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1 Introduction

We address the problem of cache replacement policies for Storage Resource Managers (SRMs) that are

used in data grids, taking into account the latency delays in retrieving, transferring and processing of files.

An SRM maintains a large capacity disk for caching file objects of varying sizes that are read from or

written to Mass Storage Systems (MSS). An MSS may reside either at the same local site as the client or

at some remote site that is accessible over a wide area network. A storage resource manager (SRM) [15],

in the context of the data grid infrastructure [5, 8], is essentially a middleware component that facilitates
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the sharing of data and storage resources. One key function of its services is the management of the disk

cache for which it enforces various policies for its usage. An example of such policies being the cache

replacement policy. Its role in the data grid is analogous to that of a proxy server or a reverse proxy

server [2, 4], in the World Wide Web. Although SRMs differ in many respects from proxy and reverse

proxy servers, they share some common service functionalities such as caching of files or objects. We

will use the terms file and object interchangeably.

One difference between caching into an SRM and caching into a web-server is that SRMs are de-

signed to deal with batched jobs that make requests for files or objects of very large sizes and incur

significantly long delays in transferring and processing them. Storage resources are accessible to users

who interact with them, either directly through client interface or indirectly through application programs

or other SRMs, for creating, destroying, reading, writing and manipulating files. Another major distin-

guishing characteristic between SRMs and web-proxy servers is the manner of handling replicas of files

or objects. When an object is unavailable in a proxy-server, the proxy-server immediately contacts the

source-server of the object. When an object is not found in an SRM’s cache, it determines the fastest and

the most cost effective means of fetching a copy into its cache. This may involve consulting a replica

catalogue service and determining the current state of the available network bandwidth to the replicas’

sources to make an intelligent decision as to which replica to fetch. SRMs are also used as front-ends to

mass storage systems and hierarchical/tertiary storage systems.

Two significant decisions govern the operation of an SRM. Unlike web proxy severs, each job that

arrives at an SRM can request hundreds or thousands of objects at the same time. As a result, an SRM

generally queues the jobs and subsequently makes decisions as to which job needs to be serviced next

and which file, from the batch of files of the selected job, must be retrieved into or transfered from the

disk cache. If a requested file happens to be in the cache, the SRM may choose to “pin” it. Files that are

in cache but are either in use or have been designated to be held in cache, are said to be “pinned.”

The decision of selecting the next job to process is governed by a policy termed “the service policy.”

The decision of which file to retrieve into the disk cache is governed by a “file caching policy.” When a

decision is made to cache a file it may have to determine which of the files currently in the cache must

be evicted to create space for the incoming one. This latter decision is also governed generally by what

is termed a “cache replacement policy.” The service policy and caching policy are sometimes combined

together and referred to as the “admission policy.”

A replacement policy involves computing some utility function φi(t) for each of the files i that poten-
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tially can be replaced, and then replacing the ones that have either the minimum or the maximum utility

function value depending on the criterion for replacement. Only files in the cache that are neither being

processed nor specifically indicated to be pinned in the cache, are candidates for eviction. Such files are

said to be “unpinned.”

The performance measures of cache replacement policies are typically expressed by two metrics: the

hit ratio and the byte hit ratio. Given a reference stream (or a workload), the hit ratio is defined as the

ratio of the number of objects found in the cache to the number of objects referenced in the workload. A

byte hit ratio is the ratio of the volume of data (in bytes) found in the cache to the total volume of data

referenced. In either case these measures give some indication of the improvement in response times

and the savings in bandwidth utilization due to caching. However, none of these measures accounts for

the latency incurred, at the data source, during large data transfers and in processing the file after it is

cached. For example, when the data source is from a robotic tape device, where the delay can sometimes

be comparable to the data transfer time, the measure of byte hit ratio does not take into account such

delays. In this paper we adopt a third measure, first introduced in [11], which we call the “Average Cost

Per Reference (ACPR)” and show that it is a more appropriate measure for the relative comparisons of

cache replacement policies when large latencies exist. This is defined as the ratio of the total cost of all

retrievals (in time units) into the cache, to the total number of references made in the workload. This

gives a better comparison of the relative savings in time to retrieve, transfer and utilize files from the

cache.

