
SCIENTIFIC DATA MANAGEMENT IN THE
ENVIRONMENTAL MOLECULAR SCIENCES
LABORATORY

P.R. Berard
T.L. Keller

PNL-SA-26099

September 1995

Presented a t the
IEEE Symposium on Mass Storage Systems
September 11-14, 1995
Monterey, Cal i forni a

Work supported by
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830 .

Pacific Northwest Laboratory
Richland, WA 99352

Scientific Data

Abstract

fanagement in the Environmental Molecular Sciences
Laboratory

Peter R. Berard and Thomas L. Keller
Pacific Northwest Laboratory, Richland, Washington

The Environmental Molecular Sciences Laboratory
(EMSL) is currently under construction a t Pacific
Northwest Laboratory (PNL) for the U.S. Department of
Energy (DOE). This laboratory will be used for molecular
and environmental sciences research to identify
comprehensive solutions to DOE'S environmental
problems. Major facilities within the EMSL include the
Molecular Sciences Computing Facility (MSCF), a laser-
surface dynamics laboratory, a high-field nuclear magnetic
resonance (NMR) laboratory, and a mass spectrometry
laboratory. The EMSL is scheduled to open early in 1997
and will house about 260 resident and visiting scientists.

It is anticipated that at least six (6) terabytes of data
will be archived in the first year of operation. Both the
size of individual datasets and the total amount of data
each researcher will manage is expected to become
unwieldy and overwhelming for researchers and archive
administrators. An object-oriented database management
system (OODBMS) and a mass storage system will be
integrated to provide an intelligent, automated mechanism
to manage data. The resulting system, called the DataBase
Computer System (DBCS), will provide total scientific
data management capabilities to EMSL users.

The initial steps in implementing a production
DBCS are complete. A prototype mass storage system
based on the National Storage Laboratory's (NSL)
UniTree has been procured and is in limited use. This
system consists of two independent hierarchies of storage
devices. One hierarchy of lower capacity, slower speed
devices provides support for smaller files transferred over
the Fiber Distributed Data Interface (FDDI) network. Also
part of the system is a second hierarchy of higher capacity,
higher speed devices that will be used to support high
performance clients (e.g., a large scale parallel processor).
The Objectstore OODBMS will be used to manage
metadata for archived datasets, maintain relationships
between archived datasets, and hold small, duplicate
subsets of archived datasets (Le., derivative data). Metadata
and derived data managed by the OODBMS will enable
sophisticated command line, graphical, and programming
language interfaces for organizing and efficiently accessing
archived datasets. The resulting interim system is called
DBCS, Phase 0 (DBCS-0).

The production system for the EMSL, DBCS Phase
I (DBCS-I), will be procured and installed in the summer
of 1996. The procurement of the DBCS-1 system is
currently in progress. The scientific data management
software developed on DBCS-0 wilI be ported to this
production system in the fall of 1996.

This paper describes all efforts associated with
DBCS-0 and DBCS-1, including software development,
key lessons learned, and long term goals.

I

INTRODUCTION

Environmental Molecular Sciences Laboratory
(EMSL)

The Environmental Molecular Sciences Laboratory
(EMSL) is currently being constructed at Pacific
Northwest Laboratory (PNL) under the aegis of the U. S.
Department of Energy (DOE). The EMSL will house both
permanent and visiting scientists in a 200,000-square-foot
facility equipped with state-of-the-art instrumentation and
computational resources. It will be a collaborative research
facility, serving both its own staff and the scientific
community at universities, industrial sites, and other
government laboratories. This new facility will be a key
element in PNL'S' response to DOE'S environmental
initiatives.

: The facility will house the equipment and tools
needed to perform advanced research (i.e., state-of-the-art,
laboratories, experimental equipment, and computers) in a
single building. Facilities within the EMSL include the
Molecular Science Computing Facility (MSCF), a
laserhrface dynamics laboratory, a high-field nuclear
magnetic resonance (NMR) laboratory, an environmental
surface science laboratory, a mass spectrometry laboratory,
and a host of additional instruments to support research
activities. In this unique setting, scientists and engineers
from a wide variety of disciplines (physical,
environmental, chemical, materials, biological, and
computational sciences) will collaborate in experimental
and theoretical research in support of environmental
restoration and waste management.

