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Abstract—Measurement samples are often taken in various
monitoring applications. To reduce the sensing cost, it is desirable
to achieve better sensing quality while using fewer samples.
Compressive Sensing (CS) technique finds its role when the signal
to be sampled meets certain sparsity requirements. In this paper we
investigate the possibility and basic techniques that could further
reduce the number of samples involved in conventional CS the-
ory by exploiting learning-based non-uniform adaptive sampling.
Based on a typical signal sensing application, we illustrate and
evaluate the performance of two of our algorithms, Individual
Chasing and Centroid Chasing, for signals of different distribution
features. Our proposed learning-based adaptive sampling schemes
complement existing efforts in CS fields and do not depend on any
specific signal reconstruction technique. Compared to conventional
sparse sampling methods, the simulation results demonstrate that
our algorithms allow 46% less number of samples for accurate
signal reconstruction and achieve up to 57% smaller signal recon-
struction error under the same noise condition.

I. INTRODUCTION

Efficient information collection is critical for many applica-
tions, such as medical imaging, radar detection and spectrum
sensing. Practical signals are generally continuous and can be
sampled into digital form for more efficient storage, processing
and communications. Obviously, a higher number of samples
would lead to larger resource consumption and higher process-
ing complexity. The fundamental challenge is to achieve the
desired degree of signal fidelity in an often noisy environment
with the minimum number of samples.

Compressive Sensing (CS) [2]–[4], [12] has attracted a lot
of recent attention, with its capability of reconstructing sparse
signals with the number of samples much lower than that of
the Nyquist rate. The fundamental works of CS include the
introduction of the l1-minimization to reconstruct the signal,
and more recently the greedy recovering of signal components
gradually [28] [13] [27] [32]. Attempts have been made to
directly apply CS in different application areas, including the
reduction of traffic volume during signal acquisition [24] [1],
and finding target locations and numbers [10] [32] [17].

Given the limitation of sensor resources and battery energy,
it is often desirable to minimize the number of sensors involved
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in a single sensing task. This will in turn contribute to a lower
average duty cycle of all the sensors and the extension of the
reliable working life of the sensor network. In applications that
require the participation of surrounding devices, for example the
fast growing research field of crowd sensing, certain rewards can
be given to the contributors to motivate their involvement and
cooperation in sensing. In these cases, minimizing the number
of involved sensors helps reduce the extra sensing cost besides
power consumption.

Conventional compressive sensing schemes take samples ran-
domly and uniformly in a sampling space. This inevitably makes
it difficult to determine the minimum number of samples to take.
If the samples are not sufficient, the signal cannot be accurately
recovered. Thus to be safe, usually more than enough samples
are taken to guarantee the accurate reconstruction at higher cost.
Instead of taking samples all at once, we would like to find out if
the samples can be taken sequentially, with subsequent number
of samples determined based on the estimation results from
previous samples. More specifically, we would like to find ways
of adapting the sensing matrix that defines the sensing behaviors
based on the information learnt from previous observations to
guide subsequent measurements to "focus" on the areas detected
with possible existence of signals, so that the overall number
of samples can be greatly reduced. Although it may incur some
delay in collecting samples over multiple rounds, this method
may help significantly reduce the sensing resources when there
is a need to continuously monitor some targets or signals, while
the chance of appearance of the targets or signals is very small.

Fundamentally different from some existing CS algo-
rithms [3], [5], [14], [28] whose aims are to improve the quality
of reconstructed signals with a given number of samples, our
proposed algorithms aims to reduce the number of samples
needed for the whole sensing process through the adaptation of
sampling distribution, taking advantage of the learning process
to achieve similar or even better signal recovery accuracy.
Different from conventional schemes that search for signals in
random locations which may miss the signals, sensors selected
in our scheme first detect the potential existence of signals
although their received values may be low, and the knowledge
is then applied to guide efficient signal sensing later.

To illustrate the principle of our proposed learning-based
adaptive CS schemes, we construct a sensing matrix according
to a practical application, which allows us to map the change of
the sensing matrix in theory to the choice of sensor measurement
locations in practice. Specifically, we consider the detection and
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estimation of the strengths and locations of sparsely distributed
signal sources using sensors embedded in commonly acces-
sible wireless devices such as cell phones, which have been
considered for use in crowd sensing. Detection of the signal
strength on different locations finds its use in many applications,
including the emerging cognitive radio field where cell phones
can be used collaboratively to form the spectrum sensing maps
on the activities of primary users, localizing the sound sources
for detecting events such as gunshot or riots, and detection of
radiation sources. Our adaptive sampling scheme can be applied
to broad categories of energy signal sensing.

We propose two learning-based adaptive sensing algorithms
for different application scenarios to significantly improve the
sensing efficiency and quality. Our algorithms do not depend on
the underlying CS reconstruction methods, thus can be applied
in many CS-suitable applications. The features of our work can
be summarized as follows:
• Compared to conventional schemes which employ com-

pletely random sampling, our adaptive algorithms wisely
choose where to sample based on the knowledge from
previous sampling process, thus requiring much fewer
samples to estimate the signals at desired accuracy level.

