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Abstract—In this paper, we propose a robust multilateration
algorithm for localizing sensor nodes in cluttered environments
where the estimated distances between an unlocalized node and
reference nodes with known coordinates may contain large errors
due to non line of sight signal propagation. We show that
the traditional least squares multilateration is severelyaffected
even if one of the measured distances is erroneous whereas
our approach functions properly even if half of the measured
distances contain large errors due to non line of sight signals. Our
algorithm is independent of the physical layer used to perform
ranging and does not require the identification of direct and
reflected signals or any prior information about the statistical
properties of measurement errors or characterization of the
environment where the sensor nodes are deployed.

I. I NTRODUCTION

A majority of sensor network applications rely on the as-
sumption that each sensor node can determine its location with
in the physical space where it has been deployed. For example,
in a monitoring application each sensor node reports the
sensed data along with its coordinates to a base-station where
these are used for analysis or presentation. Some of other
applications include locating objects or personnel in a building
and target tracking. The availability of location information at
each individual node also allows the sensor network to run
completely distributed and localized algorithms, for example,
geographic routing [1], data aggregation [2] and smart query
processing [3] etc

One of the localization techniques involves the measurement
of distances between the unlocalized node and reference points
with known coordinates. These reference points could be part
of a fixed infrastructure or other sensor nodes that have already
calculated their own coordinates. These reference points are
generally referred as anchor nodes. The distances between the
unlocalized node and anchor nodes are generally estimated by
measuring time of flight (ToF) of an acoustic [4], [5] or a
radio [6] signal. These measured distances and anchor node
coordinates are then used to calculate the coordinates of the
unlocalized node.

When the sensor nodes are deployed in a cluttered envi-
ronment, for example, inside an ordinary office building, the
ranging signals used for distance measurement can reflect and
bounce off multiple surfaces before arriving at the receiver.

This makes it difficult for the receiver to estimate the true
distance accurately either due to interference between the
signals travelling along multiple paths or due to the absence
of direct clear line of sight between the transmitter and
the receiver [6]. This introduces a large positive error in
some of the estimated distances depending on the relative
position of the transmitter receiver pair, the environmentand
the physical characteristics of the signals used. The accuracy
of the calculated node coordinates is severely affected due
to the presence of these erroneous distance estimates. Thus
accurately localizing sensor nodes in cluttered environments
is a challenging problem and is the main focus of this work.
Following are the primary contributions of this work,

• We show that the presence of even a single erroneous
distance measurement due to non line of sight signals
severely degrades the accuracy of traditional localization
algorithms.

• We present a novel localization algorithm that is robust
against the distance measurement errors arising from non
line of sight signals.

• Our approach does not require the identification of line of
sight and non line of sight signals and is thus independent
of the physical layer used to perform ranging.

• Our approach does not require any prior information
about the statistical properties of non line of sight mea-
surement errors and thus can be used in ad-hoc deploy-
ments without collecting any measurement data.

The rest of this paper is organized as follows. Section II
outlines the related work. Section III discusses the traditional
least squares based localization and demonstrates its short-
comings when used in cluttered environments. Section IV
presents our robust multilateration algorithm and an analysis
of its robustness. Section V compares our approach with least
squares based localization algorithms through simulations.
Section VI presents results from a small experimental testbed.
Finally section VII concludes this paper.

II. RELATED WORK

Venkatesh and Buehrer [7] propose a linear programming
based algorithm for localizing a node in a cluttered indoor
environment using distance measurements from both direct



and non line of sight UWB radio signals. However, they
assume that it is possible to distinguish between the direct
and non line of sight measurements from the characteristics
of the received UWB radio signals at the physical layer [8].
Therefore, their approach is restricted to the UWB radio
technology. Our algorithm on the other hand, does not require
the identification of direct and non line of sight signals and
is thus completely independent of the physical layer used to
perform range measurements.

Guven et al. [9] propose a weighted least squares algorithm
for localization in cluttered environments. They also use a
non line of sight identification technique based on channel
characteristics and assign smaller weights to measurements
coming from signals that are identified as non line of sight.
However, the channel characteristics depend on the environ-
ment in which the sensor nodes are deployed and thus require
measurement and data collection campaigns to build a channel
model [10] for a specific environment.