A considerable number of research studies have addressed the problem of “cache replacement poli-

cies” both within the realm of computer memory hierarchy and more recently in web-caching. See [17]

for some of the survey reports on “cache replacement policies.” The main objective of a replacement

policy is to optimize a particular metric measure. The quest for optimal replacement policies is a long

standing problem. The approach that has been taken are either analytical or by simulation modeling.

Unfortunately, modeling of cache replacement policies presented in the literature so far, assume instan-

taneous references and hence do not adequately evaluate cache replacement policies in the data grid

environment.

We present, in this paper, a more accurate model and algorithm for evaluating and comparing various

replacement policies. The distinction being made between modeling of policies that assume instanta-

neous references and one that takes into account the long delays at each reference, impacts the size of a

cache that can be used to handle a given workload. Under instantaneous references, the minimum size
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of cache needed is one that can hold the largest size of the object. When reference delays (i.e., the sum

of the delays to locate and retrieve the object or its replica from source, transfer the object and hold the

object in cache for processing), are considered, the minimum size of the cache required is considerably

larger than the maximum object size; otherwise some file requests in the workload may not be satisfied

in which case they may be rejected. It follows intuitively then that there is a minimum size of a cache,

much larger than the largest size of the object, required to successfully process the entire references in a

workload. This cache size constraint is not reflected in cache models with instantaneous references.

The main contributions in this paper are the introduction of accurate models for evaluating replace-

ment policies and the presentation of comparative performance results of the traditional performance

metrics, e.g., hit-ratio, and ACPR for various caching policies. In [11] we introduced a definition of

a utility function for ranking file objects that are candidates for replacement and also described briefly

an efficient algorithm for evaluating the functions for each file object when one has to be evicted. The

cache replacement policy introduced was referred to as the least cost beneficial based on the K back-

ward references or LCB-K policy for short. We present, in this paper, more extensive results, using a

synthetic workload and two real workloads: one from file caching activities of the mass storage system

at the Thomas Jefferson National Accelerator Laboratory (JLab), the other from the access logs of the

high performance storage system (HPSS) at the National Energy Research Scientific Computing Cen-

ter (NERSC), at Berkeley. We compare the LCB-K policy with other known replacement policies such

as random (RND), least frequently used (LFU), least recently used (LRU), maximum inter-arrival time

based on last k-backward references (LRU-K) and Greedy Dual Size (GDS), under the performance met-

rics of “hit ratio”, “byte hit ratio” and “average cost per reference.” Under the ACPR performance

metric, LCB-K and GDS give the best minimum average cost per reference compared with the other

replacement policies. We note that these two policies do not necessarily give the maximum values for

either the hit ratio or the byte hit ratio compared to the other policies.

2 Configuration and Related Works

Figure 1 shows the schematic diagram of the positional role of an SRM within a data grid. A storage

resource manager may be specialized to be either a disk resource manager (DRM) or a hierarchical

resource manager (HRM). Jobs submitted to a DRM are requests for files that are either in the DRM’s

disk cache or can be retrieved from another remote SRM into its cache. An HRM acts as a front end to
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Figure 1: Use of Storage Resource Managers in a Data Grid

a tertiary storage system. It services requests from either its disk cache or from a tertiary storage by first

retrieving the file into its disk cache.

An SRM is applicable in environments that deal with file transfers to and from shared disks, mass

storage and archival tape systems over wide area networks. Caching strategies provide, in these environ-

ments, the benefits of improved data access, improved response times, savings in network bandwidth and

decreased server congestion. The performance of storage technologies, used in the delivery of high vol-

ume data over wide area networks, is improved with caching techniques. These include systems for Data

Staging [16], Web-Caching [4], storage brokering [13], Network Attached Storage (NAS) and file servers

(SVR) of Storage Area Networks (SAN) that is configured to include independent hierarchical storage

systems and other direct access storage (DAS). In Figure 1, we show how these may be configured as

part of a data grid.