• Compared to a few existing adaptive sensing schemes [6],
[30] in the literature:

– The literature studies take samples uniformly although
the sampling rate is adapted in the temporal or spatial
domain to improve the sensing quality, while our
schemes adapt the sample distribution based on the
learning from previous estimation results to greatly
reduce the total number of samples needed.

– Our unique sensing matrix structure allows convenient
reuse of samples previously taken along with later
samples for higher sensing accuracy while avoiding
tasking same sensors multiple times to conserve sens-
ing resources and reduce the overhead in transmitting
sensing signals in the network.

As we will theoretically show later, if a sensor in our schemes
is tasked once, it only takes measurement in one round in the
whole adaptive sensing process, thus “the number of sensors
used” equals “the number of samples” in our work, and we refer
to them inter-changeably in the paper. Therefore, minimizing
the number of samples is equivalent to reducing the number
of involved sensors, which helps to conserve the sensing cost
involved for both sampling and communications. In addition,
our schemes achieve much lower reconstruction error compared
to conventional CS schemes under the same level of noise for
the same number of sensors used.

The rest of the paper is organized as follows. In Section II,
some related works are discussed. Section III gives the funda-
mentals of CS. Our system model and formulation are described
in Section IV. Section V introduces the two algorithms of
adaptive sensing. We evaluate the performance in Section VI,
and conclude the work in Section VII.

II. RELATED WORK

The research problems on CS can be roughly divided into
two categories. One is to study and improve the reconstruction

technique itself in order to reduce the computational complexity
or increase the recovery accuracy against noises. Another is the
application of CS to solving practical problems.

For signal reconstruction, the l1-minimization algorithm [3],
[5], [14], also called basis pursuit, transforms the original
reconstruction problem into a linear programming problem to
solve with convex optimization; Another family of methods is
greedy-based, including Orthogonal Matching Pursuit (OMP)
[28], Stagewise OMP (StOMP) [13] and Regularized OMP
(ROMP) [27], which tackles the reconstruction problem by
gradually recovering the components of the signal in each iter-
ation. The l1-minimization is generally believed to give better
reconstruction performance. While the greedy-based methods
have the advantages of simpler implementation and lighter
computational overhead, they require more measurements for
the same reconstruction quality. Other reconstruction algorithms
include iterative thresholding methods [9], [20] and various
Bayesian methods [22], [31].

CS has been directly applied in various network and sensing
applications. In the network area, some schemes have been
proposed to reduce the total number of network messages by
aggregating and forwarding the linearly weighted summation
of the messages on the path towards the destination [24] or
a neighbor [1], taking advantage of the capability of CS to
recover the original messages. The Greedy Matching Pursuit
(GMP) algorithm for target counting in [32] assumes that the
nonzero values can only take several possible integers and
exhaustively try out each position of the vector. This method is
too computational costly for signal vectors of large dimensions,
and nearly impossible for vectors with arbitrary values. [17]
straightforwardly adopts CS into the Access Point received
signal strength based localization problem. CS also finds its
use in the field of Cognitive Radio recently. The work in [23]
exploits CS to estimate the occupied spectrum channels and the
locations of Primary Radios.

Iterative CS algorithms have also been proposed in the
literature. In the field of image/video processing where the
computing overhead is not a constraint, multiple rounds of
CS reconstructions are sequenced to achieve better quality of
recovered signal accuracy [29] [15] at the cost of higher number
of samples and computation overhead. There are also attempts to
adaptively reconstruct components of the signals for an overall
better performance [19], [21], [25]. Despite the increase of
tolerance to noise, these adaptive CS algorithms cannot be
applied to effectively reduce the number of samples.

In the existing CS theory, the necessary number of samples
to take is given and derived for basic l1 minimization based on
random sampling. In this work, we investigate the possibility
and ways of reducing the number of samples needed as well
as the computational complexity while maintaining the sensing
accuracy. Rather than taking random samples as in conventional
CS schemes, to reduce the number of samples and improve the
recovery quality, we propose to adapt the sensing matrix taking
advantage of the iterative learning process.

III. FUNDAMENTALS OF COMPRESSIVE SENSING

Conventional information theory mandates a sampling rate to
be at least twice the bandwidth of the signal being sampled.
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Recent research shows that a sparse signal can be reconstructed
through Compressive Sensing with a high probability at much
lower sampling rate. Moreover, most signals that are not sparse
enough can also be projected to other domains to achieve the
desired sparsity.

Let vector x ∈ RN be a signal not sparse enough. Given an
N × N orthogonal basis Ψ = [Ψ1,Ψ2, ...,ΨN ] with each Ψi

being a column vector, we have:

x = Ψs =

N∑
i=1

siΨi (1)

where s is the coefficients of x in the transformed domain Ψ.
s is said to be k-sparse if it has at most k nonzero entries and
k � N . The samples are then

y = Φx = ΦΨs = As (2)

where Φ is an M ×N measurement matrix to be defined later
with k � M � N , the combined M × N matrix A is called
the sensing matrix, and y is the sample vector of M × 1.

