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Abstract—In online social networks, information cascades
occur when people observe the actions of others (followees) and
then make the same choices that the others have made (followers).
Cascade predictions are important, since they can detect and help
resist bad cascades. We focus on photo cascade predictions in
Flickr: given the current cascade and social topology, we want
to predict the number of propagated users at a future time slot.
Information cascades include a large amount of data that crosses
both space and time. To reduce prediction time complexities, our
main idea is to decompose the spatiotemporal cascade information
(a larger size of data) to user characteristics (a smaller size of
data) for subsequent predictions. Space and time matrices are
introduced to record the cascade information. We introduce a set
of new notions, persuasiveness and receptiveness (represented as
two vectors for complexity reduction), to capture characteristics
of followees and followers. In this case, persuasiveness includes
followees’ abilities to propagate information, while receptiveness
includes followers’ willingness to accept information. Then, we
propose a three-stage parallel prediction scheme as follows. (1)
We map the spatiotemporal cascade information to a weighted
matrix, in which the weights of space and time information
are tuned. (2) Singular value decomposition is used to extract
nodes’ persuasiveness and receptiveness (two vectors) from the
weighted matrix. (3) Predictions are conducted based on nodes’
persuasiveness and receptiveness. Finally, extensive evaluations
on the Flickr dataset are conducted to verify the competitive
performance of the proposed scheme.

Keywords—Cascade prediction, online social network, parallel,
persuasiveness and receptiveness, spatiotemporal decomposition.

I. INTRODUCTION

Nowadays, online social networks (OSNs), which belong
to typical large distributed systems, are a fundamental medium
for spreading information, such as sharing startling news,
creative ideas, and interesting stories. An information cascade
may occur if a user follows another user: if Alice (a followee)
shares a photo, Bob (a follower) may scan this photo and then
share it to his/her followers later. This type of iterative informa-
tion propagation is called an information cascade. Meanwhile,
cascade predictions are important in various aspects of human
lives, such as in the control of computer viruses, prevention of
infectious diseases, inhibition of terrible rumors, estimation of
economic products, and the forecast of marketing strategies.
However, the cascade prediction is very difficult, due to its
intrinsic complexities: when will a user further propagate the
information (called propagation boundaries)? In this paper, we
capture propagation boundaries spatiotemporally, i.e., through
both social topological information and time information. More
specifically, given a cascade before a time τ1 and the social
topology, we want to predict the number of propagated users
(called the cascade size) at a future time slot τ2 (assuming

0

2

3

1

4

5

3

2

4

5

(a) A spatiotemporal cascade.

  

 
 
 
 
 
      
      
      
      
      

 

 
 
 
 
 

 

 

 

(b) The time matrix for (a).

(c) Characteristics of nodes.

u1 =


0.00
0.83
0.56
0.00
0.00

 v1 =


0.26
0.00
0.57
0.78
0.00


(d) The decomposed vectors.

Fig. 1. Illustrations of information cascades. In (a) and (c), solid directional
edges among nodes (numbers inside nodes are user IDs) represent follower-
followee relationships (the pointed node is the follower). Dashed directional
edges indicate the cascade. The label on the top of a node indicates the time
when this user starts to propagate information after having been influenced.
Node 2 is the information source. In (c), the left dark node has high persua-
siveness and receptiveness (the right one is the opposite). The decomposition
result for the cascade of the first four time slots is shown in (d).

that the information source appears at τ0 = 0). To reduce
prediction time complexities, our main idea is to decompose
the spatiotemporal cascade information (a larger size of data)
to user characteristics (a smaller size of data) with bounded
information loss; then, predictions are conducted based on the
decomposed information, as to have a low time complexity.

In a macro view, information cascades of OSNs include
a large amount of data that crosses both time and space, i.e.
spatiotemporal information. Therefore, we use matrices S and
T to respectively capture the space and time dimensions of
cascades. Here, S is the network adjacency matrix, which
shows the social topology. Then, the time matrix T indicates
the propagated nodes (i.e., users) in terms of time sequences.
The time matrix T , which corresponds to the cascade of all
five time slots in Fig. 1(a), is shown in Fig. 1(b). The element
tij of T is the time when user j starts to propagate information
after having been influenced by user i. We assume that a
propagated node influences its followers immediately without
a delay, while time durations of influences can be deducted
from T . Note that T includes complete time information and
partial space information: nodes that are closer within the
social topology are more likely to be propagated at closer
times. Although S and T can be used for predictions directly,
the prediction time complexity is unacceptable due to matrix
operations. For example, in the Flickr dataset [1], S and T
involve 2,302,925 users with 11,267,320 photos, which are
unacceptable for matrix representations.
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Fig. 2. The decay pattern of nodes’ persuasiveness and receptiveness.

The micro view of cascades is that followees iteratively
propagate information to their followers. Therefore, we intro-
duce a set of new notions, persuasiveness and receptiveness, to
capture characteristics of followees and followers: the persua-
siveness is defined as followees’ abilities to propagate infor-
mation; the receptiveness represents followers’ willingness to
accept information. As shown in Fig. 1(c), the left dark node
has high persuasiveness and receptiveness (the right dark node
is the opposite). Vectors u1 and v1 are used to record nodes’
persuasiveness and receptiveness, where the ith elements in the
vectors u1 and v1 show node i’s persuasiveness and receptive-
ness, respectively. We further consider these two characteristics
to be spatiotemporally-sensitive: if a node with a high out-
degree is spatially far away from the information source, it
may not be propagated, and thus it cannot positively propagate
the information further (i.e., low persuasiveness). In the case
of a temporal remote node, it also has low persuasiveness,
since its followers may have been propagated by other nodes.
The same rule works for the receptiveness. Therefore, in terms
of the distribution, nodes’ persuasiveness and receptiveness
should decay with respect to their spatiotemporal distances to
the information source. Moreover, their decay patterns indicate
propagation boundaries: the cascade terminates when nodes
have low persuasiveness and receptiveness.

