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Abstract—Many of the video streaming applications in today's 
Internet involve the distribution of content from a CDN source to 
a large population of interested clients. However, widespread 
support of IP multicast is unavailable due to technical and 
economical reasons, leaving the floor to application layer 
multicast which introduces excessive delays for the clients and 
increased traffic load for the network. This paper is concerned 
with the introduction of an SDN-based framework that allows 
the network controller to not only deploy IP multicast between a 
source and subscribers, but also control, via a simple northbound 
interface, the distributed set of sources where multiple-
description coded (MDC) video content is available. We observe 
that for medium to heavy network loads, relative to the state-of-
the-art, the SDN-based streaming multicast video framework 
increases the PSNR of the received video significantly, from a 
level that is practically unwatchable to one that has good quality. 

 

I. INTRODUCTION 
This It is predicted that approximately 73% of all IP traffic 

will be video by 2017 [1], of which some 14% will be from 
Internet video to TVs. Not surprisingly, streaming of live 
content is increasingly more prevalent on the Internet 
replacing the traditional means of TV broadcasting. One well-
known method to alleviate the traffic load due to streaming 
video is to use IP multicast, which has been in existence for a 
long time. However, in today's networks, IP multicast has 
remained largely undeployed due to concerns on security, 
reliability and scalability, not to mention the requirement to 
have all routers in the network support the related protocols 
and be appropriately configured [2].  For this reason, 
application-layer multicast (ALM) has found prominence in 
the Internet where transmission of the content to the 
subscriber group is managed at the application layer and IP-
unicast is used in the network layer for delivery with multiple 
copies of the same data transmitted over common links, 
incurring heavy loads on the Internet traffic.   Additionally, 
compared to the IP multicast, ALM incurs longer latencies. 
The fundamental reason behind the prevalence of ALM 
despite its shortcomings is its immediate deployability, 
adaptability and updatability [3]. 

The rapid emergence of Software-Defined Networking 
(SDN) with significant industry backing [4] provides the 
perfect opportunity to implement IP multicast without any of 
its problems.  Indeed, it is possible to construct, and maintain 
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the multicast tree between a source and all its subscribers 
using a control application running on the logically centralized 
SDN-controller that has a global network view. The 
programmable nature of SDN allows for immediate 
deployability, scalability, adaptability, and updatability - traits 
all previously associated with ALM and not IP multicast. In 
this paper, we present an IP multicast application running on 
the SDN controller that also keeps track of the subscription 
activities via a simple northbound interface and illustrate its 
performance advantage.   

IP Multicast is an ideal approach to mitigate the traffic load 
generated by streaming video services. A more efficient 
delivery of the video packets reduces the congestion 
probability in the network, which in turn improves the 
performances of both the corresponding streaming video 
system and all other concurrently running services on the 
network. In this paper, we first present an IP multicast 
framework for SDN, where we give a detailed description of 
the streaming video application, and its interaction with the 
SDN controller. Then we investigate how an actual 
implementation of IP multicast improves the streaming video 
performance relative to ALM in terms of streaming video 
quality-of-experience (QoE) metrics.  

We require the streaming video application to be designed 
to satisfy the following conditions: 

1) Support for different types of QoE-level based 
subscriptions should be present.  

2) Resilience to network congestions and packet losses 
should be provided.  

3) The video coding and decoding complexities should be 
as low as possible. 

To answer these requirements, we consider an architecture 
that has the following properties: 

1) Multiple streaming video servers, distributed across the 
network are deployed.  

2) H.264-based Multiple Description Coding (MDC) is 
employed for video coding [5],[6]  so that the same 
video content is described by multiple descriptions. 
With MDC, reception of one such description is 
sufficient for standard-quality playback, but delivery of 
multiple descriptions and a simple combining 
procedure of these descriptions prior to playback result 
in an increase in the video quality.   