Scientific data management is a primary enabling
technology for advanced research in many areas of science
and engineering that are part of the EMSL. EMSL

.

research programs include:
molecular level studies in the Theory, Modeling, and
Simulation program
soil and groundwater transport modeling in the
Environmental Dynamics and Simulation program
experimental data reduction and analysis in the
Macromolecular Structure and Dynamics and
Chemical Structure and Dynamics programs.
Some computational experiments in the Theory,

Modeling, and Simulation and Environmental Dynamics
and Simulation programs produce large data volumes on a
large scale parallel processor. In addition, many
instruments in the Macromolecular Structure and
Dynamics Program produce large data volumes, including
the Fourier transform ion cyclotron resonance (FTICR)
and the NMR instruments. Data archival and retrieval
supporting post-processing for these codes and
instruments will be the primary driver of high
performance database computer system procurements. The
solutions to the data management problems in EMSL
require acquisition of state-of-the-art computer networks,
database management systems, and mass storage systems.
Data management solutions also require the development
of software that enables the integration of acquired
technologies to be applied to individual applications.
Accordingly, interim computing facilities were acquired
with system characteristics similar to the envisioned
production database computer system. (DBCS-I). The
development database computer system (DBCS-0) [13 is a
core piece of the interim computing facilities.

In the following sections we briefly discuss the
current system, DBCS-0, and follow with a detailed
discussion of the production system, DBCS-1, that is
currently being procured. Next, an overview of the EMSL
users' data projections for future years is presented.
Finally, an in-depth description of the software
development effort that is currently underway is provided.

I

Mass Storage Systems

Prototype and Software Development System

In order to support the scientific data management
needs of scientists in EMSL, Object Design's ObjectStore
object-oriented database management system (OODBMS)
will be integrated with a state-of-the-art mass storage
system. This integration effort has been underway on a
prototype and software development system named the
DataBase Computer System, Phase 0 (DBCS-0) [l]. The
DBCS-0 system is composed of an IBM RS/6000 980
server running the National Storage Laboratory's (NSL)
UniTree and two independent hierarchies of storage
devices. Initially, this system was configured to support
low-to-medium performance clients over the FDDI

network with a hierarchy of storage devices composed of
SCSI-attached disks and a Comtec 8-mm tape robot. A
second hierarchy was provided to support high-
performance clients over the High Performance Parallel
Interface (HIPPI) network and consisted of an IBM 9570
HIPPI-attached RAID disk array and a Metrum VHS tape
robot.

Due to a lack of HIPPI-connected clients and more
demanding user requirements, the DBCS-0 storage
hierarchies were reconfigured to more efficiently support
the low-to-medium performance clients (refer to Figure 1).
The SCSI-2 disk space was replaced with a 16-gigabyte
Cambex RAID disk array and the Metrum tape robot was
dedicated to supporting the low-to-medium performance
hierarchy. The high-performance hierarchy still consists of
the HIPPI-attached RAID disk array, but is lacking a tape .
robot to support near-line storage. For prototyping
purposes, the Comtec 8-mm robot may be used for this
hierarchy. In the event a HIPPI-connected client does
become a reality in the future, a higher performance tape
robofwill be acquired for this hierarchy.

e DataBase C w r Svstern iDBCS-Q) I
18M RSI6000 980

8rnrnTape Robot \
\ VHSTapeRobot (250GB) ,
c ~ (696GB) . -

Figure 1. Prototype DataBase Computer System(DBCS-0)

Production System: Functional Requirements
and Characteristics

The DBCS-0 system will eventually be replaced by
the production database computer system, DBCS-I. The
procurement of DBCS-1 is currently underway and the
system,is planned for delivery in June 1996. Until the
contract is awarded in February 1996, the architecture and
specific characteristics of DBCS-1 are unknown. The
remainder of this section describes architectural concepts
we believe are important in an enterprise-wide mass
storage system (DBCS-X).