There is also some research literature available that deals
with localization in cellular networks in the presence of mul-
tipath and non line of sight signals. Wylie and Holtzman [11]
propose to identify non line of sight range measurements
from a moving transmitter to a set of fixed base stations by
comparing the standard deviation of a series of measurements
with a threshold. These non line of sight ranges are then
corrected by employing the knowledge of actual measure-
ment noise and then used with least squares to determine
the coordinates of the transmitter. However, this approach
assumes that the transmitter is moving and thus the variation
of obstructions between the transmitter and non line of sight
base station leads to a larger standard deviation for a series of
range measurements. Thus this approach cannot be used with
stationary nodes.

Chen [12] propose an algorithm for localizing mobile
phones in the presence of non line of sight range measure-
ments. Their approach does not require the identification of
non line of sight measurements but it depends on a heuristic
that the sum of squared residuals of a least squares estimate
can be used as an indicator of the accuracy of calculated node
coordinates. They apply least squares multilateration on all
possible combinations of the distance measurements and then
calculate the final node coordinates as a weighted combination
of these intermediate estimates where the weights depend on
the sum of squared residual values of each estimate. Therefore,
the computational complexity of this approach grows expo-
nentially with the number of distance measurements. Dulman
et al. [13] has also shown that the sum of squared residuals
cannot be used as a measure of localization accuracy.

Qi and Kobayashi [14] derive a Cramer Rao lower bound
for localization in a cluttered environment where both direct
and reflected signals are present. They show that if no prior
information about the statistical properties of the non line of
sight distance estimates is available, then these measurements
provide no new information that can be used to reduce the
bound on the localization error. In a later work [15], they
show that if statistical information like probability distribution

of the non line of sight measurements is available, then such
measurements can be used to lower the localization error in
cluttered environments. However, this information can only
be collected through measurement campaigns in the specified
environment and processed off line before localization can
be performed. This makes this approach cumbersome and
unsuitable for ad-hoc deployments. On the other hand, if no
prior information is available for non line of sight distance
estimates, then these measurements must be detected and
filtered out before calculating the location coordinates using
least squares estimation because it is extremely susceptible to
large measurement errors.

III. L EAST SQUARES MULTILATERATION

In this section, we outline least squares multilateration and
analyze its performance in the presence of non line of sight
distance estimates. Let us suppose that there arem fixed
anchor nodes with coordinates(xi, yi) wherei = 1, 2, . . . , m.
A non anchor node that wishes to determine its coordinates,
estimates its distance to three or more anchor nodes. Let us
suppose thatdi is the estimated distance to anchor nodei. If
(x, y) are coordinates of the non-anchor node, then we can
write a system of equations as,

(x1 − x)
2
+ (y1 − y)

2
= d2

1

(x2 − x)
2
+ (y2 − y)

2
= d2

2
(1)

...

(xm − x)
2
+ (ym − y)

2
= d2

m

The only unknowns in the above system of equations are the
coordinatesx and y of the unlocalized node. These can be
determined by solving a problem that is known asleast squares
and is given as

x̂ = argmin
x

m
∑

i=1

ri (x)
2 (2)

wherex = [x, y]
T , x̂ is a vector of estimated coordinates and

ri (x) is a residual function given as,

ri (x) =
{

(xi − x)
2

+ (yi − y)
2

}

−d2

i
i = 1, 2, . . . , m (3)

This residual functionri (x) is a nonlinear function ofx and
y. Therefore, the problem given in (2) is an unconstrained
nonlinear optimization problem and is generally known as
nonlinear least squares. It can be solved by using any of the
Newton type optimization algorithms [16]. These are iterative
algorithms and require a starting pointx0 = [x0, y0]

T which
is then gradually improved in each iteration until a local
minimum of the above defined objective function is found.

The system of nonlinear equations given in Eq. (1) can
be linearized by subtracting one of the equations from the
remainingm − 1 equations. If we subtract the last equation
from the others, this results in the following linear system,



(x1 − xm)x + (y1 − ym)y = b1

(x2 − xm)x + (y2 − ym)y = b2 (4)
...