Under the condition of l0 minimization: min ‖s‖l0 , instead
of acquiring N samples of s, only M = 2k of noise-free
measurements are needed to reconstruct s [8]. However, this
problem is NP-hard. If A meets the Restricted Isometry Property
(RIP) condition, it is much easier to solve the l1-minimization
problem below

min ‖s‖l1 (3)
s.t. ‖Ax− y‖l2 ≤ ε (4)

where the parameter ε is the bound of the error, as long as
M ≥ c · k · log(N/k) [2].

Nonetheless, the lower bound requirement of M = 2k mea-
surements is rarely achieved using conventional CS methods.
The major contribution of this paper is to provide some insights
on the possibility and potential strategies that can be exploited
to push the sampling rate towards the limit.

IV. PROBLEM FORMULATION

To investigate the possibility and methods of improving the
sampling efficiency and accuracy, in this paper, we instantiate
a specific problem of using cognitive cell phones which can
switch to other spectrum bands to detect the strength and loca-
tions of primary signal sources for the potential cognitive use
of the unoccupied spectrum of the measured bands. This setting
helps to picture the mapping of theoretical changes on the
sensing matrix into the adjustment of sensor positions/sampling
points in practice.

We consider a general scenario where some cell phone users
are willing to participate in estimating the strength and locations
of aggregate primary radio signals (e.g., TV or radar signals)
which are generally located sparsely in the sensing field. Since
we utilize cell phones to detect the signal strength, we consider
cell phones as spectrum "sensors" in this paper. To provide
a location reference and facilitate the scalable monitoring,
the sensing domain is partitioned into N grids with the size
determined based on the resolution requirement of a specific

application, and each grid could have no or several signal
sources inside it. Similarly, a grid could have no or several
cell phones, each can update the base station its grid location
upon grid crossing by piggying back the information with other
uplink messages.

While some literature work [32] assume that signal sources
have identical transmitting power to count the number of targets,
we do not have this restriction or to differentiate individual
signals within a grid. Instead, we consider signals within a
grid as an aggregate signal source located at the grid center.
Generally, within the short sensing period, we don’t expect a
significant change on the strength of the signals to be measured
and a large number of signal sources or sensors to move across
grids.

Figure 1 shows an example system of 16 grids in a moni-
toring region. Signal sources with different level of energy are
indicated by the dot of different sizes. For grids that have several
phones inside, we can always pick only one cell phone to do
the task in order to preserve the sensing resources. Thus it is
safe to assume each grid has at most one sensor for a specific
sensing task at a given time. Cell phones tasked for sensing the
spectrum will send their samples to the base station to be fused.
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Fig. 1. A demo of the system with the corresponding signal vector s and
measurement matrix Φ.

To monitor the energy of signals, traditionally, a large number
of sensors are placed across the whole monitoring domain and
kept active to maintain the coverage [18] [16]. In reality, for
a given sensing resolution, i.e. grid size in this setup, only a
small number of grids will contain signal sources at a given
time. This spatial domain sparsity makes it possible to apply
the compressive sensing technique to reconstruct the locations
and strength of the signal sources.

Instead of tasking an adequate number of sensors [32] ran-
domly based on the CS recovery requirement, to increase the
recovery accuracy while reducing the total number of sensors
involved, we would like to start with a small number of sensors
at random locations. We then adaptively task additional sensors
by learning from past measurement data. Next we will show
mathematically how our matrix structure helps to facilitate this
process.

The strength or energy of many real-world signals decays over
the distance, and could also be impacted by the environment.
Our proposed schemes do not rely on any specific channel



4

models, therefore we denote the channel factor between the
radio transmitter in grid i and receiver in grid j as Cij . The
channel fading and environment impact often add in random
factors into Cij , rendering the channel to be Gaussian.

We abstract the distribution of signal sources into vector
presentation. Let s = [s1, s2, ..., sN ]T be an N × 1 column
vector, where the ith entry si is the aggregate signal strength
of grid i. s is k-sparse with k � N , which means at most k
grids out of N actually have signal sources.

Let Ψ be an N ×N transformation matrix which embodies
the signal energy decaying process over the radio channel:

Ψ =


C11 C21 · · · CN1

C12 C22 · · · CN2

...
...

. . .
...

C1N C2N · · · CNN

 (5)

Then x = Ψs is the received signal strength vector with x(j)
denoting the aggregate signal strength received by the sensor at
grid j from all signal sources.

As illustrated in Figure 1, the sensors tasked to take samples
can be "selected" by an M×N measurement matrix Φ. The mth

row of the matrix is a 1×N row vector with all elements equal
to zero except Φ(m, j) = 1, where j is the index of the grid
at which the sensor m is located. Each entry x(j) denotes the
signal strength received at the sensor in grid j, so the effect of
left-multiplying Φ with the vector x in Equation(2) is to select
M out of N rows of x, or equivalently choose the M sensors
at specific grid positions to take samples.