Caching techniques in these systems improve the performance when the file reference streams ex-

hibit:

• Locality of Reference: A file that is referenced and read into a cache is referenced multiple times

by the same user over a short period of time.

• Shared Access to Files: The same file after it is read into cache, is also referenced, multiple times,

by different users.

Earlier works on file caching in distributed systems and the staging of files from tertiary storage have

been presented in [7, 9]. Recent studies on caching have focused more on web-caching [4, 14]. Cao and
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Irani [4] present a relative comparison of various cache replacement policies that have been proposed for

web-caching. They propose a replacement policy for web-caching called the Greedy-Dual-Size (GDS)

[4]. Although these works have also presented some relative comparison of caching algorithm, they

have not addressed the impact of the delays incurred at the source of the file object, delays in caching

the file and the time to hold the file in cache for processing. The impacts of such delays in the caching

algorithms can affect the performance metrics thereby making one preferable over the other. A correct

model of the caching algorithm is the first step towards making an informed decision. There are some

major differences between caching of large data files in SRMs and web-caching. We summarize the

differences in the Table 1 below.

Characteristic Property Web Caching Disk Caching in SRMs
File/Object Size Variable size objects of the order of

megabytes
Variable size objects of the order of giga-
bytes

Cache Size In the order of tens to hundreds of giga-
byte

In the order of hundreds of gigabyte to
tens of terabytes

Source Latency A few milliseconds to seconds In milliseconds to minutes
Object Transfer Time In milliseconds to a few minutes In seconds up to a few hours
Duration of Object Refer-
ence

Almost Instantaneous In seconds up to a many minutes

Caching Requirement Optional Mandatory
Batched Requests Typically one request references one ob-

ject but may have a additional references
to linked objects.

May involve thousands of files in one
submitted job.

Bundle Constraint Only one object is referenced per re-
quest.

May require that multiple files be ac-
cessed simultaneously.

Cache Consistency Cognizant of modified documents Predominantly Read-Only and ignores
consideration of cache coherence

Network bandwidth re-
quirement

Standard Internet High speed gigabit networks

Replica Access Considers only the source server of an
object if not found in cache

Involves intelligent selection of a site
to retrieve a file replica if not found in
cache.

Table 1: Summary of Differences between Caching in SRMs and Web-Caching

3 Ranking of Files for Eviction

The basic idea of our file replacement policy is to evaluate the utility function φi(t) for each file i in the

disk cache. A file object i of size si has a retrieval cost ci,r(t) from a site r at time t. In the data grid

environment there could be replicas of the same file at different sites r, each with a different file access
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cost. We will denote the cost simply by ci(t), with the understanding that this is the minimum cost over

all replica sites. At each instant in time t, when we need to acquire space of size si for a file i, we order

all the unpinned files in non-decreasing order of their utility functions and evict the first m files with the

lowest values of φi(t) and whose sizes sum up to or just exceed sj. We always assume that the sizes of

the cached files are relatively small compared to the total size S, of the cache.

Since the precise characteristics, such as the cost ci(t), to retrieve the file at time t, is not known in

advance, caching techniques make use of the information accumulated from past references. Examples

of such information retained are: the time of the last reference, the cost in time of the last retrieval, the

number of accumulated references (also called the frequency count) to the file, etc. The determination of

the utility function φi(t) and how it is evaluated distinguish one cache replacement policy from another.

