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Abstract—This paper proposes efficient multiple-access
schemes for large wireless networks based on the transmitters’
buffer state information and their transceivers’ duplex tr ans-
mission capability. First, we investigate the case of half-duplex
nodes where a node can either transmit or receive in a given
time instant. In this case, for a given frame, the transmitters
send their buffer states to the destination which assigns the
available time duration in the frame for data transmission among
the transmitters based on their buffer state information. The
network is said to be naturally sparse if the number of nonempty-
queue transmitters in a given frame is much smaller than the
number of users, which is the case when the arrival rates to the
queues are very small and the number of users is large. If the
network is not naturally sparse, we design the user requeststo
be sparse such that only few requests are sent to the destination.
We refer to the detected nonempty-queue transmitters in a given
frame as frame owners. Our design goal is to minimize the nodes’
total transmit power in a given frame. In the case of unslotted-
time data transmission, the optimization problem is shown to
be a convex optimization program. We propose an approximate
formulation to simplify the problem and obtain a closed-form
expression for the assigned time durations to the nodes. The
solution of the approximate optimization problem demonstrates
that the time duration assigned to a node in the set offrame
owners is the ratio of the square-root of the buffer occupancy
of that node to the sum of the square-roots of each occupancy
of all the frame owners. We then investigate the slotted-time
data transmission scenario, where the time durations assigned
for data transmission are slotted. In addition, we show thatthe
full-duplex capability of a node increases the data transmission
portion of the frame and enables a distributed implementation of
the proposed schemes. Our numerical results demonstrate that
the proposed schemes achieve higher average bits per unit power
than the fixed-assignment scheme where each node is assigneda
predetermined fraction of the frame duration.

Index Terms—Buffer state information, compressive sensing,
half-/full-duplex, multiple-access, sparsity.

I. I NTRODUCTION

Motivated by the goal of increasing spectrum efficiency, we
propose a set of efficient multiple-access schemes for large
wireless networks. When the number of transmitters is large,
the communication between the nodes consumes most of the
available time and spectrum resources. Therefore, designing
an efficient scheme for such scenarios is of great interest.

This paper was made possible by NPRP grant number 6-070-2-024 from
the Qatar National Research Fund (a member of Qatar Foundation). The
statements made herein are solely the responsibility of theauthors.

This paper was published in the IEEE 12th International Conference on
Mobile Ad Hoc and Sensor Systems 2015.

The compressive sensing (CS) paradigm is an efficient
approach that enables the receiver to reconstruct the origi-
nal sparse signal from few noisy observations [1], [2]. The
authors in [3], [4] use phase-coherent analog transmission
of randomly-weighted data from sensor nodes to the fusion
center. The additive property of the multiple-access channel
enables projections of data onto an appropriate basis at the
fusion center. The authors of [5] investigated a random-access
CS-aided scheme for underwater sensor networks. Their goal
was to design a power-efficient random data collection scheme.
A CS-aided medium access control (CS-MAC) scheme is
proposed in [6] where the access point (AP) allocates a random
sequence to each user. All user requests for gaining uplink
transmissions access are sent simultaneously in a synchronous
manner. The authors of [7] studied the asynchronous scenario
of [6]. The data arrival dynamics and queue states were not
considered in [6], [7].

In this paper, we design efficient sparsity-aware multiple-
access schemes for large wireless networks with node buffers.
The contributions of this paper are summarized as follows. We
use the CS techniques to realize our proposed MAC schemes.
We investigate the scenarios when the system is naturally
sparse and when it is non-sparse. We investigate the case
of unslotted-time data transmission. Based on the buffer state
information (BSI) at the transmitters, the destination assigns
equivalent time durations to each transmitter. We investigate
the case of slotted-time data transmission system, where data
are sent to the destination in a slotted manner, and design the
system and its sparsity level based on the available number
of data time slots per frame. To avoid wasting the data time
slots, we propose two solutions for the case when the number
of detected users per frame is lower than the available data
time slots. We investigate the cases of half-/full-duplex nodes
and show that the full-duplex capability enables the nodes to
implement the proposed schemes in a distributed manner and
reduces the needed time for control signals overhead.

Notation: CM denotes the set of complex vectors of size
M. | · | denotes the absolute value. The operators‖ · ‖0,
‖ · ‖1, ‖ · ‖2 denote ℓ0-norm, ℓ1-norm, andℓ2-norm of a
vector, respectively. In addition,(·)†, (·)−1, and (·)T denote
the Hermitian (i.e. complex-conjugate transpose), inverse, and
transposition operations, respectively. A summary of the key
variables adopted in this paper is provided in Table I.