(xm−1 − xm)x + (ym−1 − ym)y = bm−1

where,

bi =
1

2

{

x2

i
− x2

m
+ y2

i
− y2

m
+ d2

m
− d2

i

}

(5)

In matrix notation, the linear system given in Eq. (4) can be
expressed as,

Ax = b (6)

where,

A =











x1 − xm y1 − ym

x2 − xm y2 − ym

...
...
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







(7)

and
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



(8)

The system of linear equations given in Eq. (4) can be solved
for x andy by using the least squares approach given in Eq.
(2) with the following residual function,

ri (x) = (xi − xm)x + (yi − ym) y − bi i = 1, . . . , m − 1
(9)

When this residual function which is linear in the unknowns
x andy is used, the problem expressed in Eq. (2) is known as
linear least squares and has a closed form solution given as,

x̂ =
(

A
T
A

)−1

A
T
b (10)

Least squares is the most popular algorithm for estimating
parameters from multiple noisy measurements. It is also the
oldest technique dating back to the nineteenth century whenit
was first published by Legendre in 1805. Gauss later claimed
that he had been using this approach since 1795. Stigler [17]
presents an interesting account of this priority dispute. Guass,
however, is credited with developing a probabilistic justifica-
tion of least squares and showing that the least square estimate
of parameters is optimal when the measurement errors are
identical and independently distributed (iid) with a normal
distribution with zero mean. However, the major shortcoming
of least squares is its sensitivity tooutliers. When using least
squares estimation, even if a single measurement contains an
error that is significantly different from others, the estimated
parameters are severely affected. In the context of localization
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Fig. 1: Overestimated distances offset the coordinates deter-
mined by least squares algorithms.

in cluttered environments this means that even if a single
distance between the unlocalized node and an anchor node
is overestimated due to multipath reflections or the absence
of direct line of sight, the position estimate calculated using
least squares will be inaccurate. In order to demonstrate this,
we set up a simulation where10 anchor nodes are deployed
randomly in a10 × 10 unit area. A single unlocalized node
measures distancedi to an anchor nodei such that

di = d̄i + ei (11)

where d̄i is the true distance andei are identical and inde-
pendently distributed (iid) measurement errors with a normal
distribution N (0, σ). We randomly select one distance esti-
mate and also add an error drawn from a uniform distribution
U(a, b) with a = 0, b > 0 to it to emulate the overestimation
of distance due to multipath or the absence of direct line of
sight between the unlocalized node and the anchor node. These
distance estimates and the anchor coordinates are then used
to determine the coordinates of the unlocalized node using
both the linear and nonlinear least square approaches discussed
above. Fig. (1) shows the results of this simulation where the
horizontal axis is the maximumb of the uniform distribution
U(a, b) and the vertical axis is the localization error. Each
point on the graph is an average of100 runs of simulation
and the bars indicate minimum and maximum values. It shows
that even a single non line of sight distance measurement can
offset the position estimate calculated using both linear and
nonlinear least squares and the localization error increases as
the non line of sight error is increased.

We can use the closed form solution of linear least squares
to explain this behaviour. Let us suppose thatb̄ is a vector
formed by using true distances̄di, then the true position of
the unlocalized node is

x̄ =
(

A
T
A

)−1

A
T
b̄ (12)

and the localization error is given as,

‖x− x̄‖ ≤ ‖F‖‖ǫ‖ (13)



where‖.‖ is the l2 norm and

F =
(

A
T
A

)−1

A
T (14)

ǫ = b − b̄ (15)

ǫ is a vector of random variables with,

ǫi =

(

d̄mem +
1

2
e2

m

)

−

(

d̄iei +
1

2
e2

i

)

i = 1, 2, . . . , m−1

(16)
This shows that the vector norm‖ǫ‖ and thus the localization
error bound given in Eq. (13) increases even if a single
measurement errorei is large. Nonlinear least squares also
exhibits a similar in the presence of large measurement errors
as shown in fig. (1). Linear least squares results in a larger
localization error as compared to nonlinear least squares
because the linearization of equation system given in Eq. (1)
introduces errorem in all of the remainingm−1 measurements
as shown in Eq. (16).

IV. ROBUST MULTILATERATION

In the previous section, we outlined the least squares al-
gorithm for calculating coordinates of an unlocalized node
and showed that even a single distance measurement with
large error offsets the calculated coordinates. The least squares
algorithm estimates the coordinates by minimizing the sum
of squared residuals as shown in Eq. (2). Since the residuals
ri are squared, the ones corresponding to the measurements
with large errors become relatively large and thus offset
the estimated coordinates. This problem can be avoided by
minimizing an objective function where the residuals for large
errors do not become even larger. One such objective function
is the sum of absolute values of the residuals,

x̂ = argmin
x

m
∑

i=1

|ri (x)| (17)

Thus an estimate of the node coordinatesx̂ that is not affected
by large distance measurement errors can be obtained by
solving the optimization problem given in Eq. (17). We refer
to this asRobust Multilateration.