For example in the Least Frequently Used policy, the ranking is done based on the frequency count of

the references to each file. In the Least Recently Used (LRU) the ranking is based on the last reference

time while LRU-K [10] is based on the Kth backward reference time. Others such as the Greedy Dual

Size (GDS) and the Least Cost Beneficial cache replacement utilize a more involved utility function that

includes the size of the file, the cost of retrieval and the frequency counts. For example, our new LCB-K

algorithm utility function is given by:

φi(t) =
ki(t)

t − t(−ki)
∗ gi(t)∗ ci(t)

si
(1)

where, for each file i, si is its size, ki(t) is the number of the most recent references retained, up to a

maximum of K, within the time interval [t− t(−ki)], t(−ki) is the time of the ki(t) backward reference, gi(t)

is the cumulative count of references to the file over the active period of references to the file and ci(t) is

the cost of retrieving the file from its source into the cache at the time t. The idea of retaining up to K

relevant history of references is borrowed from the development of LRU-K [10]

3.1 Reference Streams in SRMs

Consider an SRM that serves as a front end to a tertiary storage system system that has N distinct

files F = { f1, f2, . . . fN}. Denote each job for file requests to an SRM by Jj = { f1, j, . . . fi, j, . . . . . . fmj , j},

j = 1, . . . ,q, when q jobs are in the queue. The combined use of the service and caching policies generates

a schedule of file admissions which in turn derives a file reference stream ω= r1,r2, . . . ,rt , . . .. Each file
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reference is for a file specified in some job, i.e., rt = ( fi, j), i = 1, . . .N, j = 1, . . .q. The logged reference

stream ω, constitutes a workload.

In this environment the concept of correlated references is weak since each job makes only one

request for each file and the references to the same file come from independent jobs. Further, we assume

that the files are written once but read many times. Hence the file accesses are predominantly read-

only. Correlated references originate frequently from file updates where the file is read into the cache,

referenced many times to update subsets of the file and then written back onto the backing store or tertiary

storage. Frequent file update is not the mode of operation in our setting.

Although multiple jobs can be serviced when a file is retrieved into cache, we consider each reference

in the reference stream ω as being independent. The appearance of a file into the cache, as a result of a

reference from some job, impacts the subsequent decision rule for scheduling the next file to be cached.

For example, the service and caching policies may take into account the fact that a file being requested

is already in the cache when making a decision as to which file request and from which job should be

honored next.

3.2 Metric for Ranking Files in SRMs

Replacement algorithms are key to the implementation of a caching system. Not only should this be

evaluated in almost negligible time relative to the time it takes to cache an object, it should optimize

in some sense a measure of a performance metric. Cache replacement policies are typically designed

to optimize the hit ratio usually by retaining in the cache either the most frequently referenced objects

or the most recently referenced object. The former effectively evicts the least frequently used object

(i.e., the LFU-policy), the latter evicts the least recently used object (i.e., the LRU-policy). Both policies

are predicated on the assumption that a reference stream has a high degree of shared and locality of

references.

Since the goal of caching is to improve some performance measures such as response time, through-

put, network bandwidth usage, etc., we examine the significance of hit ratio, byte-hit ratio in the im-

provement of such performance measures.

Hit Ratio: This assumes that all files are of the same size and have the same access cost. This assump-

tion is unrealistic in the use of SRMs in data grids. The files have varying sizes and have replicas

at different sources with different delays and transfer cost into an SRM’s disk cache. It is easy
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to envisage a replacement policy that favors only files of small sizes thereby retaining as many

files in cache as possible and improving the hit ratio at the expense of high retrieval cost and poor

response time whenever large files are referenced. Hit ratio only measures the effectiveness of

the use of a cache as the number of hits and does not reflect in any way the effects of source and

transfers delays of the objects.

Byte Hit Ratio: The byte hit ratio used in measuring the relative performance of cache replacement

algorithms implicitly addresses transfer delays but is based on the assumption that the rate of

transfers from every originating source of an object to the cache is constant. This assumption,

as in the case of hit ratio, is unrealistic. This performance metric reflects the relative savings in

bandwidth usage achieved by caching but does not reflect the delays at the originating sources of

the files.

Average Cost Per Reference (ACPR): This metric measures the effectiveness of a caching policy by

the average response time per reference. It takes into consideration the total delay in caching

files of varying sizes, varying source delays and varying transfer times. Consequently an optimal

replacement algorithm based on ACPR, implicitly minimizes the response times of file requests.

This is a more practical objective in designing cache replacement algorithm for SRMs on the grid.

