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Abstract—Recently, implementing Radio Access Network
(RAN) functionalities on cloud-based computing platform has
become an emerging solution that leverages the many advantages
of cloud infrastructure, such as shared computing resources
and storage capacity, while lowering the operational cost.In
this paper, we propose a novel caching framework aimed at
fully exploiting the potential of such Cloud-based RAN (C-
RAN) systems through cooperative hierarchical caching which
minimizes the network costs of content delivery and improves
users’ Quality of Experience (QoE). In particular, we con-
sider the cloud-cache in the cloud processing unit (CPU) as a
new layer in the RAN cache hierarchy, bridging the capacity-
performance gap between the traditional edge-based and core-
based caching schemes. A delay cost model is introduced to
characterize and formulate the cache placement optimization
problem, which is shown to be NP-complete. As such, a low
complexity, heuristic cache management strategy is proposed,
constituting of a proactive cache distribution algorithm and
a reactive cache replacement algorithm. Extensive numerical
simulations are carried out using both real-world YouTube video
requests and synthetic content requests. It is demonstrated that
our proposed Octopus caching strategy significantly outperforms
the traditional caching strategies in terms of cache hit ratio,
average content access delay and backhaul traffic load.

Index Terms—Hierarchical caching; cooperative caching;
cloud Radio Access Networks; C-RAN.

I. I NTRODUCTION

Overview: Over the last few years, the raise of social net-
works (Facebook, Twitter, Instagram...), entertainment appli-
cations and multimedia content providers (YouTube, Netflix,
etc.) has generated a burgeoning traffic demand on wireless
mobile network. It is expected that mobile traffic will increase
by 10-fold by 2018 while Content Delivery Networks (CDNs)
account for36% of the Internet traffic [1]. This demand has
fundamentally shifted from being the steady increase in traffic
for connection-centric communications, such as phone calls
and text messages, to the explosion of content-centric commu-
nications, such as video streaming and content sharing. The
mobile cellular network architectures of today are, however,
still designed with a connection-centric communication mind-
set. Moreover, the myriad technological advances proposedfor
beyond 4G and 5G mobile networks are mostly geared towards
capacity increase, which is fundamentally constrained by the
limited radio spectrum resources as well as the diminishing
investment efficiency for operators. In order to support massive
content delivery in an affordable way, improving network

capacity alone is not sufficient and has to be accompanied
with innovations at higher layers.

In today’s mobile networks, computing and storage ca-
pabilities are already ubiquitous, both at the Base Stations
(BSs) and on user devices themselves. In-network caching,
which proactively stores popular contents at the network nodes
(preferably close to the users), has therefore become a very
promising solution to reduce latency and network costs of
content delivery. When a user requests for a content that is
cached in a nearby network node, that network node can di-
rectly provide the content to the user, rather than downloading
it from the origin server in the CDN.

A caching system in RAN could also leverage the current
trends towards a Cloud-based Radio Access Network (C-
RAN) [2]. In C-RAN, the computational functionalities of
the BSs are implemented in a common cloud processing
unit (CPU) which can be hosted in a small data center.
The centralized nature of C-RAN enables highly dynamic
management of on-demand resource allocation [3], [4] and
collaborative communications [5], [6]. Additionally, theCPU
with strong computing resources and storage capacity can
provide a central port for traffic offload and content manage-
ment to handle growing Internet traffic from mobile users.
This directly translates into Capital Expenditure (CapEx)and
Operational Expenditure (OpEx) reduction as well as user
experience improvement [7].

In this paper, we leverage C-RAN architecture and propose
a novel cooperative hierarchical caching strategy, Octopus,
with distributededge-cachesat the BSs and the intermediate
cloud-cacheat the CPU. The deployment of edge-caches and
cloud-cache are complementary and interoperable. The overall
system design and optimization solution for such caching
systems, which could involve researches at multiple layers,
is a complex problem and would go well beyond the scope of
this paper. Here, assuming that the information about content
popularity is available, we focus on the cache placement
optimization problem which addresses the questions ofwhat
and where to place the contents among the cache nodes.
In particular, we identify an efficient cooperative in-network
caching strategy aiming at minimizing the total expected cost
of content delivery.

Related Works: Recently, some prior works on content
caching in cellular networks have proposed to deploy caches
at the edges of the RAN (i.e., the BSs) [8]–[10]. In [8], the
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Fig. 1. Illustration of a C-RAN caching system where the cloud-cache is
deployed at the CPU and the edge-caches are deployed at the BSs.

authors propose to alleviate backhaul congestion via proactive
caching at the small cell BSs, whereby files are proactively
cached during off-peak hours based on file popularity and
correlations among users and file patterns. In [10], the notion
of femtocaching is introduced, in which the femtocell-likeBSs
are used to form a distributed caching network that assists the
macro BS to handle requests of popular files that have been
cached. The authors also consider the case that each mobile
user can access multiple caches, and present approximation
algorithms to address the distributed cache assignment prob-
lem. In [11], the authors also consider cooperative caching,
where each user can accesss multiple caches from neighboring
BSs, and propose an online caching algorithm that does not
require prior knowledge about the content popularities in order
to address the problem of minimizing the total cost paid by
the content providers. The work in [9] utilizes User Preference
Profiles (UPPs) of active users in a cell to derive RAN-aware
reactive and proactive video caching policies.