Our prediction scheme is based on both the macro and
micro properties of cascades. This scheme has three stages as
follows. (1) In the first stage (Section IV), we map the time
matrix, T , to a weighted matrix M . As previously mentioned,
T includes spatiotemporal information. The mapping objective
is to tune the weights of space and time information. We
also highlight earlier propagations in the mapping process,
since they are more important than later ones. (2) In the
second stage (Section V), we introduce the singular value
decomposition (SVD [2]) to extract nodes’ persuasiveness and
receptiveness (two vectors) from the weighted matrix M , with
bounded information loss. This is because the element mij

of M represents a joint result of followee i’s persuasiveness
and follower j’s receptiveness. Fig. 1(d) shows the result for
the cascade of the first four time slots (τ1 = 4, and node
5 is waiting for the prediction) in Fig. 1(a). u1 shows that
nodes 2 and 3 are followees, while v1 shows that nodes 1,
3 and 4 are followers. Now, the spatiotemporal cascade in-
formation (matrices) is compressed into nodes’ persuasiveness
and receptiveness (vectors), resulting in a reduced prediction
time complexity. (3) In the third stage (Section VI), we
conduct predictions based on the decomposed information. The
decay pattern of nodes’ persuasiveness and receptiveness along
shortest paths are focused, as shown in Fig. 2. Then, the per-
suasiveness and receptiveness of currently unpropagated nodes

are predicted. For example, in Fig. 1, node 5’s persuasiveness
and receptiveness are predicted according to vectors u1 and v1.
Based on the prediction result, û1 and v̂1, we can reconstruct
the predicted weighted matrix, M̂ . The predicted number of
propagated users can be obtained by mapping M̂ back to the
predicted time matrix.

Our contributions are manifold: (1) we consider cascades
spatiotemporally, and propose a parallel prediction scheme to
deal with the large amount of cascade information. (2) We
introduce persuasiveness and receptiveness to capture char-
acteristics of followees and followers, which are completely
novel. Persuasiveness and receptiveness can be decomposed
from the spatiotemporal cascade information, i.e., the complete
cascade information is compressed efficiently with bounds. (3)
User personalities (e.g., gender and age) can be incorporated
into our model. (4) Prediction methods, based on nodes’ per-
suasiveness and receptiveness, are proposed, the performance
of which are verified by real-data driven evaluations.

The remainder of this paper is organized as follows: In
Section II, we survey the related work; in Section III, basic
concepts are shown with the dataset description; in Section IV,
we show the mapping process; in Section V, the spatiotemporal
decomposition is introduced to extract nodes’ persuasiveness
and receptiveness; in Section VI, we show the whole prediction
process; in Section VII, extensive real data-driven evaluations
are shown; and finally, in Section VIII, we conclude the paper.

II. RELATED WORK

An information cascade occurs when people observe the
actions of others and then make the same choices that the
others have made. The most popular cascade models include
the linear threshold model [3, 4], and the independent cascade
model [3–6]. In the linear threshold model, each person has a
weight and a threshold. A person starts to spread information
further, only if the weight summation of propagated persons
that he/she follows is larger than his/her own threshold. Instead
of the deterministic model, the independent cascade model
introduces probabilities: once propagated, each node has a
certain likelihood of further spreading the information to its
followers. More models are derived from these two models.
For example, Ghasemiesfeh et al. [7] considers a k-complex
model, where a node is further propagated if no less than
k neighbors of this node are propagated. Sadikov et al. [8]
considers a k-tree model. However, these models mainly focus
on the spatial cascade information.

The study on spatiotemporal cascade has been proposed
in [9], where the time dimension also matters. Differing from
former studies, we compress the spatiotemporal cascade in-
formation into nodes’ persuasiveness and receptiveness, which
are completely novel. This compression also sheds light on the
big data processings [10], since it reduces the dimensions for
describing cascades. Rather than using statistical approaches,
our method reserves insights on cascades. Our model can also
be extended by considering user personalities.

Another branch of cascade studies focuses on the data
mining of real datasets, such as Facebook [11], Flickr [1] and
Twitter [4, 12]. These studies observe real cascades and then
match real cascade properties to theoretical models. Our study
is based on the Flickr dataset [1].



TABLE I. FLICKR DATASET SUMMARY

Time period 11/02/2006 to 12/03/2006
(two periods) 02/03/2007 to 05/18/2007

# Links 17,034,807 to 33,140,018
# Users 1,487,058 to 2,302,925
# Photos 11,267,320

# Favorite marks 34,734,221
# Popular photos 14,002

Most popular photo Marked by 2,998 times
Largest in / out-degree 21,001 / 26,367

TABLE II. NOTATIONS

Notation Description
τ1 / τ2 The current / future cascade time (τ2 > τ1).
τ0 The appearance time of the information source.
S / T The space / time matrix with elements sij / tij .
Ni / Np / N The set of influenced / propagated / total users.
Ei / Ep / E The edge set corresponding to Vs / Vt / V .
M A matrix mapped from the time matrix T .
U / Σ / V The SVD result of M (M = UΣV ∗).
σi The ith largest singular value of the matrix M .
ui / vi The vector in U / V corresponding to σi, and

u1 / v1 shows persuasiveness / receptiveness.
û1 / v̂1 The predicted u1 / v1 in the future cascade.
M̂ / T̂ The predicted M / T in the future cascade.
f(t) = e−ct The mapping function, which maps tij to mij .