Under this formulation, a set of sensors can be flexibly and
conveniently specified with matrix Φ to take samples in each
round of the adaptive sensing process. We can take advantage of
the samples acquired in the previous iterations of the adaptive
process and combine them with the new samples to form a more
informative sample vector y, where

y =

(
y′

y′′

)
= ΦΨs =

(
Φ′

Φ′′

)
Ψs (6)

to recover the data using the new Φ matrix. In Equation 6, y′

is the vector of samples already collected by sensors previously
selected by Φ′, and y′′ contains the new samples taken by
sensors newly specified in Φ′′. A selected sensor only needs
to take sample once during the whole sensing process, with
its sample saved and used with later samples to reconstruct
the signal. Therefore, the total number of samples taken in
the whole sensing period equals the number of sensors used,
thus we do not differentiate the number of samples from the
number of sensors thereafter. The spectrum map can be updated
periodically, and for each period, a new sequence of sensing
can be initiated. The reuse of samples from previous rounds is
enabled by our unique sensing matrix structure, which helps to
greatly reduce the sensing resource consumption and serves as
the basis of our algorithms to be proposed.

The sensing matrix A = ΦΨ has been proven in [12], [32] to
obey RIP condition as long as matrix Φ and Ψ are constructed
as defined above. Therefore in each adaptive iteration, we
can safely apply the l1-minimization method to perform the
reconstruction. Although the small number of sensors used in

the beginning phase of the adaptive process would result in
inaccurate reconstruction, in the next section, we will show that
by learning the result from each previous iteration, the process
eventually converges to an accurate reconstruction, while the
overall number of sensors used is significantly reduced.

V. ADAPTATION OF SENSING MATRIX AND PROCESS FOR
IMPROVED SENSING QUALITY

In this work, we propose two learning-based methods in
which a small set of sensors considered to be better will be
tasked to take samples in each round of sensing based on the
reconstruction results from the previous round, then the new
samples together with the existing samples will generate an
improved reconstruction, and so forth. In this section, we first
present our basic setting in Section V-A, and then introduce
in details of our sensing algorithms in Section V-B and V-C,
respectively. Finally, we discuss our strategy in avoiding the
local optimal solution in Section V-D.

A. Basic Setting and Design Consideration

In this paper, we use terms such as "task", "turn on" or "add"
when selecting a sensor to take measurement. The locations of
sensors in terms of which grid are denoted by the set L. For
example, in Figure 1 sensors are installed at grids 2, 4, 5, 6,
etc., then L will have the corresponding elements.

As an iterative scheme, the algorithm needs an initial value to
start with. Specifically, at the beginning of our adaptive sensing
process, we need to decide the number of sensors to take sam-
ples for the first round, then the adaptive algorithm will handle
the following iterations automatically. In order to determine the
optimal number of samples to take, conventional CS techniques
often assume the prior knowledge of the sparsity value k or
estimate k, and their performances are highly impacted by the
accuracy of k value taken. In contrast, our schemes take samples
sequentially and determine the number of additional samples
needed based on the previous estimation results, and the initial
k is only used as a reference. As mentioned in Section III,
2k (k is the sparsity) is believed to be the theoretical extreme
of the number of necessary samples [8] for under-sampled
signal recovery. Our algorithms thus start the first iteration by
activating M (0) = 2k sensors at locations randomly chosen
from the set L to take samples. Our simulation study on the
impact of the starting number of sensors at the first iteration
also reveals that 2k is the optimal choice in terms of the final
total sensing resources needed.

In our proposed adaptive schemes, instead of distributing
the sensing resources evenly to randomly sample the signal
vector and repeating the same sensing process over time, in
each following iteration, we propose to just take a few new
samples around the vector entries detected to have a higher
chance of being nonzero from the reconstruction result of
the previous iteration. Then the new samples combined with
existing samples, as in Equation (6), are applied to reconstruct
the signal vector.

We use ŝ(i) to denote the reconstructed signal after the ith

round of sensing. As we start from sensing with the number
of sensors smaller than necessary for CS recovery, there exists
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inaccuracy in getting each intermediate ŝ(i). Although neither
the positions nor the values of the nonzero entries of ŝ(i) may be
accurate, our preliminary studies indicate that the actual nonzero
entries of the original vector are close to the nonzero positions
indicated by ŝ(i). In our signal detection example, the signal
sources are possibly located in the region close to the grids
corresponding to the nonzero positions of ŝ(i). So by "moving"
sensing focus (i.e., selecting sensors at the desired locations)
towards the estimated locations of the signal sources step by
step, the algorithms will improve the reconstruction results until
the positions and the values of the nonzero entries no longer
change. This way we can find the accurate positions and energy
levels of the signal sources. This also helps to increase the
sensing efficiency and reduce the number of sensors needed.
This is the fundamental principle of our adaptive algorithms.