DBCS-X will provide the capability for an enterprise-
wide mass storage.system accessible from the variety of
the EMSL's client computing platforms. We believe an
enterprise-wide mass storage system should be

architecturally designed to efficiently .support the
respective throughputs, capacities, and file sizes of the
different classes of client computing platforms.

A DBCS-X system should be capable of efficiently
supporting the data storage, search, and retrieval needs of a
variety of high-performance and medium-performance
client computing platforms connected to different classes
of networks within the EMSL facility. High-performance
clients include a soon-to-be-acquired large scale parallel
processor named the High-Performance Computer System,
Phase 1 (HPCS-l), as well as large experiment
computers, analysis computers, and high-performance
graphics servers. Medium-performance clients include
workstation class nodes and servers, as well as compute
clusters. The experimental instruments in EMSL may be
considered high- or medium-performance clients,
depending on the network connection. Lower performance
clients are defined to be desktop workstations (Le.,
DOSrWindows and Macintosh platforms). All client
computing platforms in EMSL are candidates for two
types of DBCS-X services based on their network
connectivity and the size of files manipulated. The two
classes of clients are a medium-performance class and a
high-performance class. Those computing platforms that
fall under the high-performance class may also qualify for
the medium-performance class’ services if the client has
he proper network connection and is manipulating small-
to medium-sized files.

The networking structure within the EMSL can be
logically divided into two levels of performance. A high-
speed network (e.g., HIPPI, ATM, FCS) called the
Computer to Computer Network (C2N) will be used to
support high-performance clients, and multiple medium-
speed networks (e.g., FDDI, ATM) called the EMSL
Backbone Information Network (BIN) will be used to
support medium-performance clients. A DBCS-X system
must provide sufficient throughput and storage capacity to
support all classes of client computing platforms that are
connected on these two networks.

The HPCS-1 system that is initially deployed in
EMSL will have multiple (4 to 8) high-performance UO
channels. This system will likely be upgraded with
additional high-performance UO channels (possibly up to
16) in future years. Most high-performance graphics
servers will only have a single high-performance UO
channel, although it is possible that some graphics servers.
may have two or more. It is expected that most medium-
performance clients will only have one I/O channel
connected to the medium-performance network (note that
some medium-performance clients may also be connkcted
to the high-performance network). A DBCS-X system
must provide sufficient throughput and capacity to support
all YO channels of the HPCS-1 system that is deployed in
1996-1997, as well as the throughput and capacities

.

required of the medium- and low-performance clients. A
DBCS-X system must be capable of scaling in both
throughput and storage capacity in future years in order to
support the increased throughput and storage requirements
of an upgraded HPCS-1 system, as well as the other
EMSL computing clients.

Efficiently supporting two classes of clients within
the EMSL requires a mechanism to clear and populate the
client’s disk space in a timely manner to ensure optimal
use of the client system. The HPCS-1 system, a very
high-powered large scale parallel processor with
considerable memory and disk space (several hundred
gigabytes), will be one of the most demanding DBCS-X
client computing platforms. Other high-performance
clients will also require fast access to storage and retrieval
from a DBCS-X system. High-performance storage
peripherals are capable of meeting the needs of these high-
performance clients. These devices are typically optimized
for handling large files efficiently. Consequently, high-
performance devices should not be responsible for storing
smaller files typically associated with lower performance
clients. A DBCS-X system must also be capable of
scaling to meet the future needs of these high-perfobance
clients. This can be realized by the scaling of storage
capacity in any of three-dimensions:
1. adding new levels of storage devices within a clms of

storage (medium- or high-performance storage

adding new classes of storage with appropriate storage
devices
adding more storage capacity to existing levels within
a class of storage.
At a minimum, a DBCS-X system should have no