In the system studied herein, we consider a streaming 
server with two descriptions, available at two distinct 
locations of the network. We consider two subscription types: 
Standard and Premium. While a standard user is to receive 



content from one of the servers, premium users need to 
receive both descriptions for enhanced service quality. The 
server selection and associated multicast tree construction are 
orchestrated by a streaming-video specific IP-multicast 
application running on the SDN controller. In the subsequent 
sections we first provide a brief literature survey on various 
multicast studies and video delivery frameworks for SDN. We 
then present the proposed MDC-based streaming video 
service, followed by the SDN architecture on which it will 
operate and discuss the necessary interaction between the 
video application and the SDN controller. Next, we present 
experimental performance results for the video application 
using the QoE parameters of PSNR, and the number of pauses. 
Conclusions are drawn in the last section.  

II. LITERATURE REVIEW 
By decoupling the control and data planes, and realization 

of the network control in software, SDN has been proposed to 
enable more agile and cost-effective networks [7]. 
Capitalizing on the benefits that SDN brings, there have been 
a number of studies on SDN multicasting in the literature.   

In [8], an innovative way of managing IP multicast in 
overlay networks is proposed where the authors propose using 
OpenFlow instead of Internet Group Management Protocol 
(IGMP). [9] proposes a scalable, network-layer, single-source, 
inter-domain multicast framework by making use of a 
Locator/ID Separation Protocol (LISP) router overlay. [10] 
considers an IP multicast-based forwarding system, optimized 
for fast recovery in case of path failures. For each multicast 
group, the controller calculates two different multicast trees 
spanning all switches of the network. If a switch fails, the 
controller switches from the currently used tree to the 
complementary tree. [11] proposes a clean-slate approach for 
multimedia multicasting, where routes between the source and 
all of the subscribers are computed a priori with the purpose 
of speeding up the processing of multicast events over SDN 
framework.  

There have also been a number of studies on streaming 
video applications for SDN.  [12] considers a scalable video 
coded streaming video system where the base layer packets 
are given priority for guaranteed delivery while enhancement 
layers are routed either as lossy-QoS or best-effort flows. [13] 
presents an SDN-enabled content-based routing framework 
where Youtube flows are identified via Deep Packet 
Inspection (DPI) and are always forwarded via least congested 
links.  

III. MULTICASTING OVER SDN 
The streaming video multicast framework presented herein 

is composed of two distinct parts: i) Streaming Video 
Multicast Service, ii) SDN Controller and the associated 
control application running on it. This is depicted in Figure 1. 

Here, the Streaming Video Multicast Service maintains the 
identities and locations of the active servers and the 
corresponding descriptions they are multicasting. The service 
also   maintains   the   up-to-date list  of  subscribers   that  are 
allowed to receive the service. The Streaming Video Multicast  

 
Fig. 1: Streaming Video Multicast Framework 

 
Control Application running on the SDN controller is 
responsible from selecting the description(s) for each 
subscriber, establishing the corresponding route and 
maintaining the multicast tree for each description. The 
Streaming Video Multicast Service needs to ensure that the 
SDN controller has up-to-date information regarding both the 
subscriber and the video server identities. The SDN controller 
in return, needs to update the multicast service on whether a 
given subscriber has joined or left the multicast.  

A. Streaming Video Multicast Control Application 
Provided that the identities of the subscribers and the 

servers are known at the controller, the control application 
needs to map clients with servers, compute routes and 
multicast trees for all clients and servers, respectively.  

When constructing the multicast trees, two distinct 
optimization strategies could be considered when a subscriber 
wants to join the multicast group: 

1) Minimize service impact on the network load 
2) Maximize average streaming video quality  
While the first strategy results in finding the server for 

which the addition of the subscriber to its multicast tree would 
result in the least number of additional branches in the tree, 
the second strategy finds the server that provides the highest 
QoE to the subscriber. In this paper we consider the second 
strategy.  