The learning process iterates until the recovered result has
reached a desired quality or cannot be further improved. Our
results in Section VI will show that the total number of sensors
used in the overall adaptive process is much less than that
needed for a single-time conventional CS recovery for achieving
the same level of accuracy.

One thing to note is that ŝ(i) may contain many nonzero
entries with very small values, which are insignificant and
tedious to consider as the possible positions of targets. It has
to be modified before each next iteration. To be specific, first
all the negative entries of ŝ(i−1) will be set to zero. Then for
the positive entries, all those with values below α% that of the
largest positive entry value in ŝ(i−1) will be set to zeros. The
impact of α on performance is inspected in the simulations.

Based on the same adaptive principle, we propose two differ-
ent algorithms on choosing new sampling locations in the next
round for the signal strength detection problem, depending on
signal source location distributions.

B. Individual Chasing
If there is no knowledge on the locations or distribution

features of signal sources, it is reasonable to assume they are
randomly distributed in the monitoring area. In this case, we will
adapt the positions for sampling towards the estimated location
of each individual signal source given by the last iteration.

In the ith iteration, according to the previous reconstruction
vector ŝ(i−1), for each of its nonzero entry ŝ(i−1)(n), a sensor
in set L whose location is closest to grid n is selected to
take a sample if a measurement is not already taken there
before. It is best to choose the sensor right inside grid n
for sampling. However if there is no sensor located in the
grid n, another sensor in the sensor location set L with the
smallest euclidian distance to grid n will be selected. After
each non-zero position n is ensured to have one sampling in
the corresponding grid, the l1-minimization process is invoked
to get the reconstruction ŝ(i) based on the combined samples
y and combined Φ in Equation (6). The reconstruction result
ŝ(i) is fed into Algorithm 2 for termination condition check to
determine whether the algorithm should end or continue with
more iterations. Algorithm 1 outlines the details of Individual
Chasing in each iteration.

Figure 2-(a) shows the sensor locations when the Individual
Chasing algorithm terminates. It can be observed that sampling

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) Individual Chasing (b) Centroid Chasing

Fig. 2. Illustration of Individual Chasing and Centroid Chasing.

measurements have been taken at each grid with signal source
that also has a sensor inside. For the grids with signal sources
but without sensors deployed, samples are taken at the closest
grids, i.e. samples have been taken by sensors in grid 5 and 15
for nearby signals in grid 9 and 14.

The Individual Chasing scheme adapts well when signal
sources are uniformly distributed in the monitoring field. More
importantly, the simulations in Section VI demonstrate that
the Individual Chasing algorithm converges fast with superior
recovery accuracy regardless of how the signal source locations
are distributed.

Algorithm 1 Individual Chasing
1: In the ith iteration:
2: for each nonzero position n of ŝ(i−1) do
3: find a grid position p in L with the smallest euclidian

distance to grid n.
4: if no measurement has previously been taken at grid p

then
5: take sampling at grid p’s sensor.
6: end if
7: end for
8: combine new samples with existing ones for y.
9: do l1-minimization on y and Φ to get ŝ(i).

10: call Algorithm 2 to check the termination condition.
11: if algorithm does not terminate in this iteration then
12: i = i+ 1, go back to Line 1 and start the next iteration.
13: end if

Algorithm 2 Termination Condition Check

1: if the nonzero positions of ŝ(i) are all the same as ŝ(i−1)

then
2: if the numeric difference of each nonzero value between

ŝ(i) and ŝ(i−1) is smaller than a percentage threshold ∆∗

of ŝ(i−1) then
3: reconstruction process terminates in this iteration.
4: else
5: continue with the next iteration of reconstruction.
6: end if
7: else
8: continue with the next iteration of reconstruction.
9: end if

10: ∗ the choice of ∆ is given in SectionVI
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C. Centroid Chasing

In some scenarios, the signal sources may locate closely and
form clusters. The clustering patterns of signal sources may
be exploited to guide the sampling locations to facilitate the
finding of signal sources with even fewer sensor measurements.
For example, in an urban area, a region with high noise often
indicates the existence of some events, such as street concert,
parade, or riot. In this case, many sound sources may stay
closely, and there is a need to detect the high noise areas to
identify the events and protect against potential harm to the
community. The microphones of cell phones can be exploited
to collaboratively detect the strength and location of these sound
sources.