less than 400 gigabytes of disk cache and 20 terabytes of
robotically-controlled neq-line (tape) storage. All storage
peripherals will be dedicated to one of two classes of
storage. That is, one class of storage will be dedicated to
supporting the archiving needs of low- to medium-
performance client computing platforms connected to the
BIN. In general, these clients will store and retrieve small-
to medium-sized files (refer to the discussion of “EMSL
User Data” below). At least 100 gigabytes of disk cache
and 6 terabytes of near-line storage will be provided to
support this class of storage. The second class of storage
will be dedicated to high-performance client computing
platforms (e.g., HPCS-1) connected to the C2N. Large- to
very large-files will constitute the bulk of the data stored
and retrieved by high-performance clients. Even so, these
clients will generate and manipulate small- to medium-
sized files and will require those services from a DBCS-X
system. At least 300 gigabytes of disk cache and 14
terabytes of near-line storage will be provided to support
the high-performance class of storage.

The connectivity of all components internal to

classes)
2.

3.

DBCS-1 will be decided by the system's integrator. The
DBCS-1 specifications define the minimum requirements
for the BIN and C2N networks with options to select
current network technologies, available at the time of
contract award. The servers and network-attached
peripherals must use the networking fabrics available in
the EMSL. The key objective in designing the internal
and external connectivity of the system is to maximize
throughput between the DBCS-1 system and all
computing client platforms in the EMSL. This implies
that the vendor has successfully minimized the total
amount of time required to storehetrieve files of any size
to/from DBCS-1, independent of which level of storage
the file resides. To accomplish this, the vendor must:

maximize utilized bandwidth and minimize latency on
the given networking fabric
maximize the aggregate throughput achieved to/from
high performance computing platforms with multiple
I/O connections
minimize the I/O latencies associated with
staging/migrating files between levels of storage
devices within a hierarchy.
The EMSL will be an open facility that is used by

resident scientists, as well as many visiting scientists.
Visiting scientists must be able to import data they have
brought with them into the DBCS-1 system. Likewise,
these scientists also need the capability to export data
from the DBCS-1 system ontoremovable media upon
completion of their work in the laboratory. A facility for
importing and exporting files in DBCS-1 will be
provided. DBCS-1 must also provide an imporVexport
facility whereby users will be able to either import data
from a given off-line media or export data from DBCS-1
to a given off-line media to take to locations outside
EMSL. The facility must be capable of allowing utilities
to use non-HSM formatted removable media reads and/or
writes to the off-line media (e.g., UMX tar command). A
wide variety of removable media types will be supported
by this facility.

EMSL User Data

As shown in Figure 2, the sources of data within the
EMSL will be from a wide variety of instruments and
computing platforms. The amount of data archived
annually by each source is expected to increase
significantly between 1995 and 2000. The volume of data
produced by the large scale parallel processor and the
graphics servers are expected to be dominate consumers of
the DBCS-1 storage resources. These client computing
platforms must have ready access to all of their data in
DBCS-1 with minimum latency, regardless of whether the
data resides on the DBCS-1 disk cache or tape storage. The
DBCS-1 system must be designed in such a way that

minimizes contention for storage resources (e.g., a tape
cartridge) to ensure a minimum latency.

Data Archived Annuallv
5 8 Graphics Servers

1 M P P

. 16Clusters

40WorMations

g R E P R

- C 8 N M R s

Other M a s s Spec Fad

3 FFiCRs

30 Small instruments

I

).

2 4 6 8 10

Terabytes

Figure 2. Data archived annually

As depicted in Figure 3, the total amount of data that
is archived by all EMSL instruments and computing
platforms between the years of 1997 and 2000 is expected
to accumulate at a vei. rapid rate. It is expected that the
DBCS-1 system will hold in excess of 40 terabytes of data
by the year 2000. (The reader should note that DBCS-0
will be used for archived data in years 1995 and 1996.
This data will be moved to DBCS-1 after deployment).