Our objective then in the design of a cache replacement policy is to optimize the overall response

time of file requests. As such, the performance metric we optimize (i.e., minimize), is the expected

access cost of a file per reference.

4 Derivation of the LCB-K Utility Function

In virtual memory paging and file buffering, where objects (i.e., program and data pages) are of fixed

sizes and the cost of disk to memory transfer is constant, the accepted “principle of optimality” for

replacement policies was first proposed by Belady [3]. It states that “the page y evicted is that which has

the furthest time of the next reference.”

Given a reference stream ω= r1,r2, . . . ,rt , . . .. where each reference is for an object, i.e., rt = ( fi), i =

1, . . .N, we can now consider the reference stream as random variables with stationary probabilities

p1(t), p2(t), p3(t), . . . , pn(t), . . . with Prob(ri = j) = pj(t). For a cache of size S such that the size si of

each object i is very much less than S, the principle of optimality implies that at the next reference instant
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t + 1 we should always retain in the cache the I objects such that

∑
i∈I

pi(t); (2)

is maximized subject to

∑
i∈I

si ≤ S. (3)

The above equations maximizes the hit ratio. Now if we assume the cost of retrieving a file object fi, of

size si into the cache is ci(t), with the proviso that this cost varies from a reference instant to a reference

instant then from the reference instant t to the next instant t +1, we need to retain I objects in cache such

that

∑
i∈I

pi(t)∗ ci(t); (4)

is maximized subject to

∑
i∈I

si ≤ S. (5)

Maximizing the objective function 4 implies a minimization of the response time per reference. The

task of an SRM is to solve, at each replacement instant, the above classical Knapsack Problem which

is known to be NP-hard [6]. By considering that the sizes of the cached objects are relatively small

compared to the total size S of the cache, the amount of space left after caching the maximum number of

objects is negligible. The solution space may be restricted to the set I satisfying ∑
i∈I

si = S and thus we

can restate the problem as

maximize ∑
i∈I

pi(t)∗ ci(t); (6)

subject to

∑
i∈I

si = S. (7)

The above problem can now be considered as equivalent to the fractional knapsack problem for
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which an optimal solution is given by a simple greedy algorithm as follows: The items i ∈ I are ranked

in non-increasing order of φi(t) = pi(t)∗ ci(t)/si and then the first I items are retained in the cache. The

solution implies that whenever some object in the cache needs to be evicted at some instant in time t, the

eviction candidate is one that has the minimal utility function φi(t) given by

φi(t) =
pi(t)∗ ci(t)

si
(8)

Similar conclusion are reached in [9, 14] but under different assumptions.

The utility function, as expressed by equation (8), is impossible to apply since we do not know

the probabilities, and further these probabilities are not stationary. We utilize the history of accesses

to estimate the probability of a future access of a file. Under the assumption that the references to the

objects are independent, the arrival rate of references to an individual object i can be approximated by a

Poisson distribution with parameter λi and the probability term in equation (8) may be replaced by

pi(t) =
λi(t)

∑
1≤ j≤n

λ j(t)
.

Since the replacement decision is based only on the relative rankings of pi(t), we can rewrite equation

(8) as

φi(t) = λi(t)∗ ci(t)
si

. (9)

To estimate the values of λi(t) we utilize the concepts used in the development of the Least Recently

Used Based on on the Kth backward reference (or LRU-K), page replacement policy. In the LRU-K [10]

the times of the last ki(t) references to the object i are retained. At time t, let ki(t) denote the count of

the last references made to i up to a maximum of K, 1 ≤ ki(t) ≤ K. Let the time of the backward kth
i

reference be denoted by t(−ki). Then we can approximate the rate of arrival by

λi(t) =
ki(t)

t − t(−ki)

Since the cost of the future retrieval is also not known, we utilize a best effort estimate, denoted by c′i(t),

by deriving it from the last ki(t) retrievals. Note that before an object becomes a candidate for eviction, at

least one access for the object must have been made in order to cache it. Further, the observed locality of

11



reference suggests that the most frequently accessed object is most likely to be referenced in the future,

we factor in the accumulated number of references made to a file. Let this be denoted by gi(t), then our

eviction candidate is the object with the minimum value of φi(t) where

φ′i(t) =
ki(t)

t − t(−ki)
∗ gi(t)∗ c′i(t)

si
(10)

Empirical evidence derived from plotting the accumulated frequency and the probability of access

in the next time steps suggests that gi(t) should be applied as a decaying function of the accumulated

frequency [12]. The derivation of the parameters of an appropriate decaying function given a cumulative

frequency counts, is left for future work.