The Centroid Chasing scheme initializes similarly as Individ-
ual Chasing by randomly activating M (0) = 2k sensors from the
set L to start the first iteration. Algorithm 3 details the actions
for each consecutive iteration. Let T(i−1) denotes the set of
grid numbers that correspond to the non-zero positions of the
reconstructed ŝ(i−1), which indicate the possible grid positions
where signal sources may reside estimated in the ith round. In
the ith iteration, grid numbers in T(i−1) are grouped into C

clusters based on their mutual euclidian distances, with T(i−1)
t

denoting the set of grids belonging to the tth (t = 1, ..., C) clus-
ter. The optimal clustering criteria is given later. The minimum
rectangular region that covers all the grids of the tth cluster is
called the cluster region of the tth cluster, and its size R(i−1)

t

is the number of grids it covers. For each cluster, based on its
signal target density defined as |T(i−1)

t |/R(i−1)
t , M (i−1)

t closest
sensors (these sensors could be either within or outside of the
rectangular cluster region) will be selected for samplings at this
iteration, where

M
(i−1)
t = |T(i−1)

t | · (1− |T
(i−1)
t |

R
(i−1)
t

). (7)

Equation (7) reflects the tendency to put less sensing resource
in a cluster region when the target sources are denser. The
number of sampling positions to be considered for adding at
each iteration is controlled to be less than that of the Individual
Chasing method, which is |T(i−1)

t |, by multiplying it with the
density which is a value smaller than 1. This feature, however,
may result in more iterations needed thus more sensors involved
than the Individual Chasing algorithm when the signals are
sparsely distributed and poorly clustered. The performances
of two algorithms are compared under different scenarios in
the simulation. Again, the new measurements obtained at the
current iteration will be combined with existing samples for CS
reconstruction, which will be checked by termination condition
afterwards.

Specifically, Line 2 of Algorithm 3 clusters the possible signal
sources whose positions are estimated by the nonzero positions
of ŝ(i−1). This procedure starts at an initial empirical number of
clusters C =

√
|T(i−1)|/2, where |T(i−1)| is the total number of

elements in the set to be clustered, as given in [26]. The optimal
number of clusters to form is found by varying the number of
clusters C and picking the one under which the average distance
between each grid position to the centroid of cluster it belongs
to is minimal. After clustering, a smaller number of sensors can

Algorithm 3 Centroid Chasing
1: In the ith iteration:
2: group the grids in T(i−1) into C clusters.
3: for each of the cluster T(i−1)

t do
4: find the M (i−1)

t sensors in L that are closest in euclidian
distance to the center of the tth cluster region.

5: if any of these M
(i−1)
t chosen sensor grids has not

sampled before then
6: activate the sensors at these grids.
7: end if
8: end for
9: combine new samples with existing ones for y.

10: do l1-minimization on y and Φ to get ŝ(i).
11: call Algorithm 2 to check the termination condition.
12: if algorithm does not terminate in this iteration then
13: i = i+ 1, go back to Line 1 and start the next iteration.
14: end if

be tasked in the signal concentrated area to achieve even higher
sensing efficiency.

Figure 2-(b) shows the sensing condition at the end of the
Centroid Chasing algorithm. Grids with signals are grouped into
3 clusters. Within each cluster, a portion of the closest sensors
are activated for sampling. Compared with Individual Chasing
scheme on the left of the figure, fewer number of sensors are
used given the signal sources have a nice clustering feature.

The Centroid Chasing algorithm is specially suitable for
applications with knowledge of clustered distribution, which,
nonetheless, does not prevent its applicability in general cases.
The simulations in section VI-D show that Centroid Chasing
algorithm outperforms the Individual Chasing algorithm when
the signal sources are denser in clusters, and works almost
equally efficient in general scenarios where the signal sources
are sparsely distributed.

D. Local Optimum Avoidance - Random Exploration
Very unlikely but possible, adaptive algorithms could con-

verge at the local optimum. In our problem, local optimum
does not give accurate reconstruction at the algorithm termi-
nation time. In an iterative scenario, one can only look at the
intermediate results to decide whether the iteration should stop.
The Individual Chasing and Centroid Chasing algorithms will
stop when consecutive iterations present no more change in the
results. In order to avoid possible local optimum, we introduce
an extra step called Random Exploration. To be specific, for both
algorithms, when the Termination Condition Alg.2 is satisfied at
certain iteration, we do not terminate the program immediately.
Instead, we randomly pick up some sensors that have not been
activated before to take samples, then re-enter the adaptive
process and let it converge again. This random walk procedure
is proved to work extremely well in our simulations.

VI. SIMULATION AND PERFORMANCE EVALUATION

We evaluate the performance of our two proposed learning-
based compressive sensing schemes through extensive simula-
tions. Before showing our simulation results, we first introduce
our performance metrics and simulation set-up.
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A. Performance Metrics
• Reconstruction Error: defined as the Sum of Absolute

Difference (SAD) between the recovered and the original
signal vector:

SAD = ‖ŝ− s‖l1 =

N∑
i=1

|ŝi − si| (8)

This measurement metric evaluates the accuracy of vector
reconstruction. It reflects not only the degree of error due
to the position mismatch of nonzero entries, but also the
difference in magnitude for each unmatched entry.

• Number of Sensors Needed (M ): in our adaptive algo-
rithms, new sensors may be added for sampling in each new
iteration. The number of sensors needed for our algorithms
are defined as the total number of sensors used during
the whole sensing process, which is the least number of
sensors needed in our performance studies to give 100%
reconstruction accuracy.