While offering great potential to bring popular content
closer to the users, the aforementioned caching schemes only
rely on the deployment of edge-caches. Hence, due to limited
cache size at the BSs (compared to the very large amount of
popular content), theseedge-onlycaching schemes suffer from
high cache miss ratio. To compensate for the relative small
cache size at the BSs, the authors in [12] consider caches
both in the RAN edge and in the Evolved Packet Core (EPC).
Along this line, the techniques in [9] are further extended to
a hierarchical caching scheme in [13] where the gateways
in the EPC also have video caches. While it is possible to
implement relatively large cache size at the EPC to improve
the cache hit ratio, fetching content from EPC to the BSs
still undertake considerable delay due to the involvement of
multiple intermediate network components.

Our Contributions: Unlike existing approaches, we con-
sider the deployment of edge-caches in cooperation with the
additional cloud-cache at the CPU in a C-RAN. Such cloud-
cache presents a new layer in the RAN cache hierarchy,
bridging the gap between the edge-based caching (small cache
size, low access latency) and core-based caching schemes
(large cache size, high access latency).

We formulate a cache management optimization problem
aiming at minimizing the total average delay cost, subject to
the cache size constraint at each node. We show that this is
an NP-hard problem and propose a low-complexity, heuristic
strategy involving a proactive cache distribution (PCD) al-
gorithm and a reactive cache replacement algorithm (RCR).
In particular, the PCD algorithm starts with an empty cache
set, and incrementally places content files in the caches until
they are all full. The PCD algorithm yields a solution with at
least12 of the optimal value. Such solution is further improved
by running the RCR algorithm which determines whether to
replace a cached file with a new one when it is downloaded
to the local RAN due to a cache miss.

We carry out extensive numerical simulations using both
the real world YouTube video request trace and the Zipf-based
popularity model. It is demonstrated that Octopus significantly
outperforms traditional caching deployment architectures and
cache management algorithms in terms of cache hit ratio,
average content access latency and backhaul traffic load. The
reduction in backhaul traffic load and content access latency
can be directly translated into sizable cost savings in both
backhaul and transport OpEx as well as user experience
improvement.

Paper Organization: The remainder of this paper is orga-
nized as follows: in Sect. II, we present the system description
and formulate the cache management optimization problem;
in Sect. III, we propose the efficient algorithm for the cache
management problem; performance evaluation via numerical
simulations is presented in Sect. IV and, finally, Sect. V
concludes the paper.

II. CACHING SYSTEM MODEL

In this section, we describe the cooperative hierarchical
caching system. The delay cost model is then introduced
in order to formulate the cache management optimization
problem.

A. System Description

Let us consider a C-RAN that consists of a setR =
{1, 2, ...R} of R BSs distributed inR corresponding cells and
a setU = {1, 2, ...U} of U active users. All the BSs are
connected to a common CPU via low-latency, high-bandwidth
fronthaul links as illustrated in Fig. 1. The collection of files
available for download is denoted asF = {f1, f2, ...fF }, in
which the sizesi [MB] of each file is assumed to be the same,
as considered in [10]. This assumption is mainly used for no-
tational convenience, and could be easily lifted by considering
a finer packetization, and breaking longer files into blocks of
the same length. We define the popularity distribution of the
files asP = {p1, p2, ...pF }, i.e., the probability of thekth file
being requested from any user in the network ispk. While
predicting the file popularity is a challenging task in terms
of accuracy and scalability, the recent advances in machine
learning and data mining techniques have made significant
progress on achieving this goal. Such techniques could involve
analysing data from popular web sites, news papers and social



networks to determine, around a specific BS, what kinds of
contents people like, search for, and what are the consumer
profiles of these people.