Our disk cache replacement policy, based on the equation (10), with the superscript dropped from

the retrieval cost c′(t), is that given in equation 1. We refer to this as a Least Cost Beneficial replacement

policy based on at most K backward references or LCB-K for short. Using equation (1), the problem of

implementing an efficient algorithm for quickly ranking the objects in cache is still non-trivial.

5 The Cache Replacement Algorithm

A direct application of the LCB-K utility function given by equation 10, for selecting a candidate for

replacement is computationally expensive. Whenever an object needs to be evicted at time t, the utility

function must be evaluated for every object in the cache and this takes time O(I) when I objects are in

cache. This is so since the function φ′i(t) is a non-stationary ranking function in the sense defined in [1].

We utilize then a tournament of heaps to achieve O(log I) selection in the following manner. We di-

vide the number of unpinned object in cache into groups m groups according to the (ki(t)∗gi(t)∗ci(t))/si

and maintain each group as a priority queue with the object having the minimum utility function value

at the root. Only the root node element of each priority queue can be evicted. Each time a replacement

needs to be made, the root element with the lowest utility function value is evicted from the cache.

In simulating cache replacement polices in SRMs, or any disk caching environments such as Web-

Caching, one needs to account specifically for three types of delays:

i the latency incurred at the source of the file;

ii the transfer delay in reading the file into the disk cache; and
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iii the holding or pinning delay incurred while a user processes the file after it has been cached. This

may simply involve transferring the file into the user’s workspace.

The simulations of the replacement policies are done as discrete event simulations. Each reference

ri provides five distinct event times. These are: Arrival Time(ri), Start Caching(ri), End Caching(ri),

Start Processing(ri) and End Processing(ri). An event object (ri = evtObj), is created upon an arrival of

a request. This is then inserted into an event queue denoted by EvtQueue. An event object evtObj has

two fields, eventType(evtObj) and schdTime(evtObj), that identify respectively the type of event and the

scheduled time at which that event should occur. The EvtQueue is implemented as a priority queue.

The action taken upon the occurrence of an event is implied by its type. We describe the semantic

actions in handling one type of event, i.e., “Start Caching,” to illustrate the idea. Suppose an event object

evtObj, is removed from the top of the event queue. If the event type given by eventType(evtObj) is a

“Start Caching” event, then the eventType(evtObj) is set to “End Caching” and the schdTime(evtObj)

is set to the scheduled completion time for retrieving the file into the cache. The event object evtObj, is

then reinserted into the priority queue EvtQueue.

The simulation is driven by a workload of file requests. Suppose the time of arrival of a request ri is

t0 and assuming the root node of a non-empty EvtQueue is denoted by EvtQueue(Root). If t0 ≥ schd-

Time(EvtQueue(Root)) then EvtQueue(Root) is removed and assigned to evtObj. The simulation then

executes the actions corresponding to the eventType(evtObj). If t0 < schdTime(EvtQueue(Root)) then a

new event object is created using the information of the arriving request. This is then inserted into the

EvtQueue. We should also remark that of the five event times of a request, the simulation only checks if

the requested file is in cache at the time when a Start Caching event occurs. If the file is in cache, the

request is immediately scheduled for processing and this instant corresponds to a cache hit. However if

the file is not in cache then a cache replacement algorithm is executed to free enough space to retrieve

the file.