B. Simulation Set-Up

We simulate the general problem on forming the energy mea-
surement map and compare the performances of our proposed
schemes with peer works. dBm is adopted as the measurement
unit of signal strength in our simulation. One grid could have
multiple signal sources, and the overall signal strength for a grid
is the aggregate of these signals. Being aware that the numeric
scale of the nonzero entries of signal vector is not critical to
the problem of compressive sensing recovery but actually the
sparsity is, we assume a range of 30-500 dBm for the possible
aggregated signal strength inside any single grid. For every
simulation run, signal sources are generated at random locations
across the sensing region with the aggregate signal strength of
a grid to be a random value selected from the 30-500 range.

The simulation is carried out with MATLAB. Our schemes
improve the sensing performance benefitting from the adaptive
chasing process, but do not rely on any adopted specific channel
model as previously pointed out. In the simulation, we would
like to use a specific radio channel model to test our schemes.
We define the channel as the following. The strength at location
j for a signal source at location i is roughly approximated as:

Pij =
PiGij
dβij

, where Gij = Xij + Yij · i (9)

Pi is the signal strength at its source location i, which is
essentially the aggregated strength of signal sources at grid i, i.e.
si The denominator represents the path loss due to the distance
dij between locations i and j. β is the decaying factor with
possible value in [2.0, 5.0], depending on the environment. ‘i’ is
the imaginary sign. Gij is a complex random Gaussian variable
with real and imaginary components both being independent and
identically distributed zero-mean Gaussian variables Xij ,Yij ∼
N (0, σ2

0), which captures the Raleigh distribution for multi-path
fast fading of the signal [7], [11]. The variance σ0 is set to 0.5
as in [32] for fair comparison that follows. Gij

dβij
corresponds to

Cij in the channel model of Equation (5).

In the short duration of performing the sensing task, sen-
sors (essentially cell phones in our application) will not have
significant moving distance or move across grids. For each
sensing task, 400 sensors are randomly deployed in an area
of N = 30 × 30 = 900 grids with at most one sensor inside
one grid, as we can always select one sensor to participate in
the sensing task when a grid has multiple sensors inside as
discussed previously. The size of each square grid is set to
30 meter which can reasonably reflect the distance effect in
signal propagation. Although the grid size determines the signal
monitoring resolution, it does not have significant impact on the
performance of our algorithms once the resolution requirement
is given. There are k(k << N) grids with signal sources at a
given time instant. k is the sparsity value, which is varied in
different simulation studies. The termination condition threshold
∆ in Alg.2 is set to 5% which will generally guarantee the
recovery result to be accurate at the algorithm termination
time with the recovery error in the order of 10−4 even for
real valued signal vectors based on our preliminary studies.
To compare our two schemes, the positions of k grids with
signal sources can be either distributed in a clustered fashion,
or uniformly distributed. To examine the reliability performance
of our schemes, Gaussian White noise N(0, σ2) is added to the
observed sample vector y in some of the simulation runs, and
SNR measure is exploited to quantify the noise strength. Each
presented result is the average of many runs.

Our proposed two algorithms Individual Chasing and Cen-
troid Chasing, also referred to as IC and CC from now on, do
not depend on any specific CS reconstruction technique. Thus
we chose two fundamental and most prevalent types of work for
performance evaluations-l1 minimization based CS and greedy
based CS. GMP [32] provides a greedy based reconstruction
algorithm for CS, and also exploits the received signal strength
at different grid positions to help solve the target localization
and counting problem. l1-magic is a concise and dominant
realization of l1 minimization based CS scheme, which can
be directly applied to and is thus worth comparing with our
simulation scenario of signal strength vector reconstruction.

C. Parameter Study

For our adaptive algorithms, the total number of sensors used
increases after each iteration. Naturally, the number of sensors
taken in the first iteration would have impact on the final total
number of sensors used. In Figure3-(a), we study the optimal
starting number of sensors for our Individual Chasing algorithm.
For each sparsity k, the optimal choice on the number of sensors
to start with is clearly around 2k. Intuitively, if we start with
too few sensors, the intermediate recovered vectors will be very
inaccurate and result in much more iterations thus more sensors
involved in total; however starting with too many sensors at the
beginning would provide more sensing resources than needed
which again causes more sensors in total. Therefore the number
of sensors to start with for both Individual Chasing and Centroid
Chasing algorithms will be set to twice the value of k in the
following simulations if not otherwise specified.