, I , i I 0 x) a, 9 a 50

Figure 3. DBCS-1 accumulated data

While it is difficult to predict the total number of
files and fire sizes that will comprise this vast amount of
data, a model based on existing files has been developed.
This model accounts for files of various sizes that
correspond to a class of storage. Foi this discussion, files

. correspond to one of four categories based on their size as
follows:

small files - files sized from 1 kilobyte to 50
megabytes
medium files - files sized from 51 megabytes to 500
megabytes
large files - files sized from 501 megabytes to 1

gigabyte
very large files - files sized from 1 gigabyte to
multi-gigabyte
Figure 4 provides a graphical representation of the

files that will likely exist in DBCS-1. This figure
identifies the volume of DBCS-1 capacity that a particular
category of files will consume, and identifies the quantity
of files that constitute each category. The medium-
performance class of storage will house small- and
medium-sized files and the high-performance class of
storage will house large- and very-large files.

EMSL Data

EVokJrAOfW

om 2om a m m m €#% 1 w

% Consumed

Figure 4. EMSL data: quantity versus volume

Once the system is “populated” with user data, it is
expected that the access pattern of DBCS-1 users in
EMSL will exhibit periods of peak activity for store
and/or retrieve operations. Based on intuition, possible
peak period times may be in the early morning when users
first arrive at work, near lunch time, and at the end of the
day just before users leave work. DBCS-1 must provide
sufficient performance during a peak period of access by:

providing the throughput required to meet users’
storage and retrieval demands
being capable of maintaining a sufficient amount of
free space on the DBCS-1 disk cache(s) to
accommodate the amount of data storedretrieved
(e.g., reduce the YO bottleneck that exists between
the disk cache and removable media levels within a
hierarchy)

Scientific Data Management Software

The architecture, hardware, and HSM software
described above provides the foundation for a scientific
data management system. However, the data management
requirements of scientific applications and instruments in
EMSL are only partially satisfied by hardware and driver
software. To fulfill EMSL data management requirements,
a software system that integrates a database management
system with the mass storage system must be developed.
This section describes a core component of the scientific

data management software development.
Scientific data management researchers and scientists

are aware of shortcomings of using file systems, such as
the UNM file system, for long-term storage of data files.
A few of the reasons file systems are inappropriate for.
managing scientific data files are their insufficient storage
capacity and long-term unreliability. Mass storage
systems offer solutions to storage capacity limitations and
provide reliable long-term storage of data files. When
considering data file management for scientific
applications, however, the issue is not only the storage of
data files but also the efficient access, browsing, and
retrieval of data files and their contents. With nothing
more than file system type functionality; the onus of file
management falls upon the scientist; essentially requiring
scientists to spend an ever increasing portion of their time
managing (storing, organizing, searching, and retrieving)
data files. Some examples of the things we have observed
scientists doing in attempts to manage their data are: .
1.

2.

3.

Describing a data file’s contents in the file name: The
file 18~6-Cs-2water-631pgs-hybrid.log describes
molecules (8c6-Cs-2water) and experiment
parameters(63 lpgs-hybrid).
Problems: Most systems have a limited file name
length. Not all metadata can be placed within a file
name. For example, the file name given does not
indicate the application that produced the file
(NWCHEM). It is difficult to develop a naming
convention that will convey all metadata that might
be of interest. Encrypted file names inhibit the
sharing of data files.
Describing file format (file type) in file name
extension: A file named ethane.car would be
interpreted as Biosym CAR formatted file.
Problems: Extensions don’t distinguish different
versions of a single format. File format alone doesn’t
describe the data contained within the file or the
conditions that were used to produce the file. Some
extensions; such as “.log”, are used by many legacy
applications. Output file format for many scientific
applications is determined by input parameters, so a
single file extension per application would not
sufficiently describe a file’s format.
Spending a significant amount of time searching for
data values:
One chemist, when asked for an optimized ethane
molecule geometry, took 15. minutes searching
through 3 directories and 2000 files for less than 1K
of data.
Problems: Eventually any data search resorts to
scanning a set of files to determine the one that
contains the data (file names alone are not selective
enough).
Our project, as other projects (Intelligent Archive[2],

. . - I

OFTIMAS[3,4]), is attempting to address some or all of
the shortcomings not solved by HSM software alone. Our
approach, as in other approaches, uses a database
management system to fill in gaps not usually handled by
mass storage systems. We present our approach as an
evolution from managing files, to adding simple file-type
metadata to files, to full integration with an experiment
management data model. Our development activities,
however, do not follow the evolutionary path, but are
targeted directly at the final integration of experiment
management data model with combined database-HSM
software.