In order to demonstrate the robustness of this approach, we
analyse a one dimensional localization problem. Let us sup-
pose that we want to determine a one dimensional coordinate
x of an unlocalized node with the help of anchor nodes located
at xi and the measured distancesdi between the anchor nodes
and the unlocalized node as shown in fig. (2). Then for each
anchor nodei we have,

xi − x = di i = 1, 2, · · · , m (18)

For this problem, Eq. (17) becomes

x̂ = argmin
x

m
∑

i=1

|ci − x| (19)

Fig. 2: One dimensional localization

where ci = xi − di. This function is piecewise linear and
convex, and thus the minimizerx̂ can be determined by setting
the derivativef ′ (x) to zero. The derivativef ′ (x) where it
exists is given as,

f ′ (x) =

m
∑

i=1

sgn (ci − x) (20)

where

sgn (z) =











1 z > 0

0 z = 0

−1 z < 0

(21)

This shows that the minimizer̂x of the objective function
given in Eq. (19) is a quantity that is larger than half of
the ci and smaller than the other half or in other words it
is the median of ci values. Since the median is not affected
by outliers, the estimated coordinatêx is robust to large
measurement errors indi. For this one dimensional problem,
upto 50% of the measured distances can be erroneous with
out affecting the estimated coordinatex̂.

When using the least squares approach for the same prob-
lem, then we have

x̂ = argmin
x

m
∑

i=1

(ci − x)
2 (22)

The derivative of the objective functionf ′ (x) is given as,

f ′ (x) = −2
m

∑

i=1

(ci − x) (23)

which when set to zero provides a closed form solution for
the node coordinatêx as

x̂ =
1

m

m
∑

i=1

ci (24)

Thus the estimated node coordinatex̂ generated by least
squares algorithm for this one dimensional problem is the
mean of ci values. Since the mean is not resilient to outliers,
thus even a single erroneous distance estimate will offset the
calculated position when using least squares multilateration.

This analysis shows that our multilateration approach which
corresponds to the median of observed data is robust and can
withstand erroneous distance measurements. This result isalso
applicable when localizing a node in more than one dimension,
although the analysis becomes intractable due to nonlinearity.
When calculating the coordinates in higher dimensions, the
nonlinear localization problem cannot be transformed intoa
linear one due to the presence of large errors. For example, if
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a large measurement error due to non line of sight signals is
present in the last equation in (1), then linearizing it to (4) will
corrupt all the remaining measurements as shown in Eq. (16).
Therefore, we have to use the residual functionri (x) given in
Eq. (3) and thus the problem presented in Eq. (17) becomes
a nonlinear optimization problem with an objective function
that is only piecewise differentiable. Gonin and Money [18]
present a detailed overview of numerical algorithms that can
be used to solve optimization problems of this type. These
are iterative algorithms and require an initial starting point.
Estimated coordinates from the linear least squares algorithm
can be used as the starting point for these algorithms.

The main advantage of our approach is that all the distance
estimates are used directly as input to the algorithm without
having to identify and filter out any erroneous distance mea-
surements coming from non line of sight signals. Therefore,
it is not dependent on underlying physical layer and can be
used with any of the ranging technologies. Also no prior
information about the statistical properties of the non line of
sight measurements is required. Therefore, it can be easily
used for localizing nodes in all types of cluttered environments
without performing any measurement and data collection
campaigns. The algorithm is robust against non line of sight
distance measurement errors and is able to recover a good
position estimate even in the presence of large errors wherethe
coordinates generated by least squares are severely affected.

V. SIMULATIONS

In this section, we present some simulation results that
demonstrate that our robust multilateration algorithm performs
better than traditional least squares multilateration when some
of the distance estimates contain large errors due to non line
of sight signals. We model each measured distancedi between
the unlocalized node and the anchor nodei as,

di = d̄i + ei + li (25)

where d̄i is the true distance,ei is zero mean Gaussian
measurement error,

ei ∼ N (0, σ) (26)
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(a) Normalized NLOS biasbn = 0.4
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(b) Normalized NLOS biasbn = 0.7

Fig. 4: Increasing the percentage of NLOS distances

whereσ is the standard deviation of the Gaussian distribution
and li is an error that is introduced due to non line of sight
propagation such that

li ∼ U (a, b) (27)

wherea = 0 andb > 0 are the minimum and maximum values
of the uniform distribution. For direct line of sight distance
measurementsli = 0.