We consider that each useru only connects to and receives
data from the nearest BS (in terms of signal strength), which
we later refer to as the useru’s home BS, and denote
Ur ⊆ U as the set of users served by BSr. Further extension
to the system employing Coordinated Multi-Point (CoMP)
transmissions, where each user can be served by multiple
BSs, will be explored in a separate work. We consider that
each BSr is equipped with anedge-cache, denoted asCr,
with storage capacity ofMr [files], and the CPU is equipped
with a cloud-cache, denoted asC0, with storage capacity of
M0 [files] (usuallyM0 ≫ Mr, r = 1, ...R). To describe the
cache placement decision, i.e., which files stored in which
caches, we define the cache placement ground set as,

V = {f10, f20, ...fF0, ...f1R, f2R, ...fFR} , (1)

where fir denotes the copy of filefi in cache Cr. Note
that the indexing of cachesCr’s, r = 0, 1, ...R, includes all
the edge-caches and cloud-cache. In the subsequent analysis,
unless otherwise stated, we will refer to the filefi and fir
interchangeably. The ground setV can be partitioned into
R+1 disjoint sets,V0,V1, ...VR, whereVr = {f1r, f2r, ...fFr}
is the set of all files that might be placed in the cacheCr.
Hence, we can writeCr ⊆ Vr. A feasible cache placement
decision, denoted asC = {C0, C1, ...CR}, must satisfy the
storage capacity constraints as follows,

|Cr| ≤Mr, ∀r = 0, 1, ...R. (2)

In the current 4G cellular network, the eNodeBs are inter-
connected via the X2 interface that is designed for exchanging
control information or users’ data buffer during handover [14],
[15]. While this X2 interface is available for limited data
transfer, it cannot be exploited for inter-cache data transfer and
hence the eNodeBs cannot share their cache contents directly.
In contrast, the BSs in cloud-based RAN are all connected to
the common CPU via high-bandwidth, low-latency CPRI links
for user data transportation [16]–[18]. This allows each BSto
retrieve cache contents from the neighboring BSs via a “U-
turn” (BS-CPU-BS) using fronthaul links. Note that retrieving
cache data from neighboring BSs is more latency- and cost-
effective than fetching content from the original remote server
in the CDN via the backhaul network [11], [12], [19]. In this
paper, we consider acooperative hierarchical cachingstrategy
where the cloud-cache and edge-caches collaboratively form
an “octopus-like” caching network connected via fronthaul
links. This scheme fully exploits the extra degrees of coop-
eration brought by C-RAN to pool the resources and increase
cache hit ratio, reducing outbound requests to the higher level
network elements.

In the proposed system, we consider that there is a Central
Cache Manager (CCM) implemented at the CPU to monitor
all the requests generated from users within the local RAN,
and is responsible to make cache (re)placement decision. In
addition, leveraging the powerful processing capability at the

CPU, one can implement sophisticated learning and prediction
algorithms to estimate the content popularity informationP .
While the actual content files are physically stored in the
separated caches, a global indexing table can be maintainedby
the CCM to facilitate content lookup and cache management.
When a useru ∈ Ur makes a request for the filefi that
is already stored in the local edge-cacheCr, it can directly
download the filefi from Cr without incurring traffic on the
fronthaul and backhaul links. If the requested filefi is not
stored in the local edge-cache, the request is forwarded to the
CCM at the CPU. Upon receiving the request for filefi from
BS r, the CCM will firstly search forfi in the cloud-cache
C0, and then in the neighboring caches of BSr, i.e., Ck ’s,
k 6= r. Oncefi is found in one of the caches, the CCM will
direct the user to download the file directly from that cache via
fronthaul links; otherwise the user will download the file from
the origin server in the CDN, incurring traffic in the backhaul
links. In Fig. 2 we illustrate the overview of our proposed
Octopus caching system with three use cases within which the
requested content is retrieved from the local edge-cache (user
1), the neighbor edge-cache (user 2) and the cloud-cache (user
3), respectively.

Although the cache storage can be relatively large, the
number of files that can be stored in each cache is limited
compared to the total number of files available. When a user
request for a file that is not available in the cache of its home
BS, it has to retrieve the file from other places, incurring
additional access delay and fronthaul (and possibly backhaul)
bandwidth consumption. While the cost associated with access
delay and bandwidth consumption are often proportional and
interchangeable, we will focus on the cost model for content
access delay as considered in [10], [12]. The reduction of
such cost directly translates into users’ quality of experience
(QoE) improvement. It is therefore imperative to design an
efficient cache management strategy so as to minimize the
expected network cost and content access delay. A cache
management strategy involves the cache distribution decision,
i.e., placing files in the caches, and the cache replacement
decision, i.e., updating existing files in the caches. In the
following, we first introduce the cost model to characterizethe
cache management scheme and then formulate the underlying
optimization problem.