The remainder of this paper is organized as follows. In
the next section, we give a brief introduction to CS. In
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Symbol Description

N Number of users

W andT Channel bandwidth and frame duration

K̃ Number of frame owners

M Number of measurements needed to know the buffer states

A Measurement matrix

S System sparsity level

L Maximum capacity of bufferQk in packets

b Number of bits in a data packet

λk Mean packet arrival rate atQk

Pk Average transmit power of nodek in Watts/Hz

during the current frame

κ Noise power spectral density in Watts/Hz

Bℓ
k

Number of bits announced to be stored at queueQk

when the user sends a request during frameℓ

Bℓ
k
= 0 Number of bits that userk wants to send is zero

when it has no data or decides not to send a request

Ck Capacity of linkk

Tk Time needed to transmit theBk bits at head ofQk

in case of unslotted-time data transmission

α Request probability

D Number of data time slots per frame

in case of slotted-time data transmission

nk Number of data time slots assigned to userk

in case of slotted-time data transmission

Ts Data time slot duration
in case of slotted-time data transmission

TABLE I
L IST OF KEY VARIABLES.

Section III, we discuss the system model adopted in this paper
and describe our proposed schemes. The simulation results are
provided in Section IV. We conclude the paper in Section V.

II. CS BACKGROUND

In this section, we introduce the CS principles. A com-
prehensive treatment of the subject is given in [8] and the
references therein. CS approximations were originally stim-
ulated by the idea that natural signals are often sparse in
some domain. That is, a signal can be represented by a few

significant coefficients in some representative domain. For
instance, natural images are sparse in the frequency domain.
On one hand, traditional compression can exploit this sparsity
to reduce the signal size, however, this requires statistical
analysis of the entire signal to find the significant coefficients.
On the other hand, the CS approach removes this requirement.
For a given sparse signal of sparsity levelS, i.e., it has at
mostS significant (nonzero) coefficients, we can capture the
S coefficients without the need to collect the complete data
set of some large sizeN ≫ S.

Consider the system of equationsY = AX + Z where
Y ∈ CM is a known measurement vector,X ∈ CN is
an unknown vector,A denotes theM × N measurement
matrix, andZ ∈ CM is a bounded noise (error) vector. If
the measurement matrixA satisfies the so-called restricted
isometry property (RIP) condition [8], [9], the sparse vector X
can be recovered with a number of measurements on the order
of S log10(N/S)≪ N measurements, whereS is the sparsity
level of X. To obtain the sparsest solution to this system of
equations, the following problem is solved

min
X

‖X‖0, s.t. ‖Y −AX‖22 ≤ δ (1)

whereδ is chosen such that it bounds the amount of noise in
the measurements and‖X‖0 is the number of nonzero entries
in X. In general, finding the optimal solution to this problem
is not computationally efficient. Hence, two main approaches
have been proposed in the literature to efficiently compute a
sparse suboptimal solution to this system of equations; specifi-
cally, ℓ1-norm minimization and greedy algorithms. As shown
in the CS literature, we can recover the sparse signalX using
the following constrainedℓ1-norm minimization problem [9]

min
X

‖X‖1 s.t. ‖Y −AX‖22 ≤ δ (2)

However, the solution of the optimization problem is not ex-
actly sparse because many nonzero entries with nonsignificant
values can typically appear inX. An additional heuristic
optimization steps can be applied to enforce a finite num-
ber of nonzero entries as in [10]. Alternatively, the greedy
algorithms provide more control on the set of nonzero el-
ements whose indices and values are determined iteratively.
We describe the orthogonal matching pursuit (OMP) algorithm
[11] as one of the widely-used greedy algorithms. OMP
takesY, A, and a certain stopping criterion as its inputs
and computes a sparse solution̂X for the unknown vector
X as its output. Hence, we denote the OMP operation by
X̂ = OMP(Y,A, stopping criterion). The stopping criterion
can be a predefined sparsity level (number of nonzero entries)
of X or an upper bound on the norm of the residual error term
‖Y −AX‖22.

III. SYSTEM MODEL AND PROPOSEDSCHEMES

We assume an uplink scenario where a set of buffered trans-
mitters wishes to communicate with a common destination
(base-station) as shown in Fig. 1. The set of transmitting nodes
is labeled as1, 2, . . . ,N and the destination is denoted by
d. We consider buffered nodes where nodek has a finite-
length buffer (queue), denoted byQk, whose maximum size
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Fig. 1. The system model adopted in this paper.

is L packets. The size of a packet isb bits. Each source
node transmits its buffer state (i.e. the number of packets
stored in its queue) to the destination. We assume Gaussian
channels1 where a received signal is corrupted by an additive
white Gaussian noise (AWGN) with zero mean and variance
κ Watts/Hz. The time is partitioned into frames each with
durationTf time units.