We consider three different routing algorithms: Minimum 
Hop, Shortest Path (Dijkstra), and MinMax. Minimum Hop 
selects the server that is closest to the subscriber in terms of 
number of hops.  In contrast, Shortest Path and MinMax select 
the paths that have the lowest sum link cost, and lowest 
maximum link cost from source to destination, respectively. 
Weights to the links are dynamic and are based on the traffic 
load they endure. In the proposed system, these weights are 
updated periodically to ensure good performance.  

Once a server is selected for a subscriber and associated 
route is computed, the multicast control application adds this 
user to the corresponding multicast tree. This operation is 
repeated for every new subscriber. Subscribers may leave 
their multicast group politely or impolitely. When the leave is 
polite, the subscriber informs the multicast group a priori, but 
when it is impolite, the subscriber may leave with no notice. 



In our framework, a user leaves its multicast group as a result 
of i) Crash/Shut down, ii) Disconnection from connected 
switch, iii) Service leave message. 

To compute the link weights dynamically, the SDN 
controller periodically queries switches on their port statistics. 
The port statistics include the amount of received and/or 
transferred data. The controller then takes the average of 
N=10 previous statistics to determine a given link weight. 

B. Streaming Video Multicast Service 
We refer to the streaming MDC-based video multicast 

servers as description providers  (DPs). A newly launched DP 
sends a packet in multicast IP range containing information 
about its description which is always forwarded on to the 
controller. The multicast control application creates and stores 
a distinct multicast tree in the form of a data structure per DP. 
As soon as the source message arrives at the controller from a 
new DP, the control application establishes a new tree for that 
DP. Subsequently, the new DP is added to the list of available 
DPs so that for a new subscriber (or for an update for a current 
subscriber), when joint DP selection and routing is computed, 
this description is also considered. 

At any given time, a DP may experience a failure. Either a 
proactive or a reactive solution may be developed for this 
scenario. For a proactive solution one of the following 
procedures may be implemented: 

1) A back-up server may be made available for potential 
failures, 

2) An alternate DP and associated multicast tree may be 
constructed for every subscriber a priori for fast tree 
switching. 

For a reactive solution on the other hand, one of the 
following procedures may be implemented: 

1) A new DP may be selected randomly after the failure is 
observed, 

2) The best DP is computed for each client at the time of 
failure.  

In this paper, we consider a reactive approach where the 
new best DP is selected upon the failure of the existing one. 

C. Subscribers 
Subscribers join or leave the multicast streaming video 

service at any time via Join/Leave messages. When a new 
subscriber is to be added to the multicast tree, the control 
application conducts the following sequential procedure:  

1) \It first checks whether the subscriber is already being 
served,  

2) If not, it then checks whether the subscriber is to be 
served via communication with the multicast service, 

3) Based on the routing algorithm in use, it selects the 
best DP for it,  

4) It adds the subscriber to that DP's data structure,  
5) It computes the necessary additional ports and/or 

branches to the multicast tree, 
6) It pushes the corresponding forwarding rules to the 

switches using the OpenFlow protocol. 
When a new subscriber joins a multicast tree, one of two 

scenarios may take place: i) joining the multicast tree may 

involve just the addition of a packet duplication rule to a 
single switch in the network, ii) joining the multicast tree 
might involve adding new switches and links to the multicast 
tree, in which case, rules for all affected switches are pushed.  

Similarly, when a subscriber leaves the service, the control 
application conducts the following sequential procedure:  

1) It first checks whether the subscriber is being served,  
2) If so, it then removes the subscriber from its serving 

DP's data structure, 
3) It then removes the port and/or switch and link from 

multicast tree, 
4) It pushes the corresponding forwarding (expiration) 

rules to the switches using OpenFlow.  
Similar to the subscriber join case, one of two scenarios 

may take place when a subscriber leaves the service: i) leaving 
the multicast tree may involve just the removal of the port of a 
switch from it if another multicast client is still attached to 
that switch, ii) leaving the multicast tree may involve removal 
of a switch and link from it. This case happens when the client, 
which is leaving the group, is a single leaf in multicast tree 
and multicast control application prunes the branch towards 
the leaf ancestor point, which is replicating packets on 
multiple ports. 