III. BASIC CONCEPTS AND DATASET DESCRIPTION

A. Basic Concepts

Flickr is an online social network for sharing photos (i.e.,
the information to propagate) among users, the relationships
of which are directional: a directional edge from Bob to Alice
means that Bob follows Alice. Users share photos among each
other by labeling a “favorite-mark” to a photo. We refer to
users who label photos with a “favorite-mark” as propagated
users in the cascade of that photo. Meanwhile, users are
called influenced if they have seen this photo. Note that an
influenced user may not be a propagated user, since he/she
may not mark the photo as a favorite for further sharing.
Then, a photo cascade process can be formally defined as
a spatiotemporal photo spreading process on all influenced
users, rather than on all propagated users. Information cascades
include a large amount of data that crosses both time and space,
i.e. spatiotemporal information. Then, the space matrix, S, is
defined as the adjacency matrix of the social topology among
all the users (including the users that need to be predicted).
Theoretically, S should include the complete social topology
(i.e., all users on Flickr), since a cascade may propagate over
the whole network. However, for practical usage, S can be a
large enough subgraph.

Once a user shares a photo, we consider that this user
is influenced by all the propagated users that he/she follows.
The element tij of matrix T is the time when user j starts
to propagate information after having been influenced by user
i. Here, T is called the time matrix, which includes all users
corresponding to S. The elements in T that represent currently
unpropagated users are set to be infinite. The users in T are
corresponding to the users in S. We will further discuss the
size of S and T in Section VI.D, since including all users
is redundant, and is not feasible for practical usage. A large
enough subgraph can be used for the prediction. Note that
a user j may have been influenced by multiple users before
his/her own propagation at the time tij . For example, in Fig.
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(a) User degree distribution.
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(b) Favorite mark distribution.

Fig. 3. Statistics of the Flickr dataset.

1(a), user 5 has been influenced by user 4 since time 3, but
he/she finally decides to propagate (i.e., label a “favorite-mark”
to the photo) at time 5. Note that time durations of influences
can be deducted from T . Therefore, complete information of a
photo cascade has been reserved in both S and T . In addition,
let τ0, τ1 and τ2, respectively, denote the appearance time of
the information source, the current time (i.e., we know the
whole cascade process between τ0 and τ1), and the future time
at which we want to predict the cascade size. In the following
cascade examples of this paper, we set τ0 = 0, τ1 = 4, and
τ2 = 5 as a default setting.

B. Dataset Description

The Flickr dataset is collected by Cha et al. [1] through
Flickr APIs. It was collected during the time periods from
November 2nd to December 3rd, 2006, and February 3rd to
May 18th, 2007. The number of users and their links are
growing with respect to time. Note that a user, on average,
has less than 15 links: this network is definitely sparse (i.e.,
matrices S and T are sparse). The degree distribution is
shown in Fig. 3(a), indicating that a few users have very
high degrees. 11,267,320 photos are shared during this period,
with 34,734,221 favorite marks in total. 34,484 photos are
not marked, but are recorded in the system. Most photos
(11,218,834 photos) are marked no more than 100 times,
while only 25 photos are marked more than 1,000 times. The
distribution of photos, in terms of times marked, is shown
in Fig. 3(b). Since photos of different popularity stand for
cascades of different types, we choose popular photos (defined
as the photos that are shared more than 100 times) for further
analysis in the following part. We consider that popular photos
have similar cascade properties. The other dataset statistics are
shown in Table I, and all the notations are shown in Table II.

IV. TUNING THE SPATIOTEMPORAL INFORMATION

The first stage of our prediction scheme is introduced in
this section, where we show the mapping process that tunes
the weights of space and time information. The guiding rules
of the mapping are shown, with their insights following.

A. Mapping Process

In this paper, we independently map each element in T to
the element in M of the same position. Then, the mapping
function is defined as f : tij → mij , or mij = f(tij),
over real positive numbers. Since earlier propagations are more



        

 
 
 
 
 
      
      
      
     
      

 

 
 
 
 
 

 

 

 

(a) The time matrix at τ1 = 4.

        

 
 
 
 
 

      
            

            
      
      

 

 
 
 
 
 

 

 

 

(b) The corresponding mapping result.

Fig. 4. Mapping T to M through f(t) = e−t/5, where c = 1
5

= 1
τ2

.

important (explained later in the next subsection), we have the
following mapping rule:

Guiding Rule 1: The function f(t) is strictly decreasing
with respect to t. When t→∞, we have f(t)→ 0.

Another concern is that the starting time of the cascade
is not important: the cascade in Fig. 1(a) can be viewed as
starting at τ0 = 0 and finishing at τ2 = 5; however, it can also
be viewed as starting at τ0 = 1 and finishing at τ2 = 6 (i.e., a
position translation of 1 on the time domain). Obviously, this
translation should not influence mapping results (relationships
among elements mij). Therefore, we have:

Guiding Rule 2: The function f(t) satisfies f(t+τ)
f(τ) =

f(t), i.e., f(t + τ) = f(t)f(τ). Here, τ is a parameter for
tuning the starting time of the cascade.