Let dr denotes the delay cost of transferring a file from the
cloud-cache to BSr via fronthaul link, which we assume to
be the same as the delay cost of retrieving that file from edge-
cacheCr to the CPU. Letd0 denotes the delay cost incurred
when a user downloads a file from the original server in the
CDN. Furthermore, we assume the cost of transferring a file
from cache of BSk to BS r is drk. In practice,d0 is usually
of many-fold higher thandr and drk [12], [19], [20]. This
makes it cost-effective to retrieve content from the in-network
caches whenever possible rather than downloading them from
the CDN. We consider that the incurred delay cost of a user
downloading a file directly from its home BS’s cache is zero.
In order to formulate the cache management problem, let us
define the following 0-1 decision variables for a given cache



Fig. 2. Illustration of Octopus caching system constitutedof cloud-cache
C0 and edge-cachesC1, ...CR which can share cached contents via fronthaul
links. Example: requests from user 1 (in cell 1) and user 2 (incell 2) are
retrieved from edge-cacheC1, request from user 3 in cellR is retrieved from
cloud-cache.

placement decisionC as follows,

cir(C) =

{

1 fir ∈ Cr,
0 otherwise,

(3)

xk
ir =







1 if request for filei from BS r is retrieved
from cacheCk, k 6= r, k ∈ {0, 1, ...R} ,

0 otherwise,
(4)

xR+1
ir =







1 if request for filei from BS r is retrieved
from the CDN,

0 otherwise,
(5)

∀i ∈ F , r ∈ R.

Since each request should only be downloaded from the
nearest possible place (having lowest cost), we impose the
following constraint,

∑R+1

k=0
xk
ir = 1, ∀r = 1, ...R. (6)

For a given cache placement decisionC and the popularity
distributionP , we can calculate the average delay cost of user
u ∈ Ur as,

D̄u =
∑

i∈F

pi(x
0
irdr +

∑

k∈R\r

xk
irdrk + xR+1

ir d0). (7)

Using this cost model, the cache management optimization
problem is formulated in the next subsection.

B. Problem Formulation

Given the content popularity distributionP and the con-
strained storage capacities of the caches, we wish to find an
efficient cache management strategy in order to minimize the
total average delay cost of all the users in the network. In
particular, we consider adynamiccache management strategy
that involves proactively distributing content files in thecaches
and reactively updating the cached files. Notice that multiple
copies of the same file can be stored at different caches.

The underlying optimization problem to realize the proposed
strategy can be formulated as follows,

min
C

∑

u∈U

D̄u, (8a)

s.t.
∑

i∈F

cir(C) ≤Mr, ∀r = 0, 1, ...R, (8b)

R+1
∑

k=0

xk
ir = 1, ∀r = 1, ...R, (8c)

xk
ir ≤ cik(C), ∀r = 1, ...R, k = 0, 1, ...R. (8d)

with D̄u given in (7). The objective function in (8a) represents
the total average delay cost experienced by all the users in
the network. The constraint in (8b) imposes the cache storage
capacities and the constraint in (8d) ensures that a content
file can be retrieved from a cache only if it has been stored
in that cache. From constraint (8c), we can substitutexR+1

ir

by 1 −
∑R

k=0 x
k
ir into (7), and problem (8) can be recast as

a problem of maximizing the average delay cost reduction,
expressed as,

max
C

∑

u∈U

∑

i∈F

pi

(

xr
ird0 + x0

ir (d0 − dr) +
∑

k∈R\r

xk
ir (d0 − drk)

)

,

(9a)

s.t.
∑

i∈F

cir(C) ≤Mr, ∀r = 0, 1, ...R, (9b)

∑R

k=0
xk
ir ≤ 1, ∀r = 1, ...R, i = 1, ...F, (9c)

xk
ir ≤ cir(C), ∀r = 1, ...R, k = 0, ...R, i = 1, ...F. (9d)

The objective function in (9) can be seen as the sum of
utility valueseen by each user and our goal here is to maximize
the sum utility value seen by all users. It can be shown that this
problem is NP-complete (please refer to Appendix) and global
optimal solution usually possesses exponential computational
complexity which is impractical to implement. Therefore, our
approach aims for a low-complexity, suboptimal solution that
can be implemented in practical system. In particular, we
will show that problem (9) belongs to the classical class of
problems of maximizing amonotone submodular function
over a matroid constraint [21], [22]. We then propose a
greedy cache management solution for problem (9) consisting
of a cache distribution algorithm and a backtracking cache
replacement algorithm.

III. PROPOSEDAPPROACH

We start this section by presenting some essential back-
ground material and intuition of our approach for the cache
management problem. We then present the description of our
proposed cache distribution and replacement algorithms.

A. Preliminaries

In the following, we provide the basic definitions of ma-
troids and submodular functions [23], which will be used in
the analysis in the next subsection.



Matroids. A matroid is a pair(V , I) such thatV is a finite
set, andI ⊆ 2V is a collection of subsets ofV satisfying the
following two properties

• I is downward closed, i.e., ifA ⊆ B ⊆ V andB ∈ I
thenA ∈ I.

• If A,B ∈ I and |A| < |B|, then there existse ∈ A\B
such thatB ∪ {e} ∈ I.