In the proposed multicast service, it is possible for a 
subscriber to migrate from one DP to another. The main 
purpose for this migration is to increase user satisfaction from 
the service. Due to the dynamic nature of the network, it is 
possible that the DP which was the chosen as the best provider 
for a subscriber when it joined is no longer so. For this 
purpose, a separate thread periodically checks each client's 
best serving DP. If the current DP for one of the clients is no 
longer the best, the subscriber first leaves and then re-joins the 
service following the procedures outlined above. 

IV. ARCHITECTURE 
 
The proposed streaming video multicast framework is built 

on three pillars:  
1) IP multicast, 
2) Multiple-Description Coding (MDC), 
3) Software-Defined Networking (SDN). 
MDC encodes the video into multiple, independently 

decodable streams where any description can be used to 
decode the media stream to provide error resilience to the 
system at the expense of a slight reduction in compression 
efficiency. Descriptions are distributed across the network to 
benefit from multipath routing. A similar benefit of error 
resiliency may be realized with Scalable-Video Coding with 
better coding efficiency. However, this improvement comes at 
the expense of the need for continuous careful orchestration of 
what different servers transmit and how packets from multiple 
servers are processed at the subscriber hardware, both of 
which require more advanced hardware realizations.  

The use of IP multicast minimizes the unnecessary 
transmission of replicated packets in the network. 
Implementing multicast in network layer not only decreases 
the probability of network congestion but also increases the 



end-to-end packet delivery likelihood for all media and other 
services for clients at the same time. 

In our implementation, the streaming video content is 
MDC-coded with 2 distinct descriptions. We have a number 
of servers in the network, each server streaming one of the 
two descriptions. Two classes of subscriptions are possible for 
the service: Standard and Premium. The premium users 
subscribe for a high quality streaming experience. They 
achieve this via reception of both descriptions. For this 
purpose, premium users need to be on two distinct multicast 
trees at a given time. When delivery of one description fails, 
the premium user will still be able to continue its playback, 
albeit, at a reduced quality level. The standard users on the 
other hand, subscribe for a basic quality streaming experience. 
At a given time, the standard user receives only one 
description for playback, and thus belongs to only one 
multicast tree. When the delivery from this tree fails, the 
standard user experiences a pause until the failure is corrected 
or the user is migrated to a new server. The premium user 
experiences a pause only when both trees experience failures.   
Figure 2 illustrates a comprehensive view of MDC streaming 
video using multicast over SDN. 

 

 
 

Fig. 2: General Perspective  
 

V. EXPERIMENTAL SETUP & EVALUATION 
We conduct experiments to assess the performance of the 

proposed architecture when Minimum Hop, Shortest Path and 
MiniMax routing algorithms are deployed. To assess the 
benefit of SDN-based IP multicast MDC video streaming, we 
also investigate the performance of ALM for both SDN as 
well as non-SDN networks as benchmarks. In the SDN 
network, end-to-end routes are established also for ALM by 
the controller, which has global network view. The non-SDN 
network, on the other hand, is today's Internet, where routes 
are computed in a distributed manner by the individual 
switches, which have local network views of their 
neighbourhoods. The non-SDN network is emulated by 
enabling the Learning Switch module in the Floodlight 
Controller as this module invokes a behaviour akin to today's 
standard switches. 

We conduct the experiment on Mininet version 2.0 in four 
different topologies with 15-20 switches, implemented with 

Open vSwitch 1.4. In the topologies, each switch is connected 
to an average of 2.67 other switches. We assume that each 
link has a bandwidth of 100 Mbps. The topology sizes are 
selected so that investigation of a heavily congested network 
is possible. Congesting bigger topologies with higher link 
bandwidths is difficult with limited memory. We use 10-320 
cross traffic generators to create real traffic patterns to assess 
the system performance at different network loads.  