An interesting phenomenon is that Guiding Rules 1 and 2
have determined the function form of f(t), as follows:

Theorem 1: The only feasible family of solutions for the
above guiding rules are exponential functions, i.e., f(t) = e−ct

where c is an arbitrary positive number.

Proof: Let us start with Guiding Rule 2, where f(t+ τ) =
f(t)f(τ). If τ = t, then f(t + t) = f(2t) = f(t)2. If we
do this iteratively, then we can have f(Ct) = f(t)C , where
C is a parameter. Exchanging t and C, we have f(Ct) =
f(t)C = f(C)t. Let C = 1, and then we have f(t) = f(1)t.
Obviously, f(1) is an arbitrary constant. If we replace f(1)
with ec, then the result is f(t) = ect. Here, c is an arbitrary
real number. According to Guiding Rule 1, the function f(t) is
strictly decreasing. Therefore, we change the result f(t) = ect

to be f(t) = e−ct, and restrict c to be a positive number. In
addition, the result can also be proved through (1) operating a
logarithm on f(t+τ) = f(t)f(τ) to be ln f(t+τ) = ln f(t)+
ln f(τ), and then (2) using Cauchy’s functional equation. �

Here, parameter c’s insight is its functionality for tuning
time scales (e.g., 1 hour is equivalent to 60 minutes): time
scales should not change the mapping result. Generally speak-
ing, the value of c is determined empirically. The value c can
be set in the range of [ 1

τ2
, 1
τ1

]. In addition, the corresponding
mapping process of the cascade (only the first four time slots)
in Fig. 1(a) is shown in Fig. 4.

B. Mapping Insights

As previously mentioned, we consider cascades spatiotem-
porally, which includes a large amount of data that crosses
both space and time in a macro view. Meanwhile, in a micro
view, the persuasiveness and receptiveness is used to capture
characteristics of followees and followers: the persuasiveness
includes followees’ capacities to propagate information; the
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(b) σ1/σ2 of photo cascades.

Fig. 5. Statistics on singular values of photo cascades.

receptiveness includes followers’ willingness to accept infor-
mation. Nodes’ persuasiveness and receptiveness are consid-
ered to be spatiotemporally-sensitive: if a node with a high
out-going degree is spatially far away from the information
source, it may not be propagated, and thus it cannot positively
propagate the information further. In the case of a temporal
remote node, it also has low persuasiveness, since its followers
may have been propagated by other nodes. The same rule
works for the receptiveness: propagations that fail to reach
the sources’ neighbors may lead to a premature abortion of
further information propagations; a successful propagation of a
remote node does not change the overall cascade trend. There-
fore, in terms of the distribution, nodes’ persuasiveness and
receptiveness should decay with respect to their spatiotemporal
distances to the information source, as previously mentioned in
Fig. 2. That is the reason why we highlight earlier propagations
in the Guiding Rule 1. Moreover, the decay pattern of nodes’
persuasiveness and receptiveness reveals boundaries for further
propagations: the cascade terminates when nodes have low
persuasiveness and receptiveness.

Let us go back to the element mij in M . Obviously, mij

is a joint result of followee i’s persuasiveness and follower j’s
receptiveness. Note that a larger value of mij means an earlier
propagation, i.e., a larger persuasiveness of followee i, and a
larger receptiveness of follower j. Meanwhile, matrices T and
M have included complete time information and partial space
information of the cascade: nodes that are closer within the so-
cial topology are more likely to be propagated at closer times.
Now, the parameter c in the mapping function f(t) = e−ct

has another insight meaning: it balances the weights of space
and time information. If c→ 0, then M is composed of zeros
and ones: we only focus on the space information, regardless
of time sequences. On the other hand, if c is large, the time
information is highlighted. Therefore, M can be viewed as a
tuned spatiotemporal information matrix. In the next section,
we show the decomposition process through SVD operations,
where we extract nodes’ persuasiveness and receptiveness from
the tuned spatiotemporal information matrix.

V. SPATIOTEMPORAL DECOMPOSITION

The second stage of our prediction scheme is shown in
this section, where we introduce the SVD [13] operation on
the weighted matrix M to extract information on nodes’ per-
suasiveness and receptiveness. This is because the element mij

of M represents a joint result of followee i’s persuasiveness
and follower j’s receptiveness.



U =


0.00 0.00 1.00 0.00 0.00
0.83 −0.56 0.00 0.00 0.00
0.56 0.83 0.00 0.00 0.00
0.00 0.00 0.00 −1.00 0.00
0.00 0.00 0.00 0.00 −1.00

 Σ =


0.98 0.00 0.00 0.00 0.00
0.00 0.55 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

 V =


0.26 0.68 0.69 0.00 0.00
0.00 0.00 0.00 −1.00 0.00
0.57 −0.68 0.46 0.00 0.00
0.78 0.27 −0.56 0.00 0.00
0.00 0.00 0.00 0.00 −1.00


Fig. 6. The corresponding SVD result (U , Σ, and V ) for the mapped matrix M in Fig. 4(b).

M =


0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.67 0.55 0.00
0.45 0.00 0.00 0.55 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

 M1 = σ1u1v
∗
1 = 0.98 ·


0.00
0.83
0.56
0.00
0.00

 ·

0.26
0.00
0.57
0.78
0.00


∗

=


0.00 0.00 0.00 0.00 0.00
0.21 0.00 0.46 0.63 0.00
0.14 0.00 0.31 0.42 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00


Fig. 7. The rank-1 approximation of the matrix M . There is a bounded information loss from M to M1.