One of the obvious goals in designing the integrated
database-HSM software layer is to create a design that is
independent of underlying technologies. The underlying
technologies that we are required to include are the UNIX
file system, the HSM software, and the Object-Oriented
database management system software.

Applicallon Layer
G n W and
ccmmsnduru

In(.daou
Sdwilnc

LrmcallWU

m w 4Cr

uninm tile Syftern Uata MWe1 ana lntenaut (UtSJ

I
1

Datanase-HSM Software
UNUFZ.Sllm

moD.u - %xr) nw-

mubrusyrum
sdtvmn

WMWdWtl
Sdwarn

Figure 5. High-level architecture for Database-HSM
(DBHSM) software

An overview of our high-level design is given in
Figure 5. The uppermost layer, or application layer,
provides the sole access path. to the Database-HSM
(DBHSM) system. We provide command-line utilities
similar to UMX file system commands, graphical user.
interfaces, and applications interfaces (APIs) in
C++(including C access) and FORTRAN. All end-user
and administrator utilities are built upon a single API to
the DBHSM component. The single DBHSM API is
expressed as an object-oriented data model of a unified file
system (WS). We will describe the UFS data model in
greater detail in the following section. .

Between the external applications and the underlying
third-party components is the DBHSM software layer we
are currently developing. The DBHSM component
manages external requests, handles the translation of
requests to underlying component interfaces, and provides
management capabilities that enhance the underlying
system's capabilities. Underneath the DBHSM software is

the software provided by the archive vendor, OODBMS
vendor, and the UNIX file system. Currently the
underlying software systems are NSL-UniTree and
Objects tore.

Any combined mass storage-database system strategy
for scientific data management must address the problem
of maintaining the consistency and integrity of
information duplicated in both underlying systems. In our
approach, the HSM and database software is not under our
control; therefore, we are required to maintain the
consistency between files placed in the mass storage
system and information contained in the database system.
The only reasonable way to guarantee the integrity of the
system is to require that all access to the DBHSM system
occur only through our interfaces. If, for example, data is
placed into the mass storage system through the HSM
software rather than through the UFS interface, it falls
outside of our system. We have chosen to design a UFS
interface as an object-oriented data model. Three key
advantages of using an object-oriented data model as our
system's interface are:
1. We can describe the functional requirements any

underlying HSM or database software must provide
for our architecture to work.

2. The approach described above enables us to design a
system where we can later extend the system to work
with other HSM or database system software.
We can change or extend implementations without
affecting applications and minimizing the effects on
the DBHSM software.
Although our UFS data model design is still

.

3.

evolving, we provide a sketch of our current progress.

Figure 6. Unified File System data model

Figure 6 gives a data model description of the UFS
data model in Rumbaugh[6] notation. First, we observe
that any underlying system, mass storage system,
database, or UNIX file system, contains a common list of
capabilities and attributes. For example, all three systems
have:

the concept of Files and Directories
attributes - name, owner, size, permissions, and last

access time
functions - create, delete, copy, move, and archive.

Attributes and operations common to all systems are
modeled by a superclass that defines the capabilities
required of all file systems. The next level in the UFS data
model defines the requirements for each functional type of
underlying software system. For HSM system software,
this is shown as adding:

attributes - physical location
functions - get, migrate, stage, and purge

Similarly, files in the OODBMS must add
attributes - number of objects (contained in the
database)
functions - compact, backup, restore, and verify
Our database system software, Objectstore, uses C++

as the data-definition language (DDL) and data-
manipulation language (DML) for the database
management system, so C++ is our natural choice for
implementing our UFS data model. By implementing the
UFS in C t t , we immediately have the ability to make
file objects persistent and, therefore, have specified the
"file-metadata" we will manage in the DBMS.