For each network topology, the experiment is conducted for 
a period of 20 minutes. An additional 5 minutes is set aside to 
initialize the emulation testbed and 2 minutes between each 
emulation to calm down the CPU and memory usage. All 
experiments run over an IBM Server with 12 cores of CPU 
and 28 Gigabytes of RAM. 

DPs stream packets with the exact size and rate of the 
actual streamed video which is 15fps with an average 1000 
kb/s bit rate, but instead of transmitting the video data, we let 
the DPs populate the packets with parameters which help us 
analyze and track them further a posteriori. These parameters 
include information regarding the source DP, when packet is 
sent, packet sequence number, etc. Clients capture packets, 
parse the associated data, stamp the packet with reception time 
and save it. Also clients record the time they join and leave 
the streaming service. The QoE metrics are subsequently 
calculated for each subscriber based on the individual packet 
reception dynamics.  

During the initialization phase, the cross-traffic generators 
start congesting the network for the first minute. The DPs start 
streaming the two emulated descriptions of the video for 
another minute after which the subscribers start joining the 
service. Artificial traffic between cross clients and servers are 
generated using 4 real patterns of HTTP, FTP, audio and 
video conference (Skype) and video streaming (YouTube), 
captured using Wireshark. The main purpose of the cross-
traffic generation is to congest the network and since this is 
not achievable by TCP due to its inherent congestion control 
mechanism, all cross-traffic packets are transmitted using 
UDP in the experiment. Each cross traffic server transmits 
data to a predetermined receiver that remains status 
throughout the experiment. The servers randomly select one 
of the four above mentioned traffic patterns for a duration of 
1024 packets, and then switch randomly to one of the other 
patterns, and so on.  

In all experiments, the sequence of joining and leaving for 
both standard and premium users follow a predetermined 
pattern for fair comparison of the results. In the experiment, 
we assume that each client stays in the multicast group for 45 
seconds after its Join message. Afterwards, the clients 
randomly choose to either submit a new request (Leave 
request if they are already being serviced and vice versa) or 
remain in their current state for another 45 seconds. We 
assume that the probability of submitting a leave request is   
20% and the probability of submitting a join request is 80%. A 
higher probability is considered for subscribing to the service 
since the clients may capture more packets this way, which in 
turn improves the evaluation accuracy. In the experiment, we 
consider 10 multicast clients, which are distributed across the 



network. 50\% of the clients are assumed to be standard users, 
and 50\% are premium users. Finally we investigate the 
following QoE metrics:  

1) Packet Loss 
2) Pre-Roll Delay 
3) PSNR 

D. Packet Loss 
We first investigate the percentile loss of video packets due 

to congestion in the network. The results are depicted in 
Figure 3. We observe that as the cross-traffic in the network 
increases (loaded network), the ALM performance becomes 
significantly worse than SDN-based IP multicast performance. 
While SDN with ALM performs better than a non-SDN with 
ALM, both have significantly worse performances than the 
SDN with IP multicast. This result confirms that while SDN is 
essential in reaping the gains of the IP multicast architecture, 
it is not sufficient on its own. It acts as an enabler to easily 
implement architectures that would be difficult, or even 
impossible, in today's Internet, which in turn provides 
significant performance gains. 

Of the three routing algorithms, MiniMax incurs the lowest 
packet loss. However, the performance difference between 
them is not very large. This result is dependent on the 
topologies on which the experiment is run. MiniMax may 
achieve more significant gains over different topologies where 
there are more available paths between switches. 