Matroids generalize the concept of linear independence
found in linear algebra to general sets, and sets inI described
above are calledindependence. One of the important applica-
tions of matroids is the concept of matroid constraint defined
via thepartition matroid. Consider a finite ground setV that
is partitioned inton disjoint setsV1,V2, ...Vn with associated
integersm1,m2, ...mk, a partition matroidI is given as,

I = {A ⊆ V : |A ∩ Vi| ≤ mi, ∀i = 1, ...n} . (10)

Subodular functions. Consider a finite ground setV , a set
function g : 2V → R is submodular if for all setsA,B ⊆ V ,

g (A) + g (B) ≥ g (A ∪B) + g (A ∩B) . (11)

Given a submodular functiong : 2V → R andA,S ⊂ V , the
function gA defined bygA (S) = g (A ∪ S) − g (A) is also
submodular, and ifg is monotone thengA is also monotone.
For i ∈ V , we abbreviateA ∪ {i} by A + i. Let gA (i) =
g (A+ i) − g (A) denote the marginal value of an element
i ∈ V with respect to the subsetA ⊆ V . Then,g is submodular
if for all A ⊆ B ⊆ V , and for alli ∈ V\B we have,

gA (i) ≥ gB (i) . (12)

Intuitively, submodular functions capture the concept of di-
minishing returns: as the set becomes larger the benefit of
adding a new element to the set will decrease. The functiong
is monotone if forA ⊆ B ⊆ S, we haveg (A) ≤ g (B).

B. Proposed Algorithms

We exploit the special structure of problem (9) to formu-
late it as the problem of maximizing a submodular function
subject to matroid constraints. In particular, motivated by the
approach in [10], we will show that the constraints in (9) can
be expressed as the independent sets of a matroid and the
objective function can be expressed as a monotone submodular
function.

Firstly, recall that every cache placement decisionC is a
subset of the ground setV defined in (1), and we haveCr =
C ∩ Vr. With this position, the cache capacity constraints in
(9b) are equivalent to the conditionC ⊆ I, where,

I = {C ⊆ V : |C ∩ Vr| ≤Mr, ∀r = 0, 1, ...R} . (13)

From (10) and (13) we can see that our constraints form
a partition matroidM = (V , I). In addition, notice from (3)
that the set{cir(C) : i ∈ F} can be considered as the Boolean
representation ofCr. We now have the following Lemma:

Lemma 1. The objective function in (9a) is a monotone
submodular function.

Proof: For each filefi ∈ F and cacheCr, r = 0, 1, ...R,
we introduce the new variablestkir ’s as:trir = d0, t0ir = d0−dr,
tkir = d0 − drk, ∀k ∈ R\r. The objective function in (9a) can
be expressed as,

∑

r∈R

∑

u∈Ur

∑

i∈F

piD̃
i
u, (14)

where D̃i
u =

R
∑

k=0

xk
irt

k
ir. (15)

Since sum of monotone submodular functions is monotone
submodular, it is enough to prove that for a useru ∈ Ur, the
set functiongu (C) = D̃i

u is monotone submodular. Firstly,
notice that from (15), we have,

gu (C) = max
k∈{0,1,...R}

tkir s.t. cik (C) = 1, ∀C ⊆ V . (16)

For a new file fin ∈ V\C, let Cin = C + fin. It is
straightforward to verify thatgu (Cin) ≥ gu (C) and, therefore,
gu (C) is a monotone function∀C ⊆ V . Intuitively, adding a
new file to a cache placement set cannot decrease the value
of the set function.

Let us now consider another cache placement set (decision)
K such thatK ⊆ C. DenoteKin = K+fin, we havegu (K) =
t
(K)
ir andgu (Kin) = t

(Kin)
ir . Sincegu (.) is monotone, we have,

gu (C) ≥ gu (K) . (17)

The marginal value of adding the filefin to the setsC andK
can be expressed, respectively, as,

gu,C (fin) = gu (Cin)− gu (C) , (18)

gu,K (fin) = gu (Kin)− gu (K) . (19)

In order to prove thatgu (.) is submodular we need to show
that gu,K (fin) ≥ gu,C (fin), or equivalently, that∆in

u =
gu,K (fin) − gu,C (fin) ≥ 0. Using (16), we now distinguish
three cases below,

(i) tnir > gu (C): We havegu (Cin) = gu (Kin) = tnir . Thus,
∆in

u = gu (C) − gu (K) ≥ 0, which stems from the
inequality in (17).

(ii) gu (K) ≤ tnir ≤ gu (C): In this case we havegu (Cin) =
gu (C) and gu (Kin) = tnir. Therefore,∆in

u = tnir −
gu (K) ≥ 0.

(iii) tnir < gu (K): In this case, addingfin does not pro-
vide any added value. We havegu (Cin) = gu (C) and
gu (Kin) = gu (K). Thus∆in

u = 0.

In summary, we always have∆in
u ≥ 0, which implies that

gu (.) is submodular function inV . The proof is completed.