Assuming that the average transmit power of transmitterk
per unit frequency isPk Watts/Hz, the channel capacity of link
k (i.e. the link connecting transmitterk and the base-station)
is then given by

Ck = log2

(

1 +
Pk

κ

)

(3)

If transmitterk wishes to sendBk bits, the time required for
such transmission, given a channel bandwidth ofW Hz, is
given by

Tk =
Bk

WCk
=

Bk

W log2
(

1 + Pk

κ

) (4)

Each transmitter sends its buffer state as a single signal with
an amplitude corresponding to its value in packets. The used
constellation points are0, 1, 2, . . . ,L, whereL is the maxi-
mum number of data packets that can be stored at any of the
queues. The time needed for bits transmission,Tk, is obtained
at the base-station upon demodulating the signal representing
the number of bits stored inQk using the expression in (4).
If the system is sparse or can be made sparse using a request
probability as will be explained later, the base-station then
knows the time duration needed for each node using CS

1For the case of fading channels, the only difference is that the transmit
powers will be scaled by the fading coefficients. That is, if the power used
by userk is Pk without fading, the power with fading is̃Pk = Pk/|hk|

2,
wherehk is the fading coefficient between nodek and the destination. To
avoid very large transmit powers specially at very low fading gain, i.e., very
low |hk|

2, we suggest two modifications to the system: (1) we make the users
with very low fading gains OFF/silent during the current frame. This increases
the system sparsity level. We can adjust the request probability based on the
fading value, (2) we put a threshold on the maximum transmit power such that
the users either transmit data corresponding to the maximumtransmit power
or remain silent if the needed power is higher than the maximum level.

approximations. In this case, the communication of the buffer
state information requires onlyM≪N measurements. If the
system can not be made sparse,N orthogonal signals should
be used by the transmitters for their communication with the
base-station.

If the system is sparse, the buffer state signal sent by a
user is modulated (multiplied) by a sequence (e.g. Bernoulli,
Gaussian, or Gold codes) of lengthM bits. The sequences
of all transmitters represent the measurement matrix whichis
used by the destination to resolve the transmitter requests. The
transmitters request vector received at the destination is

Y
d = AX+ Z

d (5)

whereYd is the measurement vector received at the destina-
tion, X = [x1, x2, . . . , xN ]T is the user buffer states vector
with xk representing the buffer state of transmitterk, A is
the measurement matrix adopted by the system, andZ

d is the
additive noise vector at the destination whose size isM. We
assume that the transmitters send their requests with sufficient
powers such that the requests are decoded perfectly at the
destination as long as the requests are less than or equal to
the system sparsity level. Thus, if the number of requests is
less than or equal to the sparsity level, the nonzero components
are decodable with probability1.

It should be mentioned here that the output of the CS
solver is used as follows. The location of the nonzero element
represents the transmitter index while the demodulated value
represents the number of packets (or bits) stored at the sender’s
buffer. Since the output may contain errors, we assume that
the output for thekth user isB̂k = bx̂k bits (i.e. estimated
value ofBk = bxk bits), wherêxk is the output corresponding
to the kth user in packets andb is the packets size in bits.
Note that x̂k must be one of the constellation points used
to representxk. If user k has no data to send or decides
not to access the channel (i.e. decides not to send a request
which occurs with probability1 − α), Bk = 0 and, hence,
Tk = Pk = 0. The corresponding time for sending thêBk bits
is T̂k = B̂k

WCk
. The time needed by all transmitters, from the

base-station viewpoint, isT =
∑N

k=1 T̂k. In a given frame, we
refer to the detected nonempty-queue transmitters as theframe
owners. The destination sends the time durations to theframe
owners. If the received average signal-to-noise ratio (SNR) at
the destination is high, we can assume that the destination
knows the buffer states at the transmitters perfectly. Hence,
B̂k = Bk and T̂k = Tk.

LetAℓ
k denote the number of packets that arrive at the buffer

of transmitterk at the end of frameℓ ∈ {1, 2, . . .}, which can
follow any distribution, with average rateλk packets per frame
(packets/frame). At the end of frameℓ (i.e. beginning of frame
ℓ+1), the number of packets remaining at thekth transmitter’s
queue is

Qℓ+1
k ← min

{

Qℓ
k −min{xk, x̂k}+ A

ℓ
k,L

}

(6)

whereQℓ
k is the buffer size at the beginning of frameℓ andL is

the buffer maximum capacity in packets. Since the queue states
are detected accurately at the destination,min{xk, x̂k} =
x̂k = xk. It should be noted that the random characteristics of



the arrivals at transmitters increase the sparsity of the system.
This means that the sporadic nature of the arrivals increases
the possibility of having many empty-queue transmitters and
hence lower requests. Assume Bernoulli arrivals with mean
λk = λ for all queues,2 whereλ is the probability of having
an arrived packet in a given frame. In addition, assume the case
when all queues are empty in a given frame. The probability
of havingat least K arrived packets in the system during the
next frame is

N
∑

j=K

(

N
j

)

λj(1 − λ)N−j (7)

where
( N

j

)

denotesN choosej. The system is sparse with

sparsity levelS = K−1 if this probability is very small which
is the case as long asλ is very small andN is large. In case
of other arrival distributions (i.e. non-Bernoulli arrivals), λ in
Eqn. (7) is replaced with the probability that the queue has
at least one packet and1− λ is the probability of having no
packets (i.e. the queue is empty). If the system is sparse due
to largeN and very smallλ, all users can attempt to send
their queue states to the destination in every frame.