A. SVD Preliminaries and Dataset Verification

In the SVD, M is factorized to a product of three matrices:
U , Σ, and V (M = UΣV ∗, where ∗ is a transpose). The matrix
Σ is a diagonal matrix with nonnegative real numbers on the
diagonal (generally in descending order), while the diagonal
entries σi of Σ are known as the singular values of M . The
number of singular values equal the matrix rank of M . In
this paper, we focus on the SVD’s functionality of low-rank
approximations, i.e., the matrix M is approximated by vectors.
Let ui and vi denote the ith columns of matrices U and V ,
respectively. Assuming r is the rank of M , then we can select
the largest k (k < r) singular values to approximate M :

Mk =

k∑
i=1

σiuiv
∗
i (1)

where Mk is the approximated M through the k largest singu-
lar values. Moreover, the difference between matrices Mk and
M is bounded by ||Mk −M ||2 = σk+1, where || · ||2 denotes
the 2nd order Frobenius norm. In addition, M can also be
accurately represented as

∑r
i=1 σiuiv

∗
i .

We then conduct experiments on the Flickr dataset, as to
verify the effectiveness of this decomposition. The correspond-
ing time matrices of popular photos (i.e., photos that are shared
more than 100 times) are mapped by f(t) = e−ct with the
parameter c as the reciprocal of the cascade duration, i.e.,
c = 1/(τ2 − τ0). Singular values are averaged with respect
to different photos, and the result is shown in Fig. 5(a). It
can be seen that the difference of σ1 and σ2 is much larger
than the differences of other consecutive singular values (such
as σ2 and σ3). The distribution of σ1/σ2 is shown in Fig.
5(b). It means that the main pattern of M is highlighted (note
that ||Mk − M ||2 = σk+1), i.e., the cascade information is
greatly concentrated in σ1 and its corresponding vectors (u1

and v1). This observation is explained later in subsection C. In
addition, for further analysis, the corresponding SVD for the
mapped matrix M in Fig. 4(b) is shown in Fig. 6. The low
rank (k = 1) approximation of M is shown in Fig. 7.

B. Information Decomposition

As discussed in Section III, the matrices T and M are
sparse. Generally speaking, a sparse matrix has a relatively-
low rank, i.e., M should have a few singular values with
respect to its size. The relationship between matrix sparsity
and rank has been studied in [14]. Moreover, experiments in

Fig. 5 show that the largest singular value is a concentration of
the cascade information. Therefore, we use σ1u1v

∗
1 (i.e., M1)

as the compressed cascade information for further processing:
predictions are based on u1 and v1. Note that this information
compression has limited information loss. We can also use
more singular values (rather than only using σ1), which can
bring more accurate predictions at the cost of higher time
complexities (a tradeoff between accuracy and complexity).
Let û1 and v̂1 denote the predicted vectors in the future cascade
(described later in Section VI), then M can be reconstructed
through M̂ = σ1û1v̂

∗
1 . The predicted number of propagated

users can be obtained by mapping M back to the predicted
time matrix (i.e., reconstruction).

The decomposition can reduce the difficulties of cascade
predictions, since it reduces dimensions for describing cas-
cades. Spatiotemporal cascades are compressed. Instead of ma-
trix operations, vector operations are used to reduce prediction
time complexities. According to [13], a centralized SVD of an
r-rank n× n matrix takes a time complexity of O(rn2).

Moreover, vectors u1 and v1 have their insights: u1 shows
nodes’ persuasiveness; v1 represents nodes’ receptiveness. As
previously mentioned, mij is a joint result of followee i’s
persuasiveness and follower j’s receptiveness. Meanwhile, the
element corresponding to mij in σ1u1v

∗
1 (i.e., M1) is the

product of the ith element in u1 (persuasiveness) and the
jth element in v1 (receptiveness). Note that a larger value in
u1 and v1 means a larger persuasiveness and receptiveness,
respectively, since they would lead to an earlier propagation,
i.e., a larger corresponding element in M . The example in
Fig. 7 shows the SVD for the cascade in Figs. 1 and 4, while
u1 and v1 have been shown in Fig. 1(d). Note that only the
information on the first four time slots is available now, and
we want to predict the cascade of the following time slots. As
mentioned in Fig. 1(d), u1 shows that nodes 2 and 3 are key
spreaders, which conforms to Fig. 1(a). v1 shows that nodes
3 and 4 are more important receivers than node 1, which also
meets Fig. 1(a). Meanwhile, u1 and v1 also show the decay of
nodes’ persuasiveness and receptiveness, with respect to their
spatiotemporal distances to the information source.

C. SVD Insights and Personalities

As mentioned in subsection A, the cascade information is
greatly concentrated with respect to the largest singular value,
while σ1 is almost twice that of σ2 in Fig. 5. A reasonable
explanation for this phenomenon is that each singular value
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Fig. 8. The corresponding nodes’ characteristics of Fig. 7. In (a), dashed
directional edges show the cascade process, while numbers within nodes are
their IDs. Labels on top of the nodes are persuasiveness/receptiveness, which
are extracted from u1 and v1 in Fig. 7. The symbol *.** means needs to be
predicted, the results of which are shown in bold font in (b).

represents a cascade mode: σ1 shows a general global mode,
e.g., almost all users enjoy beautiful high-definition photos
rather than normal low-definition ones; σ2 shows a popular
mode, e.g., lots of users share beautiful high-definition photos
on landscapes; σ3 shows a comparatively local mode, e.g., a
small group of users like landscape photos on mountains; so
on so forth. SVD extracts global and common photo cascade
modes into larger singular values, while it leaves local and
personal photo cascade modes as smaller singular values.