A popular approach for the problem of maximizing a
monotone submodular function subject to a matroid constraint
is to use a greedy algorithm [21], [22]. Based on the result
from Lemma 1, we can extent such algorithm to solve our
problem in (9). Our proposed solution consists of two phases:
first, the content files are proactively distributed to the caches
following the proactive cache distributionalgorithm; second,



every time there is a cache miss and a new file is downloaded
from the content server, the CCM will decide whether to
replace this file with an existing ones in the caches following
the reactive cache replacementalgorithm.

Proactive cache distribution (PCD).The PCD algorithm
incrementally builds a placement solution starting with the
empty cache placement set. In each iteration it adds a new
file with the highest marginal value to the cache placement
set, until all the caches are full. Since the objective function is
submodular, the marginal value of a new file decreases as the
cache placement set grows bigger. We outline the procedure
of the greedy PCD algorithm below.

Algorithm 1 Proactive Cache Distribution.

1: Initialize: Vr = {f1r, f2r, ...fFr}, Cr = ∅, r = 0, 1, ...R,
V = (V0,V1, ...VR), C = (C0, C1, ...CR).

2: repeat
3: fj′r′ = argmax

fjr∈V\C

[g (C + fjr)− g (C)]

4: C ← C + fj′r′
5: if |Cr′| = Mr′ then V ← V\Vr′
6: end if
7: until V = ∅
8: Output:C

Step 3 of Algorithm 1 identifies the placement of filej′ in
cacheCr′ , denoted byfj′r′ , that provides the highest marginal
value when adding to the current cache placement setC.
Hence,fj′r′ can be seen as the next best cache placement
among the unplaced files{fjr ∈ V\C}. In Algorithm 1, there

would be
R
∑

r=0
Mr iterations until all the caches are full. Each

iteration involves calculating the marginal value of at most
(R + 1)F elements that have not been included in the cache
set. Evaluating each marginal value would takeO(U) time.

Hence, the running time would beO

(

(R+ 1)FU
R
∑

r=0
Mr

)

.

WhenMr is a constant fraction ofF , ∀r = 0, ...R, the time
complexity isO

(

(R+ 1)
2
F 2U

)

. It has been shown that the

greedy algorithm achieves a ratio of at least1
2 of the optimal

value [22].
Reactive cache replacement (RCR).The PCD algorithm

described above initializes the cache distribution, whichcan be
done during off-peak traffic hours (e.g., night-time) to utilize
the unused backhaul bandwidth. Over the course of the day,
following each cache miss, a new file will be downloaded
from the remote content server to the BSs and delivered to the
requesting user. As all the caches are full already, the CCM
will decide to replace this new file with existing files in the
caches only if such replacement could improve the value of
the objective function. This approach ensures that the up-to-
date cache placement set always yields the highest marginal
value. The RCR algorithm is shown in Algorithm 2.

Step 3 of Algorithm 2 evaluates the current utility value of
every file in the cache placement set, which is computed by
the utility value lost by removing that file from the current

Algorithm 2 Reactive Cache Replacement

1: For a new file requestfi /∈ C
2: for t = 0 : R do
3: fj′r′ = argmin

fjr∈C
[g (C)− g (C − fjr)]

4: if g (C − fj′r′ + fir′) > g (C) then
5: C ← C − fj′r′ + fir′

6: elseBreak
7: end if
8: end for
9: Output:C

cache placement set. After that, Step 4 determines whether
the new file has utility value greater than the least utility
value of an existing file, and if so, replaces the new file with
this least valued file. The running time of each iteration in

Step 3 isO

(

U
R
∑

r=0
Mr

)

. When Mr is a constant fraction

of F , the overall time complexity of the RCR algorithm is
O
(

(R+ 1)
2
FU

)

IV. PERFORMANCEEVALUATION

In this section, we present numerical simulations to evaluate
the performance of the proposed Octopus caching system. We
simulated a C-RAN system with7 cells, each having one
BS, and mobile users are uniformly distributed in the cells.
Unless otherwise stated, the simulation results are based on the
YouTube request trace data collected on the University of Mas-
sachusetts’ Amherst campus during the day03/12/2008 [24].
We consider the content files being the requested videos and
the video popularities are extracted directly from the trace,
which consists of19, 777 users,77, 414 videos and122, 280
requests. It is assumed that the backhaul and fronthaul links’
capacities as well as radio resources in the access network
are sufficiently provisioned to handle all the generated traffic
requests. The e2e latency of video delivery from the CDN
to the CPU and from the CPU to BSs are randomly as-
signed, uniformly distributed in the ranges[60÷ 100ms] and
[10÷ 30ms], respectively. In addition, we consider that the
size of each video is20 MB and thatM0 = 4Mr, ∀r = 1, ...R.

We evaluate the considered caching schemes using three
popular metrics:(i) cache hit ratio: the fraction of requests
that can be retrieved from one of the caches;(ii) average
access delay[ms]: average latency of the contents traveling
from the caches or the CDN server to the requesting user;(iii)
backhaul traffic load[TB]: the volume of traffic going through
the backhaul network due to users downloading contents from
the CDN servers.