The UFS data model addresses what we refer to as
file-metadata; that is, data that we choose to track in
the database system that mirrors the data managed by file
systems. Even if we were to only handle the file metadata;
we could still provide more efficient tools than the UNIX
file system. Specifically, tools for searching large groups
of files with complex selection criteria would benefit from
the query capabilities of the OODBMS. With indices, for
example, the following query could be made quite
efficient:

find all experiments conducted by chemist '%M.
Curious" before Jan. I , 1990, that involved crown
ether combined with Cesium.
It should be apparent that, for large numbers of files

spread across multiple file systems, a OODBMS
optimized query would be more efficient than a UNIX
"find" command . When combined with files placed into
the mass storage system, we expect queries involving file-
metadata to give the scientists even greater storage and
retrieval speed benefits. One more important feature to
note is, because these queries are dependent only on
attributes found in the abstract file specification, they are
valid independent of which system the file is stored in.
Based on the File part of the UFS data model, our
DBHSM software provides a tracking and reporting
software component. The tracking and reporting software
provides tools to:

generate administrative reports containing: space
usage, frequency of access
generate user reports
notify users or administrators when files are fetched,

files are Jeted, unau orized access occurs.
Using file-metadata and the UFS data model we have

immediately gained complex querying capabilities,
independence from underlying HSM and OODBMS
software, the ability to easily extend the system, and a
model upon which to base many useful utilities.

While there are benefits in handling file-metadata, the
data model approach allows us to also capture metadata
about the contents of data fies. As our data model diagram
shows, we require each data file to contain a type attribute.
The type attribute is a key to the format contained within
the file, and is quite similar to the definition of MIME
types. However, file types can specify either a format
standard (including version) or the name and version of an
instrument that produced the data. When data files of new
formats get introduced to the system, the instrument or
format get added to a system maintained list. This
extensible list allows system administrators and end-users
to add formats as they see fit. The delivered system will
provide a list containing over 40 computational chemistry
codes and their formats used at PNL as well as entries for
the instruments housed in the EMSL. Based upon the
definition of file format, the DBHSM software provides a
component capable of importing and exporting different
file formats. The Import/Export module uses an object-
oriented data model representation of scientific data types
as the intermediate format when importing and exporting
data

An example of the import and export capabilities we
will provide is the ability to parse the output file from a
computational chemistry code (NWCHEM) to retrieve the
optimized geometry of a molecule. Here is an example of
a file-type table that describes the contents (parseable data
objects) and the procedures to invoke when importing data
from a NWCHEM output file:

file-type NWCHEM Output
object / parser Optimized Geometry / parseseom

file-type ARGUS Input
object / parser Geometry / export-geom
From the parsed geometry, the Import/Export module

can write the geometry into an input file for an analysis
program such as ARGUS. The same list that enumerates
the file formats contains user or system-defined parsers';
one for each embedded data type. For example, the
computational chemistry code NWCHEM would have the
parsers shown in the table above. The entry would also
contain export routines for writing the same data types
(objects) into the NWCHEM input file format.
Eventually, we would expect the UFS data model to be
extended to handle new file formats. Instead of r e q u h g
new formats, parsers, and exporters to be registered in our
type-table, sophisticated users would create new sub-types
of the File class in the UFS data model. The parsers and

Molecular Orbitals / parse-mo

exporters would become the operations of the new class

WWCHEM
OUlpUt

Oplimized Geomeby
Molecular O h i a
Vibrational Modes
TOM Energy
Energy Gradient

and attributes unique to each file format could be added.

Argus Input

Geomeby
.

v
Legend

Figure 7. Extending the UFS data model.

Figure 7 depicts the extended UFS data model with a
new type of file called NWCHEM Output. The
attributes are'the logical objects contained in each file.
Accessing those attributes would invoke the parsing
operations. In our example, the Import/Export software
would request the oRtimized geometry attribute of a
NWCHEM Output file and use it to set the geometry
attribute of the Argus Input file. Adding file types to
our file-metadata approach adds the benefits of extending
data file searches to include the application or instrument
that created them and forms the foundation for inter-
application data transfer.