Therefore, our scheme can utilize the information on user
personalities to pursue better performances. Let σ̄, ū, and v̄
respectively denote the weight, the additional persuasiveness,
and the additional receptiveness brought by user personalities.
σ̄, ū, and v̄ of each user can be concluded from the gender,
the age, the total number of shared photos, the total online
time, and so on. Then, we can revise our prediction through
M̂ = σ1û1v̂

∗
1 + σ̄ūv̄∗. Therefore, our model can easily be

extended by considering user personalities.

D. Parallel SVD

Another advantage of our scheme is its parallelism. First,
mapping matrices T to M can be done in parallel, since map-
ping elements in T are independent of each other. Meanwhile,
SVD also has parallel methods [15, 16]. Given p processors,
SVD of a n × n matrix can be done [15] within a time
complexity of O(n3/p). The centralized method takes O(rn2),
where r is the rank of the matrix. Note that both the centralized
and distributed methods target the complete SVD, while we
only need the largest singular value σ1 and its corresponding
vectors. Therefore, there exist possibilities to further reduce
time complexities. Since SVD is a standard tool, we do not
focus on further improving its efficiency.

VI. INFORMATION CASCADE PREDICTION

The third stage of our prediction scheme is described in
this section, where we conduct predictions through extracting
patterns of u1 and v1. Then, we construct the spatiotemporal
cascade information as the final prediction.

A. Non-historical Prediction

In this subsection, we predict û1 and v̂1 based on the
current cascade (called non-historical prediction), i.e., the
historical data of former cascades is not utilized. The persua-
siveness and receptiveness of unpropagated nodes are predicted
based on their shortest path to the information source. Here,

nodes’ persuasiveness and receptiveness are considered as node
weights in the shortest path algorithm, while all edge weights
are 0. For persuasiveness predictions, nodes with known per-
suasiveness (non-zero elements in u1) use their persuasiveness
as node weights, while nodes with unknown persuasiveness
(i.e., need to be predicted) use constant units as their weights.
The receptiveness predictions are similar. The reason for the
shortest path is that it has a relatively-high probability (among
all paths) of gradually propagating the information from the
source to the node. Another reason for using the shortest
path is to complement the space information, since M only
includes partial space information. Along a shortest path,
nodes’ persuasiveness and receptiveness should decay because
of increased spatiotemporal distance to the information source.
Note that, an information source’s receptiveness is 0 (it only
spreads the information out), and the persuasiveness of the end
user of a propagation is also 0 (it only receives the information
without further propagations).

A simple but effective method is to use the decay of prop-
agated nodes’ persuasiveness and receptiveness for predicting
that of unpropagated nodes, and an example is shown in Fig.
8, which corresponds to the example in Fig. 7. In Fig. 8(a),
the labels on top of nodes represent their persuasiveness and
receptiveness (extracted from u1 and v1), where the symbol
*.** means needs to be predicted. Let us start with the
persuasiveness of node 4. Its shortest path to the information
source is from node 4 to node 2 directly; therefore, 0.83 is
predicted as the persuasiveness of node 4, since no decay
pattern exists on this path. Then, the persuasiveness of node 1
can be calculated through the path of nodes 2, 3, and 1. The
persuasiveness decay from node 2 to node 3 is 0.56

0.83 , therefore,
node 1’s persuasiveness is predicted as 0.56

0.83 × 0.56 = 0.37.
Note that, node 5’s persuasiveness is predicted to be 0, since
it is the end of a propagation path (i.e., it cannot further
propagate the information). As for node 5’s receptiveness, it
is predicted through the path of nodes 2, 4, and 5. Since
the source only spreads information, node 5’s receptiveness
is predicted to be the same as node 4’s receptiveness. The
prediction results of û1 and v̂1 are shown in Fig. 8(b). Then,
û1 and v̂1 are normalized to be [0.27,0.61,0.41,0.61,0.00]∗ and
[0.20,0.00,0.45,0.62,0.62]∗, respectively. Then, we reconstruct
M̂ = σ1û1v̂

∗
1 . The predicted time matrix, T̂ , can then be

obtained through mapping M̂ back. Elements t̂15 = 5 and
t̂45 = 9 in T̂ show two predicted propagation times of node 5.
We use the minimum values of 5 and 9 as the final prediction
(i.e., node 5 will be propagated at time 5), which is the same
as the actual cascade in Fig. 1(a).

In the above example, we have not considered the case
where the length of the shortest path is longer than three.
Instead of using the averages of former decays, we use the
decay of the most similar pair of former nodes for predictions
in a shortest path with larger length. The similarity is defined as
the summation of squared social topological degree differences
of followees and followers. Here, the degree can be either in-
degree, out-degree, or both. If the path length is too short to
extract the decay information, the followee’s persuasiveness
and receptiveness are used directly, as shown for predicting
node 4’s persuasiveness in Fig. 8. The pairwise similarities
enable different followers of the same followee to have d-
ifferent predictions. To further reveal directions of cascades,
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unpropagated nodes within a certain number of hops to the
information source are kicked out for considerations of being
propagated in the future. In other words, unpropagated nodes
near to the source are not receptive, and thus they are no longer
candidates for future cascades. This hop-count threshold is
empirically determined based on the number of nodes currently
propagated. Rules for non-historical predictions are shown in
Fig. 9 (currently propagated nodes are marked dark while
the remaining nodes are unpropagated at present) and are
summarized as follows:

• The information source’s receptiveness is 0, and is not
used for receptiveness predictions along the shortest path.
Meanwhile, the persuasiveness of the user at the end of
the shortest path is fixed to be 0.