When the system is not naturally sparse, exploiting the
request probability is necessary to ensure sparsity of the
system. In this case, the system sparsity condition is

N
∑

j=S+1

(

N
j

)

αj (1− α)
N−j ≤ ǫ (8)

whereS is the sparsity level andǫ is a very small positive
number. This condition is based on the worst case scenario
when all transmitters have data to send. Designing the system
based on this criterion guarantees the sparsity of the system in
all other cases of queue occupancies (i.e. when a set of nodes
is empty and the other sets are not empty). The optimalα is
the highest feasible value ofα that satisfies the sparsity-level
constraint in (8). This is because asα increases, the number of
served users increases. However, this also decreases the ability
of the destination to decode the users request vector using only
M≪N measurements.

The sequences used by the transmitters can be seen as
random-access codes that are used to distinguish between
the users at the destination. Our goal is to accommodate as
many transmitters as possible; hence, we increase the length
of the sequences. However, longer sequences lead to longer
communication time, i.e., longer time needed to capture more
observations at the destination to determine all the nonempty-
queue transmitters, and consequently a lower data transmission
time is achieved.

A. Unslotted-Time Data Transmission

In this scenario, we assume that the communication between
the transmitters and the destination is divided into three stages.
In the first stage, the transmitters send their buffer statesto
the destination. In the second stage, the destination assigns

2If all queues have different average arrival rates, we replace λ with the
maximum among all arrival rates. That is,λ = max{λ1, λ2, . . . , λN }.

 

 

 

Fig. 2. Frame structure for the unslotted-time data transmission.

the transmission time to each user. In the third stage, the
frame owners transmit their data to destination. The frame
structure under this scenario is shown in Fig. 2. Our proposed
communication protocol during a frame for the unslotted-time
data transmission scenario is described as follows:

• If the system is naturally sparse, i.e., satisfies the condi-
tion in Eqn. (7), the users send their BSI to the destination
in each frame using CS approximations without using the
request probability.

• If the system is not naturally sparse, the transmitters
probabilistically send their requests to the destination.
The access probability is0 ≤ α ≤ 1.

• Upon decoding the buffer state vector, the destination
sends feedback signals to the transmitters which contain
the time assignments among the transmitters. This can
be implemented as follows. The destination sends an
acknowledgement (ACK) signal with the identification
(ID) of the transmitter which is assigned to the next
dedicated time duration. Then, the length of the time
duration assigned to that user is broadcasted. Each of
these activities requires1/W seconds to be implemented;
hence, the total time spent in identifying the next trans-
mitter and its transmission time declaration is2/W time
units. We assume that the errors in decoding these values
at all nodes are negligible.3

• Each transmitter sends its data during its assigned trans-
mission time.

After sending the transmitter requests and the feedback signals,
the remaining time for data transmission isT = Tf −

M
W −

2 K̃
W = Tf −

M+2K̃
W , whereTf is the frame duration,̃K ≤ S

is the total number of nonempty-queue transmitters during the
current frame (i.e. number offrame owners), and 2K̃/W is
the total time used to inform theframe owners about their
dedicated time durations.

The optimization problem that minimizes the total transmit
power of nodes under the constraint that the sum of the users’
transmission times is at mostT is stated as follows:

min
0≤Pk≤∞,∀k

N
∑

k=1

Pk

s.t.

N
∑

k=1

Tk =

N
∑

k=1

B̂k

W log2

(

1 + Pk
κ

) ≤ T

(9)

3In practice, the probability of decoding error is very small. For example,
using16-QAM, the bit error rate is10−4 when the SNR is12 dB.



The objective function is linear inPk. The second derivative
of the termTk = B̂k

W log
2

(

1+
Pk
κ

) is

δ2Tk

δP 2
k

=
B̂k ln(2)

(

ln(1 + Pk
κ
) + 2

)

W (κ+ Pk)2 ln
3(1 + Pk

κ
)

≥ 0 (10)

The second derivative is always positive forPk ≥ 0; hence,Tk

is convex inPk. Since the positive weighted sum of convex
functions is also convex, the constraint

∑N
k=1 Tk is convex.