For the first set of simulations, we randomly deploy10
anchor nodes in a10 × 10 unit area and an unlocalized
node is placed roughly in the middle of this region. One
randomly chosen distance estimate between the unlocalized
node and an anchor node is set as a non line of sight
distance and all the remaining estimates are line of sight.
These estimated distances and anchor node coordinates are
then used to localize the node using both least squares and
robust multilateration. In all the simulations, unless otherwise
mentioned, the measurement errorsei have σ = 0.1. Fig.
(3) shows the results of this simulation where the vertical
axis is the localization error and the horizontal axis is the
normalized non line of sight biasbn. The normalized NLOS
bias is the ratio of maximum non line of sight errorb and the
maximum of all the true distances̄dmax. Each point on the
curves is an average of100 runs of simulation and the bars
indicate minimum and maximum values. This shows that the
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performance of least squares multilateration deteriorates even
if one of the distance estimate is erroneous due to non line
of sight signals and the localization error increases as thenon
line of sight error in the distance estimate is increased. Our
approach, on the other hand, is not affected by the non line
of sight distance measurement.

For the second set of simulations, we randomly deploy50
anchor nodes in a10× 10 unit area and again an unlocalized
node is placed roughly in the middle of the region. In each
simulation run, a fixed percentage of estimated distances are
randomly chosen to be non line of sight. The coordinates
of the unlocalized node are then calculated using all the
distance measurements and the anchor node coordinates. Fig.
(4) shows the results of this simulation for two different values
of normalized NLOS biasbn. This shows that for any given
NLOS error, the error in the node coordinates computed from
least squares increases as the number of NLOS distances
is increased. The localization error of our robust algorithm
starts to increase only after the percentage of NLOS distances
increases beyond a certain point. When the non line of sight
error is small, our approach can withstand a larger percentage
of non line of sight measurements. As the non line of sight
bias is increased, the point where the localization error ofour
algorithm starts to increase, starts to come down to50% NLOS
distances. Fig. (4b) shows that even when half of the estimated
distances contain NLOS errors that could be as large as70% of
the largest true distance between the unlocalized node and the
anchor nodes, our algorithm still results in localization error
that is smaller than traditional least squares based localization
approaches.

Fig. (5) shows the mean localization error for a range of
NLOS normalized bias and percentage of NLOS measure-
ments where each bar is an average of100 runs of simula-
tions. This shows that our approach is robust against NLOS
measurement errors for the entire range of normalized NLOS
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Fig. 6: Localization error for a range of total number of anchor
nodes and percentage of NLOS range measurements.

bias when the number of NLOS measurements is less than or
equal to half of the total number of distance measurements.

In the next set of simulations, we randomly deploy an
increasing number of anchor nodes in a10 × 10 unit area
and choose a fixed percentage of distance measurements to an
unlocalized node in the middle of this region to be non line of
sight. For these simulations, we fix the normalized NLOS bias
bn = 0.5. Fig. (6) shows the mean localization error of the
calculated coordinates for a range of anchor nodes and the per-
centage of NLOS measurements. Each bar in the figure is an
average of100 runs of simulations. These results show that the
localization performance of our approach deteriorates when
the total number of range measurements is very small and
half or more of these measurements are non line of sight. As
we increase the number of total measurements or decrease the
percentage of NLOS measurements, our algorithm becomes
more robust.

In order to observe the behaviour of our algorithm when
all the measured distances are due to line of sight signals,
we performed two more simulations. For the first set of
simulations, we deploy10 anchor nodes in a20 × 20 unit
area and an unlocalized node in the middle of this region.
We assume that all the estimated distancesdi are due to
direct line of sight signals withli = 0 and contain only
measurement noiseei. Fig. (7a) shows the results of this
simulation where the vertical axis is the localization error and
the horizontal axis is the standard deviationσ of the zero
mean Gaussian measurement errorsei. For the second set of
simulations, we varied the number of anchor nodes deployed
in a 10 × 10 unit area. Fig. (7b) shows the result of this
simulation where the vertical axis is mean localization error
and the horizontal axis anchor density. These shows that when
all the measured distances are from line of sight signals, the
localization accuracy of our approach falls between linearand
nonlinear least squares.
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(a) Increasing measurement noise

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Anchor Density

Lo
ca

liz
at

io
n 

E
rr

or

 

 

Linear Least Squares
Nonlinear Least Squares
Robust Multilateration

(b) Increasing anchor density

Fig. 7: Localization error with all LOS range measurements containing only Gaussian measurement errors
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Fig. 8: Comparison of robust multiateration and residual
weighted algorithms.