• Predictions are based on shortest paths. Along a shortest
path, the persuasiveness and receptiveness decay between
a pair of nodes are predicted as the corresponding decay
between the most similar (in terms of degree differences)
pair of currently propagated nodes. Nodes’ persuasiveness
and receptiveness can be derived from decays.

• Unpropagated nodes within a certain number of hops to
the information source are kicked out for being propa-
gated in the future. They are not receptive, and thus, are
no longer candidates for future cascades, i.e., they are
influenced by the cascade without further propagations
(influenced but not propagated).

A supervised learning process on the pattern of nodes’
persuasiveness and receptiveness should bring a better pre-
diction. However, it also has a higher time complexity as
a tradeoff. Since the current method has obtained a good
result, we do not further explore learning-based methods. To
better understand decay patterns, a case study on “branching”
cascades is conducted, which is shown in Fig. 10. This type
of cascade spreads without resistances, where the number of
propagated nodes increases exponentially. Assuming the usage
of c = 1

2 for the mapping process, the decomposition result
for the cascade in Fig. 10 is u1 = [1, 0, 0, 0, 0, 0, 0]∗ and
v1 = [0, 0.71, 0.71, 0, 0, 0, 0]∗. In other words, the cascade is
compressed into relationships among nodes 1, 2, and 3, since
the later cascade repeats their propagation mode. Therefore,
the pattern of this “branching” cascade can be captured.

B. Historical Prediction

In the previous subsection, we predicted a cascade without
historical information. Now, we study predictions based on
former cascades, i.e., using decay patterns of nodes’ per-
suasiveness and receptiveness in former cascades to help

predict the current cascade (called historical prediction). The
prerequisite of historical predictions is that former cascades are
homogenous with the current one: cascades of popular photos
are different than unpopular ones; therefore, we should not use
the historical data on cascades of popular photos to predict
cascades of unpopular ones.

Shortest paths of the current cascade are cooperatively used
with the historical data. Instead of calculating decays of nodes’
persuasiveness and receptiveness based on currently propagat-
ed nodes, we use decays of former cascades as predictions. An
example is shown in Fig. 11: the black dashed directional path
indicates a shortest path of the current cascade. The historical
decay of cascade 2 is used to predict the decay from node 1
to 3, while cascade 1 is not used, since it does not have an
intersection with the decay from nodes 1 to 3. In the case of
multiple available historical cascades, the decay of the current
cascade is predicted to be their average decay.

C. Algorithm Complexities

As previously mentioned, S and T include all users in the
network. However, this is unnecessary, since most cascades
only influence a very small portion of users in the network.
Therefore, for practical usage, we can have a subgraph just
large enough for predictions (e.g., all users that are within 5
hops of the information source and their relationships).

We have used shortest paths with node weights in pre-
dictions; however, this can be solved by slightly modifying
Dijkstra’s algorithm (use the node weight instead of the
edge weight when greedily adding a new node). Therefore,
it has the same time complexity with the normal Dijkstra’s
algorithm. Let Np and N (Np � N ), respectively, denote
the number of currently propagated nodes and total nodes (Ep
and E to represent the number of corresponding edges). Then,
the centralized Dijkstra’s algorithm takes O(E + N logN)
through a Fibonacci heap. Calculating decays (and nodes’
persuasiveness or receptiveness) can follow the same order
of the shortest path. Since the path length is bounded by the
network diameter D (D ≤ N ), the decay calculation takes
at most O((E + N logN)D). The mapping and its reversion
(mapping M̂ back to T̂ ) takes O(N2). The centralized SVD
takes O(rN2

p ), where r is the rank of M . Here, we do not
need O(rN2

p ) for the SVD, since the decomposition results for
currently unpropagated nodes are useless; the persuasiveness
and receptiveness corresponding to unpropagated nodes are
0, and we only need to decompose the cascade information
among currently propagated nodes. Therefore, the total time
complexity is O(N2 + DN logN + rN2

p ) in a centralized
calculation method, when considering a sparse graph.



According to [17], Dijkstra’s algorithm can be done in
parallel. The idea is to divide the graph into pieces for each
processor. Given p processors, the time complexity can be
brought down to O(N3/p) (a more accurate description is
given in [17]). The SVD takes O(N3

p/p). Mapping and its
reversion can be solved in parallel, since each element’s map
is independent from the others. So the total time complexity
of our scheme is O((N3 +N3

p )/p) in parallel.

If we conduct predictions with whole information S and
T directly, then the time complexity will not be acceptable.
For each unpropagated node, we need to scan and process
S and T , which takes at least O(N2). Therefore, at least
O(N3) is needed for a centralized method. Even if direct
predictions can be implemented in parallel, they should have a
higher time complexity than O(N3/p) due to the overhead.
Meanwhile, our decomposition method has compressed all
cascade information (S and T ) into nodes’ persuasiveness
and receptiveness with limited information loss, resulting in
a reduced time complexity.

VII. EVALUATION

In this section, extensive evaluations are conducted. After
presenting the basic settings, we show baseline algorithms and
evaluation metrics. Finally, the evaluation results are shown
from different perspectives to provide insightful conclusions.