Since the objective function is linear and the constraint iscon-
vex, our optimization problem is a convex program and can be
solved efficiently using any convex optimization solver [12].
To gain further insights and derive closed-form expressions
for the time assignments, we seek an approximation for the

optimization problem in (9). Letting1
Tk

=
log

2
(1+

Pk
κ )

ak
, where

ak = B̂k

W , Pk = κ(2
ak
Tk − 1). Thus, the optimization problem

is rewritten as

min
0≤Tk≤∞,∀k

N
∑

k=1

κ(2
ak
Tk − 1)

s.t.

N
∑

k=1

Tk ≤ T

(11)

Eliminating the constant terms from the objective function, the
optimization problem is rewritten as

min
0≤Tk≤∞,∀k

N
∑

k=1

2
ak
Tk

s.t.

N
∑

k=1

Tk ≤ T

(12)

Taking the logarithm of base2 for the objective function,
and using Jensen’s inequality [13], the objective functionof
(12) can be upper bounded as follows:

log2

( N
∑

k=1

2
ak
Tk

)

≤
N
∑

k=1

log2

(

2
ak
Tk

)

=
N
∑

k=1

(

ak

Tk

)

(13)

The approximate optimization problem is stated as follows:

min
0≤Tk≤∞,∀k

N
∑

k=1

ak

Tk

s.t.

N
∑

k=1

Tk ≤ T

(14)

This approximation is tight whenak is very small; which is the
case when the buffer capacity is much less than the bandwidth,
i.e.,L ≪ W . Noting that increasing the time assigned for data
transmission decreases the objective function, the constraint in
(14) holds with equality. That is,

∑N
k=1 Tk = T . Using the

Lagrange multipliers, we get

L =
N
∑

k=1

ak

Tk

+ ν

N
∑

k=1

Tk (15)

where L is the Lagrange function andν is the Lagrange
multiplier. Taking the first derivative ofL with respect toTk,
we get

δL

δTk

= − ak

T 2
k

+ ν (16)

Equating this value to zero and settingTk = T ∗
k , we get

T
∗
k =

√

ak

ν
(17)

Using the constraint that
∑N

k=1 Tk = T , we calculateν as
follows:

N
∑

k=1

T
∗
k = T =

N
∑

k=1

√

ak

ν
(18)

Thus,

√
ν =

N
∑

k=1

T
∗
k =

N
∑

k=1

√
ak

T
(19)

Substituting (19) into (17), the optimalTk that minimizes the
approximate optimization problem is given by

T
∗
k = T

√
ak

∑N
k=1

√
ak

= T

√

B̂k

∑N
k=1

√

B̂k

(20)

The solution of the approximate formulation illustrates the fact
that the users with the higher queue occupancies should be
assigned longer time durations. It should be noted here thatthe
achievable rate under this scheme is

∑N
k=1 Bk bits/frame. If

all frame owners have the same queue occupancy, the optimal
solution will beT/K̃, i.e., splitting the remaining time in the
frame,T , equally among theframe owners.

Using the optimal solution in (20), the total transmit power
in this case is

Pupper =
N
∑

k=1

Pk =
N
∑

k=1

κ(2
√

Bk
∑N

k=1

√
Bk

TW − 1) (21)

The valuePupper is an upper bound on the total transmit
power. Since the queues are limited in size, assuming that all
queues are full of data packets, the maximum value ofPupper,
denoted byPmax

upper, is given by

P
max
upper =

N
∑

k=1

Pk = κK̃(2K̃
Lb
TW − 1) (22)

whereK̃ is the number of active transmitters.
If we assume avirtual buffer with a total number of bits

B =
∑N

k=1 Bk in frame ℓ ∈ {1, 2, . . .}, the power needed
to send theB bits during the data transmission time of the
frame,T , is given by

Plower = (2
B

WT − 1)κ (23)

wherePlower is the minimum power level needed to send all
bits. It should be noted that this scenario, where a virtual
buffer maintains a total number of bits equal to the number
of bits in the frame owners’ buffers, is an upper bound on
what can be achieved in the original scenario where we have
a set of nodes (i.e.frame owners) each of which has its own
data packets stored at its own buffer and wishes to send them
to its destination. Hence, the transmit power in this virtual
system is a lower bound on the transmit power of the original
scenario. To demonstrate this point, we study the following
example. Assume that we have only twoframe owners, say
nodes1 and 2, where each of them has only one packet of
sizeb bits, i.e.,B1 = B2 = b bits. In this case, and since we



have only two nodes with equal buffer sizes, the time duration
T is divided equally between them. Hence, the total transmit
power is

P1 + P2 = 2(2
b

WT/2 − 1)κ = 2(2
2b

WT − 1)κ (24)

If we assume that the two packets are stored in a single buffer
(i.e. virtual buffer of a total size equal to2b bits), the needed
power to transmitB = 2b bits overT time units is

Plower = (2
2b

WT − 1)κ =
1

2
(P1 + P2) (25)

Based on the above argument, the total transmit power is
lower bounded as

N
∑

k=1

Pk ≥ Plower = (2
B

WT − 1)κ (26)

The total transmit power obtained from solving the original
optimization problem in (9) may take any value betweenPlower

andPupper. That is,Plower ≤
∑N

k=1 Pk ≤ Pupper.