We have justified the storage of what could be called
"redundant" information in our database. There is a higher
purpose, in terms of describing a file's metadata, for
developing the UFS data model. In a coordinated effort,
another team of developers at PNL are developing the
Extensible Computational Chemistry Environment
(ECCE'). ECCE' is a desktop workstation software
system for experiment management. This effort is similar
to earlier work in Desktop Experiment Management[S]
The ECCE' software will provide an extensible framework
allowing scientists to set up, run, analyze, browse,
combine, and query complex experiments. Initially ECCE'
focuses specifically on high-performance computational
chemistry experiments. These experiments can range from
attempting to determine the optimal geometry of a simple
molecule to computing a protein dynamics trajectory
describing different conformations of a protein folding.
These are exactly the experiments (instruments) that are
prodbcing files being placed into the archive.

Scientist 'i A, inputs ,-, . I 4 Inhen .. tam? I I
I

Experiment
Relationship outputs

Properties

Figure 8. Extensible Computational Chemistry
Environment data model

Figure 8 shows a simplistic overview of both the
EMSL experiment management data model and the EMSL
chemistry data model. These data models are dependent on
the UFS data model and functions for managing data files.
We are faced with two fundamental requirements in.
managing experiments:

Capture sufficient information to be able to exactly
reproduce the experiment, and
Capture enough metadata to allow scientists to make
their own judgments regarding the validity and quality
of the experimental results.
The experiment management data model shown in the

figure is an abstraction of the current EMSL data model. It
captures the basic notions that a scientist conducts an
experiment that produces a number of results. In the
process of producing those results, the experimental
instrument may take files as input and may produce files
containing the results as output. The joining of an
experiment management data model to the UFS data
model expands the scope of queryable attributes
tremendously. For instance, scientists may now have
access to their results without having to access output
files, because key results contained in output files have
been duplicated as objects in the OODBMS. Queries about
classes of experiments based on the parameters used or $e
experimental conditions are then possible.

We are currently engaged in detailed design of the
DBHSM software component. Both the abstract portions
of the UFS ,data model (File objects) and the experiment
management data model have been designed and
implemented. Within the next six months we will have a
completed, extensible file typing system and sufficient
means to register new applications and instruments. The
software developed on DBCS-0 will be ported to DBCS-1
after delivery and installation in the summer of 1996.

. . . __

ACKNOWLEDGMENTS

Pacific Northwest Laboratory is a multiprogram national
laboratory operated for the U.S. Department of Energy by
Battelle Memorial Institute under contract DE-AC06-
76RLO 1830.

The National Storage Laboratory is a collaborative
effort of various industry partners and DOE Laboratories at
Lawrence Livermore National Laboratory (LLNL). LLNL
is operated for the U.S. Department of Energy under
contract W-7405-Eng-48.

’

BIBLIOGRAPHY

[l] P. Berard, “Value Added Data Archiving”,
Proceedings, Third NASA Goddard Conference on Mass
Storage Systems and Technologies, NASA Conference
Publication 3262, October, 1993.
[2] C. Hunter, “Intelligent Archive: Integrated
Information, Application, and Metadata Management at
the Scientist’s. Desktop”,
http://www. lln I . gov/liv-comp/ia. html.
[3] L.T. Chen, R. Drach, M. Keating, S. Louis, D. .
Rotem, A. Shoshani, “Efficient Organization and Access
of Multi-Dimensional Datasets on Tertiary Storage
Systems”, Information Systems, 19(4), 1994.
[4] L.T. Chen, D. Rotem, “Optimizing Storage of
Objects on Mass Storage Systems with Robotic Devices”,
Extending Database Technology, 1994.
[a Y. Ioannidis, M. Livny, E. Haber, R. Miller, 0.
Tsatalos, J. Wiener, “Desktop Experiment Management”,
IEEE Data Engineering Bulletin, 16(1), Mych 1993.
[6] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
W. Lorensen, Object-Oriented Modeling and Design,
Englewood Cliffs, New Jersey: Prentice-Hall, 1991..

http://www