In Section V, we mentioned the trimming threshold α, based
on which a portion of insignificant nonzero entries of the
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Fig. 3. (a) The number of sensors ultimately used vs. the number of sensors
started with. (b) The number of sensors ultimately used vs. the trimming
threshold α

recovered vector are set to ‘0’ before the next iteration in
order to shrink the target range of nonzero entries to work on.
In Figure 3-(b), we fix k at 50, but vary the average signal
source transmitting power (i.e. magnitude of each vector entry)
at three distinct levels-1000, 200 and 50 dBm, and investigate
the number of sensors needed for accurate recovery using each
different trimming threshold. Since the range of α picked spans
over several orders of magnitude, we apply base-10 logarithm
on α% as the x-axis. It can be clearly observed that for each
setting of signal vector magnitude, there is an optimal range of
α that gives the minimum number of sensors needed. Out of this
range, the performance deteriorates and quickly reach a steady
level. This is because only when the α% is appropriately chosen
that not too many components of the vector are wiped out nor
too many insignificant ones are preserved will the reconstruction
process requires the least number of sensors.

With the aggregate signal strength ranging between 30-500
dBm, the average signal strength in our simulation is close to
200 dBm. According to the figure, 1% is adopted as the default
trimming threshold in the simulations that follow.

D. Number of Sensors Needed
Pursuing a minimum number of sensors needed for an accu-

rate signal reconstruction is the major challenge and research
focus in the closely related research fields. We evaluate the
minimum number of sensors needed for accurate signal vector
reconstruction (zero reconstruction error) under different levels
of signal sparsity for each scheme in Figure 4. As expected,
the number of sensors needed increases as k grows for all the
algorithms. Particularly, Figure 4-(a) is under the scenario where
the signal sources are randomly uniformly distributed across the
network grids. IC performs slightly better than CC as expected.
The clustering function of CC is not effective when the signal
sources are uniformly distributed, which leads to more iterations
to converge and more sensors needed. Compared to GMP, IC
requires 45% fewer sensors when k is small, and about 23%
fewer sensors when k gets bigger. IC requires 46%−25% fewer
sensors than l1-magic for different k.

In Figure 4-(b), the signal sources are distributed in clustered
fashion across grids, which benefits the clustering process of CC
algorithm. Thus CC is observed to require fewer sensors than IC
as the number of signal sources exceeds certain value. While
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Fig. 4. (a) scattered signal sources. (b) clustered signal sources.

the performance difference between IC and CC is small, CC
requires 40%− 33% fewer sensors than GMP, and 40%− 30%
fewer than l1-magic, which are big improvements. In general,
both IC and CC work extremely well no matter the signal
sources are concentrated or scattered, and far outperform the
other two schemes under the same k.

Given the performance difference between IC and CC is small
and both algorithms follow the same principle, we only study
and compare IC with the other two schemes and assume the
signal sources are randomly and uniformly distributed in the
simulations that follow.

E. Reconstruction Error
1) Convergency Study: We study the convergency of IC

in Figure 5-(a). It is clear that under all k, IC is able to
converge within 3-6 iterations to get accurate reconstruction
with 0 error, and it exhibits a rather steady (approximate-
linear) improvement in reducing the reconstruction error in each
iteration. It converges faster for larger k. This is due to the
fact that we initialize 2k number of sensors for the optimal
performance. With a larger k, there are more samples taken at
the beginning, therefore it needs fewer iterations to get enough
overall sensor samples for accurate recovery.
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Fig. 5. (a) Convergency study of Individual Chasing algorithm. (b) The
reconstruction error comparison due to noise under the same k = 50 and
M = 250.

2) Performance Under Noise: The adaptive algorithms can
always find the accurate reconstruction given enough iterations
and proper handling with local optimum avoidance. However
in a noisy environment where the sample y is contaminated,
the final reconstructed result could be different from the actual
signal vector.
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The reconstruction errors due to sampling noise for different
algorithms are compared in Figure 5-(b). The reconstruction
error reduces as signal-to-noise ratio increases for all three
schemes. Under the same sensing condition of k = 50 and
M = 250, at each SNR level, IC gives much more accurate
result than the other two. In the worst scenario with the strongest
noise at 15dB SNR in our test setting, the reconstruction error
for IC is approximately (14000− 6000)/14000 = 57% smaller
than that of l1-magic. GMP is slightly more accurate than l1-
magic under the same sensing setting, because it enumerates all
possible values for each possible nonzero position of the vector
at the cost of higher computational overhead.

VII. CONCLUSION

Rather than using conventional random sampling in com-
pressive sensing, we observe and theoretically prove that by
learning from the sensing results and adjusting the structure of
the sensing matrix adaptively, the number of samples needed for
high-quality signal recovery in compressive sensing can be sig-
nificantly lower than that required by the basic l1 minimization
solution. We propose two learning-based adaptive algorithms,
Individual Chasing and Centroid Chasing, for different signal
source distribution scenarios. Both schemes adaptively concen-
trate sensing resources to proper signal subspace towards better
acquisition of signals, and do not depend on any specific CS
reconstruction methods. The instantiation of our algorithms to
solve the general signal strength sensing problem with distance
fading can be conveniently generalized to various similar appli-
cations. Extensive simulations demonstrate that our algorithms
can achieve as much as 57% more accurate signal recovery
under noisy conditions, and require up to 46% fewer sensors
than state-of-the-art related works.
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