B. Slotted-Time Data Transmission

In this scenario, we assume that the communication between
the transmitters and the destination is divided into three stages.
In the first stage, the transmitters attempt to send their buffer
states to the destination. In the second stage, upon getting
the compressed signal of the buffer states, the transmitters
are assigned to a set ofD data time slots each with duration
Ts time units. In the third stage, the users assigned to the
available data time slots send their data to the destination.
The frame structure under this scenario is shown in Fig. 3.
The assignment of time slots to transmitters depends on the
number of frame owners and the number of data time slots
per frame. That is,

• If the system is designed such that the number of requests
is always lower than or equal to the number of data
time slots, i.e.,S ≤ D, then all decoded requests will
be satisfied, i.e., each transmitter gets one time slot.
However, in this case, we may have some unused data
time slots if the number offrame owners is lower than
the number of data time slots,D.

• If the number of requests (i.e.frame owners) exceeds the
number of available data time slots, theD frame owners
with highest queues occupancy will be selected for data
transmission.

In this system, the destination communicates with the users
during the control signals exchange in an unslotted manner.
Note that increasingS allows selection of more transmitters
such that the users with high queues occupancy can be detected
adequately. The access probability can be increased and hence
the detected users (requests). Adding one additional user to the
problem results in time loss that increases the sparsity level to
S+1 instead ofS. Since the users probabilistically send their
BSI to the destination in each frame, we may have a number of
frame owners less thanD as explained in the above-mentioned
cases. Hence, some time slots may be wasted. We propose two
solutions to this problem.

1) Since losing a time slot with durationTs can be worse
than losing a time duration ofm/W whenTs > m/W ,

 

 

 

   

Fig. 3. Frame structure for the slotted-time data transmission.

wherem is a positive integer andm/W is the time
needed to increase the sparsity level fromS to S+n for
acceptingn additional users per frame, we can increase
the number of users per frame by increasing the request
probability,α. However, since we have onlyD data time
slots per frame, more requests result in less time for
data transmission per time slot, i.e., the data time slot
duration,Ts, decreases as number of requests increases.
Since the number offrame owners can be less thanD,
some time slots may be unutilized in a given frame.
Hence, the cardinality of the set of users that will use
the available time slots in a given frame isT ≤ D,
whereT ≤ K̃. In this approach, the destination does
not need to send the transmission times and instead it
sends the value ofT in the current frame and broadcasts
the IDs of the users that will use the available time slots.
Accordingly, the communication of the control signals
between the destination and the users requires1/W +
T /W time units, where1/W is the time consumed for
announcing the value ofT andT /W is the time needed
for announcing the IDs of the group of users that will
use the data time slots. Consequently, the data time slot
duration isTs = max{T−M/W−T /W−1/W

D , 0}. Note
that the control signal exchange takes place over the
time interval from instant0 to instantM/W + T /W
and data transmission takes place over the time in-
terval from instantM/W + T /W + 1/W to instant
M/W + T /W + 1/W+DTs. Using this approach, the
complexity of the system is reduced and the time slots
loss and time durations broadcasting is reduced as well.
One may optimize both the number of time slots per
frame,D, and the system sparsity level,S, to maximize
the system throughput. This approach is concerned with
maximizing the number of transmitted bits and serving
as many users as possible.

2) An alternative solution, which is concerned with the
total transmit power per frame, is to minimize the
transmit power by assigning the time slots to theframe
owners such that the total transmit power is minimized.
Specifically, if the number of decoded requests is less
than the sparsity levelS, we assume that the destination
assigns multiple time slots to some users based on their
queue states. Hence, users use lower transmit powers
for data transmissions. For this power-saving approach,
the nodes can be assigned as follows. Each participating
node gets a slot; afterwards, the queues with the highest
occupancy among theframe owners are assigned to the



remaining time slots and so on until the end of all
time slots. In this approach, ifT < D, the destination
announces the value ofT , the users’ IDs, and the
number of time slot assigned to each user. Hence,
the communication of the control signals between the
destination and the users requires1/W + 2T /W time
units. Consequently, the duration of a data time slot
is Ts = max{T−M/W−2T /W−1/W

D , 0}. If T = D,
which means that each user will be assigned to only
one time slot, the destination does not need to send
the number of time slots assigned to each user; hence,
the communication of the control signals between the
destination and the users requires only1/W + T /W
time units. Consequently, the duration of a data time slot
in this case isTs = max{T−M/W−T /W−1/W

D , 0}.

