
for scientific data management must address the problem 
of maintaining the consistency and integrity of 
information duplicated in both underlying systems. In our 
approach, the HSM and database software is not under our 
control; therefore, we are required to maintain the 
consistency between files placed in the mass storage 
system and information contained in  the database system. 
The only reasonable way to guarantee the integrity of the 
system is to require that all access to the DBHSM system 
occur only through our interfaces. If, for example, data is 
placed into the mass storage system through the HSM 
software rather than through the UFS interface, it falls 
outside of our system. We have chosen to design a UFS 
interface as an object-oriented data model. Three key 
advantages of using an object-oriented data model as our 
system's interface are: 
1. We can describe the functional requirements any 

underlying HSM or database software must provide 
for our architecture to work. 

2. The approach described above enables us to design a 
system where we can later extend the system to work 
with other HSM or database system software. 
We can change or extend implementations without 
affecting applications and minimizing the effects on 
the DBHSM software. 
Although our UFS data model design is still 

. 

3. 

evolving, we provide a sketch of our current progress. 

Figure 6. Unified File System data model 

Figure 6 gives a data model description of the UFS 
data model in Rumbaugh[6] notation. First, we observe 
that any underlying system, mass storage system, 
database, or UNIX file system, contains a common list of 
capabilities and attributes. For example, all three systems 
have: 

the concept of Files and Directories 
attributes - name, owner, size, permissions, and last 



access time 
functions - create, delete, copy, move, and archive. 

Attributes and operations common to all systems are 
modeled by a superclass that defines the capabilities 
required of all file systems. The next level in the UFS data 
model defines the requirements for each functional type of 
underlying software system. For HSM system software, 
this is shown as adding: 

attributes - physical location 
functions - get, migrate, stage, and purge 

Similarly, files in the OODBMS must add 
attributes - number of objects (contained in the 
database) 
functions - compact, backup, restore, and verify 
Our database system software, Objectstore, uses C++ 

as the data-definition language (DDL) and data- 
manipulation language (DML) for the database 
management system, so C++ is our natural choice for 
implementing our UFS data model. By implementing the 
UFS in C t t ,  we immediately have the ability to make 
file objects persistent and, therefore, have specified the 
"file-metadata" we will manage in the DBMS. 

The UFS data model addresses what we refer to as 
file-metadata; that is, data that we choose to track in 
the database system that mirrors the data managed by file 
systems. Even if we were to only handle the file metadata; 
we could still provide more efficient tools than the UNIX 
file system. Specifically, tools for searching large groups 
of files with complex selection criteria would benefit from 
the query capabilities of the OODBMS. With indices, for 
example, the following query could be made quite 
efficient: 

find all experiments conducted by chemist '%M. 
Curious" before Jan. I ,  1990, that involved crown 
ether combined with Cesium. 
It should be apparent that, for large numbers of files 

spread across multiple file systems, a OODBMS 
optimized query would be more efficient than a UNIX 
"find" command . When combined with files placed into 
the mass storage system, we expect queries involving file- 
metadata to give the scientists even greater storage and 
retrieval speed benefits. One more important feature to 
note is, because these queries are dependent only on 
attributes found in the abstract file specification, they are 
valid independent of which system the file is stored in. 
Based on the File part of the UFS data model, our 
DBHSM software provides a tracking and reporting 
software component. The tracking and reporting software 
provides tools to: 

generate administrative reports containing: space 
usage, frequency of access 
generate user reports 
notify users or administrators when files are fetched, 

files are Jeted, unau orized access occurs. 
Using file-metadata and the UFS data model we have 

immediately gained complex querying capabilities, 
independence from underlying HSM and OODBMS 
software, the ability to easily extend the system, and a 
model upon which to base many useful utilities. 

While there are benefits in handling file-metadata, the 
data model approach allows us to also capture metadata 
about the contents of data fies. As our data model diagram 
shows, we require each data file to contain a type attribute. 
The type attribute is a key to the format contained within 
the file, and is quite similar to the definition of MIME 
types. However, file types can specify either a format 
standard (including version) or the name and version of an 
instrument that produced the data. When data files of new 
formats get introduced to the system, the instrument or 
format get added to a system maintained list. This 
extensible list allows system administrators and end-users 
to add formats as they see fit. The delivered system will 
provide a list containing over 40 computational chemistry 
codes and their formats used at PNL as well as entries for 
the instruments housed in the EMSL. Based upon the 
definition of file format, the DBHSM software provides a 
component capable of importing and exporting different 
file formats. The Import/Export module uses an object- 
oriented data model representation of scientific data types 
as the intermediate format when importing and exporting 
data 