A. Advantages of Cooperative Cloud-Cache

In this subsection, we evaluate the benefit of using the
cloud-cache cooperatively with the distributed edge-caches.
Specifically, we compare the performance of the proposed
Octopus caching system with the two traditional schemes
below.



0.2 0.3 0.4

Total Cache Capacity (TB)

0

0.1

0.2

0.3

0.4

0.5

C
ac

he
 H

it 
R

at
io

Eo
ECNC
Octopus

0.2 0.3 0.4

Total Cache Capacity (TB)

0

20

40

60

80

100

A
ve

ra
ge

 A
cc

es
s 

La
te

nc
y 

(m
s)

Eo
ECNC
Octopus

0.2 0.3 0.4

Total Cache Capacity (TB)

0

0.5

1

1.5

2

B
ac

kh
au

l T
ra

ffi
c 

Lo
ad

 (
T

B
)

Eo
ECNC
Octopus

(a) (b) (c)

Fig. 3. Performance comparison of different caching architectures:Eo - the edge-only system with edge-caches at the BSs only;ECNC - a non-cooperative
hierarchical caching system with edge-caches and cloud-cache where each entity makes independent caching decision;Octopus- the proposed cooperative
hierarchical caching system.

Edge-only (Eo): in this scheme, popular files are cached
at the edge-caches only. If the requested file from a mobile
user is found in the cache of its home BS, the file will be
downloaded immediately from the cache; otherwise, it will be
fetched from the CDN server.

Edge+Cloud non-cooperative (ECNC): this is a hierarchi-
cal caching scheme where content placement decisions at the
cloud-cache and edge-caches are made independently. A file
request resulting in a cache miss in an edge-cache will be
searched in the cloud-cache and finally goes out to the CDN.
This scheme differs from Octopus in the sense that a user
served by one BS cannot access the caches of other BSs. We
employ the simplified version of PCD and RCR algorithms in
Octopus to ECNC.

Fig. 3 (a-c) compares the performance of Octopus scheme
with that of the two baseline schemes in terms of cache hit
ratio, average access latency and backhaul traffic load, at dif-
ferent values of the total cache capacity. Observe that, owing to
the additional cloud-cache layer, ECNC and Octopus schemes
provide significant performance improvement compared to the
Eo scheme with the same total cache capacity. For example,
the performance gains of Octopus scheme over the Eo scheme
when the total cache size is0.4 TB are approximately80%
improvement in cache hit ratio,21% decrease in average
access latency, and20% reduction in backhaul traffic load. In
addition, the performance is further improved by cooperating
the edge-caches, which are characterized by the gains of
Octopus scheme over the ECNC scheme.

B. Advantages of Proposed Cache Management Algorithms

In this subsection, we consider a system with both cloud-
caches and edge-caches and evaluate different cache man-
agement algorithms, which identify the files to be stored in
each cache. In particular, we compare the proposed Octopus
scheme (which employs the PCD and RCR algorithms) with
four baselines below.

ExMPC: This is the Exclusively Most Popular Caching
scheme where each edge-cache independently stores the most

popular files, i.e., files with highest popularity. The cloud-
cache stores the next most popular (second-tier) files that are
not already stored in the edge-caches. This scheme aligns with
the greedy algorithm presented in [25] for inter-level cache
cooperation. The exclusive mechanism in ExMPC avoids the
redundancy in the pure MPC scheme [26] as the same files
might be cached at both the edge and cloud layers.

FemtoX: This scheme is an extension of the FemtoCaching
scheme [10] to hierarchical caching system in cloud-based
RAN. In FemtoCaching, the femtocell-like BSs act like the
helperswith weak backhaul links but large storage capacity.
These helpers form a distributed caching network that assists
the macro BS by handling requests and caches following a
greedy algorithm. In FemtoX in this paper, we map each
helper’s cache in FemtoCaching to an edge-cache, and intro-
duce the additional cloud-cache.

LFU : This scheme is the application of the Least Frequently
Used scheme [27] to hierarchical caching. When the cache is
full and if there is a cache miss, LFU fetches the file from the
CDN server and replaces it with the file in the cache that has
been least frequently used.

LRU : This scheme is analogous to the LFU scheme; how-
ever when the cache is full, it chooses to evict the file that has
been Least Recently Used. The cache hit ratio of LRU scheme
depends on the overlap of content requests of the active users
in the local RAN.

Fig. 4 (a-c) compares the performance of Octopus caching
scheme with the four baselines above. It can be seen that Oc-
topus always achieves superior performance in terms of cache
hit ratio, average access latency and backhaul traffic load.
This is because the PCD algorithm helps further reduce the
redundancy among the caches compared to ExMPC scheme,
and due to the RCR algorithm helps updating the caches upon
cache misses.