In the second above-mentioned approach, the transmit
power of transmitterk when it sendsBk bits over its assigned
data time slots, which can benk ∈ {1, 2, . . . , D} time slots,
is given by

Pk = κ

(

2
Bk

nkWTs − 1

)

(27)

The total transmit power per frame is thus given by

N
∑

k=1

Pk = κ
N
∑

k=1

(

2
Bk

nkWTs − 1

)

(28)

It is clear that the transmit power is exponentially decreasing
with WTs

nk

Bk
. For a given set offrame owners, W and Ts

are fixed; hence,nk

Bk
is the only term that controls the value

of the transmit powers. To maintain the transmit power low,
the destination increases the number of time slots assignedto
the users with high queues occupancy over the users with low
queues occupancy. Thus, we conclude that users with higher
queue states must be allocated more time slots than other users.
If the number of requests is greater thanS, the destination
cannot assign more than one time slot to any user. However,
if the number of requests is less thanS, we can assign more
time slots to one or more users based on their buffer states.

To maximize the performances of the proposed schemes,
we employ the following algorithm. For each request access
probability, α, we obtain the sparsity level by solving Eqn.
(8). Then, for each sparsity level, we choose the minimum
cardinality of the observations, i.e.,M, such that the prob-
ability of users request decoding is close to1. Using the
resultant sparsity-measurements pairs, we can optimize the
system performance efficiently.

In what follows, we investigate the case of full-duplex
nodes [14]–[16] which enables a time-efficient communication
between the users and their destination. In this case, each node
has two radio-frequency (RF) chains and is equipped with
one antenna for each RF chain.4 Hence, nodes can transmit
and receive at the same time. To exploit the ability of nodes
to transmit and receive simultaneously, we assume that each
node attempts to decode the compressed signal that bears the
information about queue states. Thus, each node in the system

4The implementation of full-duplex communications using a single antenna
for both data transmission and reception can be performed asin [16].

knows the queue states of the other nodes. Accordingly. we
can implement the proposed schemes in a distributed manner.
The implementations of the proposed schemes with full-duplex
nodes are as follows:

• For the unslotted-time data transmission scenario, we let
transmitter1 be the one which uses the spectrum during
the time duration from instant0 to instantT1, transmitter
2 is the one which uses the spectrum from instantT1

to instantT2, and so on until the end of the frame. Each
transmitter starts and ends its data transmission according
to the predefined transmissions sequence.

• For the slotted-time data transmission scenario, given
that the queue states are known at all nodes, the nodes
access the channel based on a predefined order for
channel accessing until each transmitter uses only one
slot. Afterwards, if the number offrame owners is lower
than the number of time slots per frame, the assignment
of transmitters to the remaining time slots is based on
the queues occupancy until the end of the frame. Using
these approaches for the unslotted- and slotted-time data
transmission scenarios, there is no need for the feedback
signals from the destination to the users which consume
a large portion of the frame time, especially when the
number of users is large.

We emphasize here that the residual self-interference caused
by the transmission and reception of data at the same time and
over the same frequency band does not have any effect on our
analysis. That is, let us assume that the self-interferenceis
modeled as a fading coefficient with valuegk where gk is
a circularly-symmetric Gaussian random variable that remains
constant during a frame but changes from one frame to another
[14]–[16]. If the user sends zero, which is the case when its
queue is empty or it decides not to access, the signal received
at the user due to self-interference is zero. Hence, the self-
interference has no impact on the received signal at the user’s
receiver. If userk sends a request, the received signal at user
k is given by

Y
k = AXk + Z

k (29)

whereYk is the measurement vector received at thekth user’s
receiver,Xk = [x1, x2, . . . , gkxk, . . . , xN ]T is the user buffer
state vector at thekth user,A is the measurement matrix
adopted by the system, andZk is the additive noise vector at
thekth user’s receiver. The OMP output is the same as in the
case of no self-interference but thekth index isgkxk instead
of xk. Given that the user knows its own state, i.e., knows that
its transmitted signal isxk, it does not need to know the value
of gk. Note that all users and the destination solve the same
problem in (29) with different values of measurements, noise,
and residual self-interference coefficient.

IV. SIMULATIONS

In this section, we evaluate the performances of our pro-
posed schemes. For convenience, we denote the CS-aided
schemes for the unslotted-time data transmission and slotted-
time data transmission byPCS andP̂CS, respectively. The case
where each user sends its queue state individually forW/N
seconds under the unslotted and slotted scenarios are denoted
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by P andP̂, respectively. We model the arrivals at the queues
as Bernoulli distributed random variables with meanλk = λ
for all queues. For the measurement matrix, we assume that
Bernoulli sequences are used by the transmitters.