An example of the import and export capabilities we 
will provide is the ability to parse the output file from a 
computational chemistry code (NWCHEM) to retrieve the 
optimized geometry of a molecule. Here is an example of 
a file-type table that describes the contents (parseable data 
objects) and the procedures to invoke when importing data 
from a NWCHEM output file: 

file-type NWCHEM Output 
object / parser Optimized Geometry / parseseom 

file-type ARGUS Input 
object / parser Geometry / export-geom 
From the parsed geometry, the Import/Export module 

can write the geometry into an input file for an analysis 
program such as ARGUS. The same list that enumerates 
the file formats contains user or system-defined parsers'; 
one for each embedded data type. For example, the 
computational chemistry code NWCHEM would have the 
parsers shown in the table above. The entry would also 
contain export routines for writing the same data types 
(objects) into the NWCHEM input file format. 
Eventually, we would expect the UFS data model to be 
extended to handle new file formats. Instead of r e q u h g  
new formats, parsers, and exporters to be registered in our 
type-table, sophisticated users would create new sub-types 
of the File class in the UFS data model. The parsers and 
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exporters would become the operations of the new class 
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and attributes unique to each file format could be added. 
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Figure 7. Extending the UFS data model. 

Figure 7 depicts the extended UFS data model with a 
new type of file called NWCHEM Output. The 
attributes are'the logical objects contained in each file. 
Accessing those attributes would invoke the parsing 
operations. In our example, the Import/Export software 
would request the oRtimized geometry attribute of a 
NWCHEM Output file and use it to set the geometry 
attribute of the Argus Input file. Adding file types to 
our file-metadata approach adds the benefits of extending 
data file searches to include the application or instrument 
that created them and forms the foundation for inter- 
application data transfer. 

We have justified the storage of what could be called 
"redundant" information in our database. There is a higher 
purpose, in terms of describing a file's metadata, for 
developing the UFS data model. In a coordinated effort, 
another team of developers at PNL are developing the 
Extensible Computational Chemistry Environment 
(ECCE'). ECCE' is a desktop workstation software 
system for experiment management. This effort is similar 
to earlier work in Desktop Experiment Management[S] 
The ECCE' software will provide an extensible framework 
allowing scientists to set up, run, analyze, browse, 
combine, and query complex experiments. Initially ECCE' 
focuses specifically on high-performance computational 
chemistry experiments. These experiments can range from 
attempting to determine the optimal geometry of a simple 
molecule to computing a protein dynamics trajectory 
describing different conformations of a protein folding. 
These are exactly the experiments (instruments) that are 
prodbcing files being placed into the archive. 

Scientist 'i A, inputs ,-, . I 4 Inhen .. tam? I I 
I 

Experiment 
Relationship outputs 

Properties 

Figure 8. Extensible Computational Chemistry 
Environment data model 

Figure 8 shows a simplistic overview of both the 
EMSL experiment management data model and the EMSL 
chemistry data model. These data models are dependent on 
the UFS data model and functions for managing data files. 
We are faced with two fundamental requirements in. 
managing experiments: 

Capture sufficient information to be able to exactly 
reproduce the experiment, and 
Capture enough metadata to allow scientists to make 
their own judgments regarding the validity and quality 
of the experimental results. 
The experiment management data model shown in the 

figure is an abstraction of the current EMSL data model. It 
captures the basic notions that a scientist conducts an 
experiment that produces a number of results. In the 
process of producing those results, the experimental 
instrument may take files as input and may produce files 
containing the results as output. The joining of an 
experiment management data model to the UFS data 
model expands the scope of queryable attributes 
tremendously. For instance, scientists may now have 
access to their results without having to access output 
files, because key results contained in output files have 
been duplicated as objects in the OODBMS. Queries about 
classes of experiments based on the parameters used or $e 
experimental conditions are then possible. 

We are currently engaged in detailed design of the 
DBHSM software component. Both the abstract portions 
of the UFS ,data model (File objects) and the experiment 
management data model have been designed and 
implemented. Within the next six months we will have a 
completed, extensible file typing system and sufficient 
means to register new applications and instruments. The 
software developed on DBCS-0 will be ported to DBCS-1 
after delivery and installation in the summer of 1996. 

. . . __ 
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