C. Impact of Popularity Distributions

In the previous subsections, using the YouTube request
trace, we have demonstrated the superior performance of our
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Fig. 4. Performance of different cache management policiessimulated using trace data.
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Fig. 5. Performance of different cache management policieswith synthetic file requests generated using the Zipf-basedpopularity distribution.

proposed Octopus caching scheme over traditional caching
architectures and management policies. In this subsection, to
generalize the results, we evaluate the performance of Octopus
using an analytical content request model. We consider that
the popularity distribution of the content files follows a Zipf
distribution. In particular, the request probability of the kth
most popular content (among the set ofF contents) can be
calculated as,

Pk =
1/kα

∑F

n=1 1/n
α
, (20)

whereα is the Zipf parameter. The observed value ofα might
vary from different measurements, however it was estimated
thatα ranges from0.64 to 0.83 based on the measurements of
[28], [29]. To generate the synthetic requests, we considera
library of 10, 000 files with uniform size equals to20 MB. We
randomly generate100, 000 requests following the Zipf-based
popularity distribution withα ∈ [0.6, 0.7, 0.8].

Fig. 5 (a-c) depicts the performance of Octopus caching
scheme over the baselines with different content popularity
distributions. Observe that asα increases, the performance
of Octopus scheme in terms of cache hit ratio and backhaul
traffic load is slightly degraded while its performance in terms
of average access delay is significantly improved. In all cases,

Octopus always performs the best. However, asα increases,
the performance gaps between Octopus and the baselines
become smaller.

V. CONCLUSIONS

In this paper, we proposed Octopus, a cooperative hier-
archical caching strategy for Cloud Radio Access Networks
(C-RANs). The proposed Octopus caching system consists of
cloud-cache deployed at the CPU and distributed edge-caches
deployed at the BSs. These caches are managed centrally by
the CCM using the proactive cache distribution (PCD) and
the reactive cache replaement (RCR) algorithms. We carried
out extensive simulations using both the real world YouTube
video request trace and the Zipf-based synthetic content re-
quest model. It is demonstrated that Octopus significantly
outperforms traditional caching deployment architectures and
cache management algorithms. Trace-driven simulations reveal
that Octopus yields up to80 % improvement in cache hit
ratio, 21 % and20 % decrease in average access latency and
backhaul traffic load, respectively, compared to the edge-only
caching system using the same total cache capacity.

Acknowledgment: This work was supported in part by the
National Science Foundation Grant No. CNS-1319945



APPENDIX

Here, we show that the cache placement optimization
problem in (9) is NP-complete. Firstly, notice that we have
FR (R+ 2)+(R+1) constraints in (9). We can easily verify
the feasibility of any given solution in polynomial time by
checking that the set of constraints is satisfied. Thus the
problem is in NP. Following the approach in [10], we will
prove that the problem in (9) is NP-hard by using a reduction
from the set cover problem, which is known to be NP-complete
problem, to an instance of our problem.

We consider a 2-disjoint set cover problem defined as
follows. Given a bipartile graphG = {R,U , E} with edgesE
connecting the set of two disjoint vertex setsR andU (i.e.,E
only connects the element between two setsR andU while
the elements in each set are disconnected). For eachr ∈ R,
define the subsetNr ⊆ U containing the elements inU that
are connected tor via E. Thus, clearly we have

⋃

r∈R

Nr = U .

The objective of the 2-disjoint set cover problem is to find
R1,R2 ⊆ R such thatR1 ∩R2 = ∅, |R1|+ |R2| = |R|, and
⋃

r∈R1
Nr =

⋃

r∈R2
Nr = U . This problem is shown to be

NP-complete [30].
The reduction from the 2-disjoint set cover problem to our

cache placement problem in (9) is done as follows: (i) the set
of BSs is set toR, (ii) the set of users is set toU , (iii) the
library of file is set toF = {f1, f2} with the corresponding

popularityP =
{

1
1+ǫ

, ǫ
1+ǫ

}

, (iv) the cache capacity at each
BS is set to 1, (v) set the delay costd0 = dr = 1, drk = 0 if
Ur ⊆ Nk, anddrk = 1 otherwise,∀r, k ∈ R. We now show
that there exists a solution to the 2-disjoint set cover problem
if and only if there exists a solution to our problem in (9) with
objective value greater or equal toU = |U|.

The first direction is easy to verify. Since all the caches
have capacity1, they can either cache the filef1 or f2. If the
two disjoint set coversR1,R2 exist, we can cachef1 at all
the BSs inR1 and cachef2 at all BSs inR2. In this case,
the objective value of our problem is equal toU . To prove the
other direction, suppose we have a solution to our problem
with objective value greater or equal toU , then it has to be
equal toU since the utility value seen by each user can be at
most1. This is achieved only if the BSs cachingf1 and BSs
cachingf2 cover the entire set of usersU . This means there
exist 2 disjoint set covers.
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