In Fig. 4, we plot the request probability,α, for N = 200
users versus both the sparsity level and minimum measure-
ments needed for a given sparsity level when the probability
of decoding one of the elements in the request vector is less
than 10−3. The sparsity level,S, is obtained from Eqn. (8)
with ǫ = 10−4. From the figures, and since the sparsity level
must be much lower than the measurements length as well as
the number of users, the maximum request probability must
be less than0.15, i.e.,α < 0.15, otherwise, we needM = N
observations (measurements) to solve the compressed signal.
For the parameters used, we find that the ratio betweenM
andS is around5. Thus, usingc = 5, wherec =M/S, is a
very reasonable approximation of the optimalM for a given
sparsity level. This matches the observations in the literature
that the number of measurements is empirically given bycS,
wherec = {3, 4} [6].

Unless otherwise explicitly stated, we assume that Figs. 5,
6, 7, and 8 are generated using a probability of decoding one
of the elements in the buffer state vector to be less than10−3,
ǫ = 10−4, N = 400 users,κ = 10−9 Watts/Hz, maximum
buffer sizeL = 10 packets, number of bits per packetb = 100
bits, W = 5 MHz, andTf = 1 ms.

The case of unslotted-time data transmission with half-
duplex nodes are considered in Figs. 5 and 6. Fig. 5 demon-
strates the impact of the queues arrival rates on the sum of
the average powers used by the transmitters. The total power
increases withλ since the queues occupancy increase and
hence the power needed to deliver the bits to the destination.
The fixed-assignment scheme has the highest transmit power
since each transmitter has only1/N of the frame duration to
transmit its bits. Thus, its bits per unit power is small. The
figure reveals that the analytical solution of our approximate
formulation is close to the optimal solution of the total power
minimization problem.

In Fig. 6, we plot the number of transmitted bits per unit
power for the proposed schemes. Our proposed schemes have
much higher bits per unit power than the fixed-assignment
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Fig. 5. Sum of the average powers per frame for the consideredschemes.

scheme. The CS-aided scheme, where we send requests and
exploit the system sparsity, outperforms the case when each
user sends its buffer state individually. The fixed-assignment
scheme has the lowest average number of bits/Watts which is
78 bits/Watts. For high arrival rate at the queues, the sum of
the average powers per frame forP is almost equal to that
of the fixed-assignment. This is because at highλ almost all
queues have the same occupancy and therefore the optimal
solution is to assign1/N of the remaining time in the frame
to each buffer. Accordingly, the performance ofP is equal to
the fixed-assignment scheme.

Figs. 7 and 8 study the case of slotted transmissions for full-
duplex nodes. Fig. 7 shows the average number of transmitted
bits per unit power for the proposed schemes versus the frame
duration,Tf . The figure considers the case when the system is
naturally sparse, i.e., when the arrival rates to the queuesare
small and the number of users is large. The mean arrival rate of
Qk is λ = 0.01 packets/frame. Sinceλ = 0.01 packets/frame
andN = 400, the system is naturally sparse with sparsity
level S = 14 and the needed measurements isM = 82
samples. The case of CS-aided scheme outperforms the case
when each user sends its queue state separately. The number of
bits per seconds under the parameters used in Fig. 7 is shown
in Fig. 8. We note that as the frame duration increases, the
average number of bits per second decreases. This is because,
for given queue states detected by the destination, all bitswill
be delivered to the destination during the frame time regardless
of the frame length. The only difference is the transmit power
needed to deliver the bits. As the frame length increases, the
needed power decreases. For Figs. 7 and 8, we assume that
the number of data time slots per frame isD = 20.

V. CONCLUSIONS

In this paper, we have proposed new multiple-access
schemes for large wireless networks when the nodes are
equipped with data buffers. We showed that the system is
naturally sparse when the arrival rates to the queues are small
and the number of users is large. In this case, we can directly
apply the CS sparse signal recovery techniques to obtain the
queue states of the transmitters at the destination with few
measurements (i.e. signaling time to inform the destination
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regarding the state of each buffer). We designed the system
for the non-sparse case and enforced the user requests to be
sparse using the appropriate request probability. For the total
transmit power minimization problem, we showed that the
problem is convex. Moreover, we proposed an approximate
formulation which has a closed-form solution and showed that
it achieves a minimum total transmit power per frame close
to that of the original optimization problem. Our numerical
results demonstrated that the proposed schemes achieve higher
average bits per unit power than the fixed-assignment scheme,
where each node is assigned to1/N of the frame duration. In
addition, the average number of bits/unit power increases with
increasing the frame time and/or transmit bandwidth. However,
the number of delivered bits per unit time to the destination
decreases with increasing frame duration,Tf .
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