A. System Settings

Our evaluations focus on cascades of popular photos that
are marked “favorite” more than 100 times, since photos of
different levels of popularity stand for cascades of different
types. However, each photo may be involved in multiple
cascades: unconnected users (in terms of social topology)
may share the same photo coincidentally, leading to different
cascades in the network. Therefore, for each popular photo,
we select its earliest cascade (in the sense of the earliest
appearance time of the information source) for predictions.
Generally speaking, the earliest cascade is also the largest one.

For a photo cascade predition, it is almost impossible
to take all unpropagated nodes into consideration, since we
have 2,302,925 users in total. Meanwhile, only 25 photos are
propagated over more than 1,000 users. Therefore, a subgraph
is expected to improve the prediction efficiency. This subgraph
is constructed as a combination of (1) all propagated users of
the earliest cascade of the photo, (2) three random out-going
neighbors for each of these propagated users, and (3) all social
topology relationships between the above users.

The input parameters of our prediction scheme include the
complete cascade information (from the time τ0 to τ1), while
we will predict the size of the cascade at its finishing time τ2.
In the following experiments, we will tune the ratio of τ1/τ2
to observe the performance of our scheme. This value stands
for the amount of prior knowledge, i.e., a larger τ1/τ2 should
bring a better prediction. Note that, our prediction scheme
will not achieve 100% accuracy even if τ1/τ2 = 1, since the
information compression from M to u1 and v1 is lossy. In
addition, the parameter c is set to be 1/τ1, while the hot count
threshold is empirically set to be 3. As for user personalities,
we use normalized out-degree and in-degree to respectively
describe ū and v̄, while we set σ̄ to be 0.1× σ1.

B. Baseline Algorithms and Evaluation Metrics

Three baseline algorithms (the first two prediction schemes
are non-historical schemes, while the last scheme is a historical
scheme) are used for comparison as follows. (1) Largest in-
degree: among all unpropagated nodes, the node with the
largest in-degree (in terms of the social topology) is considered
to be the next propagated node. The propagation time delay is
considered as the largest propagation time delay of the current
cascade. This scheme is based on the observation that a user
with a larger in-degree is more likely to accept new infor-
mation. (2) Most influenced: among all unpropagated nodes,
the node that has the largest number of incoming propagated
neighbors is considered to be the next propagated node. The
propagation time delay is also the largest propagation time
delay of the current cascade. This scheme is based on the
observation that a user with more in-neighbors in the cascade
is more likely to be influenced. (3) Most active: among all
unpropagated nodes that are outgoing neighbors of propagated
nodes, the node that is the most active, in terms of having been
propagated by former cascades for the most number of times,
is considered to be the next propagated node. The propagation
time delay is calculated as the historical delay.

As for the evaluation metrics, the standard Receiver Operat-
ing Characteristic (ROC) metrics [18] are employed, including
the detection rate (the higher the better), the false positive rate
(the lower the better), and the accuracy (the higher the better).
More details can be found in [18].

C. Evaluation Result

The evaluation result is shown in Fig. 12, in terms of
non-historical (top row) and historical (bottom row) prediction
schemes. Each column corresponds to one of the three ROC
metrics. For the non-historical schemes, the proposed algorith-
m outperforms the two naive baselines, among all three met-
rics. This is beacuase our algorithm considers spatiotemporal
information, while the two naive algorithms mainly focus on
the space information. Overall, our algorithms get about 20%
higher accuracy than the two baselines. Another observation
is that all these schemes have diminishing return effects: the
increasing rate of the accuracy decreases with respect to τ1/τ2.
This is because the early propagations are more important
and more deterministic for the future trend of the cascade,
and thus the amount of information contributed by a early
propagation is larger than that by a late propagation. The
initial information helps predict the cascade framework, while
the following information just fulfills predicting details of the
cascade. The prediction gain is marginal when τ1/τ2 ≥ 0.1.

As for the historical predictions (bottom line), it can be
seen that they perform better than non-historical schemes, since
additional information is utilized. Meanwhile, the baseline
algorithm (i.e., most active) does not have a very good per-
formance, since it relies on the user histories too much, with-
out considerations of the spatiotemporal propagations of the
current cascade. Our algorithm extracts users’ persuasiveness
and receptiveness from former cascades, and then combines
that information with the spatiotemporal information of the
current cascade to obtain a better result. It can been seen
that the historical prediction has an accuracy of about 0.9
when τ1/τ2 = 0.1. The corresponding detection rate and false
positive rate is more than 0.8, and less than 0.1, respectively.
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Fig. 12. The evaluation results. The top row shows non-historical prediction schemes (The algorithm “User personality” is the proposed non-historical scheme
with additional considerations on user personalities), while the bottom row consists of historical prediction schemes. Note that the history information has
included the information on user personalities. Each of the three columns indicates one of the three metrics (detection rate, false positive rate, accuracy).

VIII. CONCLUSION

Information cascade predictions are important, due to their
functionalities of detecting bad cascades. Given the current
cascade and the social topology, we want to predict the cascade
size at a future time slot. In a macro view, a cascade is
described by space and time dimensions: the time information
also includes partial space information, since closer nodes in
the social topology are more likely to propagate information
at closer times. In a micro view, we use the spatiotemporally-
sensitive persuasiveness and receptiveness to respectively de-
scribe followees and followers. The SVD operation is used to
decompose the spatiotemporal cascade information (matrices)
into vectors u1 and v1, which stand for nodes’ persuasive-
ness and receptiveness, respectively. Predictions are conducted
based on these vectors, as to have a low time complexity.
User personalities can also be incorporated into our scheme.
Furthermore, our prediction scheme can be implemented in
parallel. Finally, extensive real-data driven evaluations verify
the competitive performance of the proposed scheme.
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