We also compare the performance of our algorithm against
the residual weighted approach described by Chen [12]. We
randomly deploy10 anchor nodes in a10 × 10 unit area and
an unlocalized node in the middle of this region. Three of
these anchor nodes are assumed to be non line of sight and
the non line of sight error is gradually increased. Fig. (8)
shows the results of this simulation where the vertical axis
is the localization error and the horizontal axis is normalized
NLOS bias bn. Each point on the curves is an average of
100 runs of simulation and the bars indicate minimum and
maximum values. It shows that our approach results in a
smaller localization error as compared to the residual weighted
algorithm. Another advantage of our approach is its lower
computational complexity. This is evident from the execution
times as shown in fig. (9). The linear least squares algorithm
has the smallest execution time because it has a closed form
solution. The nonlinear least squares and our algorithm are
iterative approaches and have a similar execution time. The
execution time of residual weighted algorithm, on the other
hand, is extremely large because it applies nonlinear least
squares on all possible combinations of anchor nodes.
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VI. EXPERIMENT

In order to validate our simulation results, we have run an
experiment using MIT Cricket motes [5]. These motes can
measure distances among each other using a radio and an
ultrasound signal. A transmitter simultaneously transmits a
radio and an ultrasound pulse and the receiver estimates the
distance to the transmitter using the time difference of arrival
between the two signals. Fig. (10b) shows the experimental
set up where eight Cricket motes are deployed. One mote
acts as a receiver and is connected to a computer for data
logging purposes. Other motes act as transmitters and contin-
uously transmit radio and ultrasound pulses. The transmitted
ultrasound pulses travel in the form of a narrow beam and
can be reflected off solid plane surfaces. We use this fact and
place two motes in such a manner that their transmitted signals
bounce off a wall and hence form non line of sight distances to
the receiver. In fig. (10b), these are shown with solid red lines
and direct distances are shown with solid green lines. Using
the received signals, the receiver estimates distances to all the
transmitting motes. The errors between the true distances and
the measured distances for all the transmitters are shown in
fig. (11a). The receiver calculates its coordinates using theses
measured distances and the coordinates of transmitting motes



(a) Cricket Mote (b) Experiment set up

Fig. 10: A small network of MIT Cricket motes where a single node is localized in the presence of range measurements from
both line of sight and non line of sight ultrasound signals.

with linear least squares, nonlinear least squares and robust
multilateration. Fig. (11b) shows the localization results where
the red circles indicate the position estimates generated from
linear least squares, blue squares indicate position coordinates
generated from nonlinear least squares and black triangles
show the coordinates calculated from robust multilateration.
These results show that robust multilateration generates loca-
tion estimates that are quite close to the true position despite
the fact that two of distance estimates are non line of sight and
thus contain large measurement error. However, when the same
measurements are used as inputs to linear and nonlinear least
squares, the calculated position estimates contain significantly
larger error as compared to those calculated with robust
multilateration.

Fig. (11c) shows the localization results when one of the two
transmitters forming non line of sight distances is switched
off. Thus there are five direct line of sight distance estimates
and only one distance measurement coming from non line of
sight reflected signals. This shows that even a single erroneous
distance measurement can introduce significant error in the
location estimate computed from linear and nonlinear least
squares algorithms. Robust multilateration, on the other hand,
computes position estimates that are quite close to the true
location of the receiver. We then switch off the transmitterpro-
viding the only remaining non line of sight distance estimate.
The localization results for this case are shown in fig. (11d).
These results show that the linear and nonlinear least square
algorithms work well only if all the distance estimates are
from direct line of sight signals and do not contain any large
errors. However, robust multilateration calculates an accurate
position estimate even in the presence of erroneous distance
measurements. Fig. (12) shows the mean localization error for
all the algorithms in all three cases i.e. two non line of sight
distances, one non line of sight distance and all direct distance
measurements. Although, we have presented our results from
a specific hardware testbed, our algorithm is not restrictedto
a specific hardware or signals used for estimating distance.It
can be used with any of the ranging technologies whether it
is based on acoustics, ultrasound or any of the radio signals.
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Fig. 12: Localization error

VII. C ONCLUSION

In this paper, we presented a robust algorithm for localizing
sensor nodes in cluttered environments where non line of sight
signal propagation can introduce large distance measurement
errors. We presented results from both simulations and a real
experiment and showed that our algorithm can localize sensor
nodes with much higher accuracy as compared to traditional
least squares localization approaches even when a significant
percentage of the measured distances contain large errors due
to non line of sight signals.
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