6 Performance Comparison of Some Replacement Policies

We compared the performance metrics of hit ratio, byte hit ratio and average cost per reference for a

number of cache replacement policies, namely random (RND), least frequently used (LFU), least recently

used (LRU), maximum inter-arrival time based on at most K backward references (i.e., a variant of LRU-

K), greedy dual size (GDS) and least cost beneficial based on at most K backward references (LCB-K)
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under the modeling strategy with delays. We set the active lifetime T to be five days. That is, if a file has

not been accessed in the last five days, it is purged from memory. The simulations were conducted for

both synthetic and real workloads of a mass storage system. Two real system workloads are used in our

experiments. The first is a log of file access activities, for about a six months period, of the mass storage

system, JasMINE, at JLab. The second workload is derived from file access to an HPSS at NERSC.

The JLab workload has a medium locality of reference and uses the LRU caching policy. The NERSC

workload has very little locality of references and the synthetic work is instrumented to have a reasonable

high degree of locality of reference. The graphs are given respectively in Figures 2, 3 and 4.

6.1 Some Experimental Results

Figures 2a, 2b and 2c shows the graphs of the performance metrics of hit ratio, byte hit ratio and average

cost per reference for the workload from JLab. The Figure 2a shows the hit ratios for RND, LFU, LRU,

GDS, MIT-K and LCB-K for K = 2. MIT-K and LRU give the best performance results under the hit-

ratio performance metric. Even then the graphs are not significantly different from those of GDS and

LCB-K. On the other hand, examination of the graphs of the average retrieval cost per reference, depicted

in Figure 2b, shows that LCB-K and GDS give the best performance measures under this metric. In all

three performance measures LFU shows the worst performance.

Figures 3a, 3b and 3c show the corresponding graphs for the workload from NERSC. The graphs

of the hit ratios for GDS, LCB-K, MIT-K and LRU all show comparable behavior. RND and LFU

replacement policies behave poorly. The graphs of Figure 3c depict some interesting behavior with

varying cache sizes. For a cache size between 200 GBytes and 500 GBytes, the average cost per reference

increases with increasing cache size. In this phase the cache size is insufficient to handle the request

arrivals. This causes some files to be rejected and not cached.
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Figure 4: Graphs for Synthetic Workload
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At a cache size of about 500 Gbytes the cache is sufficient large to handle the workload. Subsequent

increases in the cache size after this point naturally causes a steady decrease in the average cost of

retrieval per reference. The GDS and LCB-K replacement policy quickly reach a steady state at cache

size of about 2.0 Terabytes. This also suggests that further increases in the cache size have little or no

effect in improving (i.e., decreasing) the response times of accessing files.

The corresponding graphs for the synthetic workload are shown in Figures 4a, 4b and 4c. These

illustrate the same relative performance measures of the various policies as indicated by a real workload.

The major difference here is that the differences between policies in the average cost per reference mea-

sure, are more pronounced. This is due to the fact that this workload has a higher degree of locality of

reference than the previous two real workloads. In the development of LRU-K, the authors suggested

that values of K = 2 or 3 is sufficient and recommended the use of K = 2. We confirmed this fact in our

simulations and therefore present results for only K = 2 in this paper.

7 Conclusion and Future Work

Caching in storage resource managers, has some characteristic features that distinguish it from caching

in other domains such as virtual memory, database page buffering and web-caching. In particular, file

caching in SRMs involves variable size files or objects that are very large and the delays caused by

source latency, file transfers and processing of the files significantly affect its performance. Unlike

traditional simulations of cache replacement policies, we have implemented a realistic simulation model

that accounts for the delays in processing objects in the cache.

We also defined a utility function for determining which files need to be evicted from the cache.

The utility function was used to develop a new cache replacement policy referred to as the LCB-K.

Using the simulation model, we compared and showed the results of the replacement policies of RND,

LFU, LRU, GDS, MIT-K and LCB-K under the performance metrics of hit ratio and average cost per

reference for both synthetic and actual workloads. The average cost per reference is the most realistic

performance metrics for evaluating cache replacement policies for storage resource managers and under

this performance measure, LCB-K and GDS replacement policies give the best results of all the policies

compared.
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