 

 
 

Fig 3.: Packet Loss 

E. Pre-Roll Delay 
Pre-Roll Delay is defined as the difference between the 

time when a user subscribes for service and first packet for 
playback is received at the receiver. Table I tabulates the 
observed pre-roll delays for SDN-based IP multicast with 
different routing algorithms, as well as SDN and non-SDN-
based ALM for different network congestion levels. The table 
lists the values for the top performing 90% and 100% 
subscribers. The table entries with dashes correspond to the 
case where there are less than 90% or 100% of the users that 

can receive the service in that scenario as a number of the 
users are denied service completely due to congestion. We 
observe that while all service options perform similarly for 
lightly loaded networks, IP-multicast continues to serve over 
90% of its clients even when the network is very heavily 
congested, albeit, with increased average pre-roll delays. 

F. PSNR 
Peak signal-to-noise ratio (PSNR), defined as the ratio 

between the maximum possible power of a signal and the 
power of corrupting noise that affects the fidelity of its 
representation, is commonly used to quantify the quality of a 
video. The well-known Foreman test video used for PSNR 
calculation. A representative video frame from Foreman is 
depicted in Figure 4. 

    
    Fig 4.: A Video Frame from the Test Video: Foreman  

Due to its large size, a video frame is usually segmented 
into multiple packets for transmission over the network by the 
DP. If a packet is not received, the video player at the client 
end invokes a simple error concealment procedure in which 
the missing part is replaced from the video frame preceding it.  
Then, the PSNR value for the video is calculated using the 
following sequential procedure: 

1) Sort the packets which are received for each video 
frame, 

2) Check if any packet is missing, 
3) If so, invoke error concealment,  
4) Combine packets to populate the video frames, 
5) When all frames are generated at the receiver, compare 

them with their original counterparts. 
The PSNR values are shown in Figure 5 for the test video. 

We observe that for a network with medium load, IP multicast 
- with either of the routing algorithms - provide near lossless 
video quality of 37 dB and 29 dB, for premium and standard 
users, respectively. The corresponding non-SDN ALM values 
on the other hand are very low, indicating a non-watchable 
video. The PSNR loss with IP multicast due to increased 
congestion remains tolerable throughout, but the ALM 
performance results in non-watchable videos throughout. 

 

 



Cross Traffic Multicast-MiniMax Multicast-MinHop Multicast-Dijkstra Unicast-SDN Unicast 
 90% 100% 90% 100% 90% 100% 90% 100% 90% 100% 

10 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
40 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
80 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.5 - 

160 0.5 0.7 0.4 0.6 0.4 3.4 0.5 - - - 
240 20.1 - 30.1 - 23.8 - - - - - 
320 28.7 - - - 35.7 - - - - - 

 
TABLE I: Observed Pre-Roll Delay Values as a Function of Network Congestion 

      (a) All Users                                                               (b) Premium Users                                                      (c) Regular Users 
 

Fig. 5: Foreman – PSNR values for all clients 
 

VI. CONCLUSION 
Video has become one of the most prominent applications 

of the Internet. Many of the video streaming applications 
involve the distribution of content from a CDN source to a 
large population of interested clients. However, widespread 
support of IP multicast has been unavailable to a large extent 
due to technical and economical reasons, all stemming from 
the non- programmable nature of today's Internet. As a 
solution, streaming multicast video is commonly operated 
using application layer multicast. However, this technique 
introduces excessive delays for the clients and increased 
traffic load for the network. This paper introduces a multiple-
description coded streaming video multicast framework that 
can be easily realized using software-defined networking. We 
observe that for medium to heavily loaded networks, relative 
to today's solution of application layer multicast in a non-SDN 
network, the SDN-based streaming multicast video framework 
increases the PSNR of the received video significantly; from a 
level that is practically unwatchable to one that has good 
quality. Unlike today's solution of ALM, over 90\% of the 
subscribers receive the video service, albeit at a higher pre-roll 
delay. We conclude that SDN is a powerful enabler of easily 
deployable, programmable, powerful network control, with 
which, it is possible to observe significant performance gains.  
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