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Abstract—The popularity and applicability of mobile crowd-
sensing applications are continuously increasing due to the
widespread of mobile devices and their sensing and processing
capabilities. However, we need to offer appropriate incentives to
the mobile users who contribute their resources and preserve
their privacy. Blockchain technologies enable semi-anonymous
multi-party interactions and can be utilized in crowdsensing
applications to maintain the privacy of the mobile users while
ensuring first-rate crowdsensed data. In this work, we propose to
use blockchain technologies and smart contracts to orchestrate
the interactions between mobile crowdsensing providers and
mobile users for the case of spatial crowdsensing, where mobile
users need to be at specific locations to perform the tasks.
Smart contracts, by operating as processes that are executed
on the blockchain, are used to preserve users’ privacy and make
payments. Furthermore, for the assignment of the crowdsensing
tasks to the mobile users, we design a truthful, cost-optimal
auction that minimizes the payments from the crowdsensing
providers to the mobile users. Extensive experimental results
show that the proposed privacy preserving auction outperforms
state-of-the-art proposals regarding cost by ten times for high
numbers of mobile users and tasks.

I. INTRODUCTION

The wide dissemination of smartphones that are pro-

grammable and employed with sensors gave birth to crowd-
sensing applications such as environment monitoring, mobile

social recommendations, public safety and others. Mobile

crowdsensing is a paradigm that utilizes the ubiquitousness of

the mobile users who are carrying smartphones and can col-

lect and process data. Crowsensing Service Providers (CSPs)

request sensing tasks to mobile users (MUs) who deliver

these tasks in order to get paid. Crowdsensing tasks can be

categorized based on characteristics inherent to the tasks or

the participants1. Two usual dimensions are event based vs.

continuous, and spatial vs. non-spatial. These dimensions are

independent of each other, and any combination is possible.

In this work, we focus on event-based spatial crowdsensing
tasks that are associated with geographic locations where the

mobile users perform them [1], [2]. The challenges are two-

fold: (i) the mobile users are sensitive about the secrecy of their

locations and may not participate to avoid any leakage. Also,

they may even try to spoof their locations to avoid the cost of

moving the required locations. (ii) A second challenge is the

calculation of the payments to MUs for their participation.

The participation cost of each user is private information and

1We are using the terms ”mobile users” and ”participants” interchangeably
and depending on the context.

depends on several factors. As a consequence, mobile users

are motivated to misreport their actual costs to obtain higher

payment, and hence incentives are needed. Truthful auctions

are designed in such a way to force participants to report

their true participation cost. This feature enables optimal task

assignment to the participants in such a way to minimize the

payments to the employed mobile users [3].

We consider participants who are not willing to reveal

their identities and locations regardless of the number of the

tasks they have delivered. Although Internet service providers

(ISPs) are aware of users’ identities and locations, they are

not allowed to reveal them to third-parties [4]. We propose to

use the capabilities of ISPs supplemented by smart contracts

over blockchains to design a system for privacy-preserving

crowdsensing that minimizes CSPs’ cost. We propose a model

where CSPs send crowdsensing requests to an ISP who trans-

forms them into tasks and runs a cost-optimal auction to the

suitable cells to allow the MUs on these cells to express their

interest in the tasks via truthful bidding. The ISP is assisted

by a blockchain, similar to Ethereum [5] and Hawk [6] or

Hyperledger Fabric [7]. To build such crowdsensing system,

we address the following questions:

Q1: How to ensure a CSP that the data has been submitted

by users at the indicated locations?

Q2: How to preserve the privacy of mobile users from CSPs,

even if they have submitted location-specific data?

Q3: How to assign crowdsensing tasks to mobile users who

are interested in subsets of tasks in a cost-optimal way

and incentivize them to report their costs truthfully?

For Q1 and Q2, we leverage the confidentiality assurance

from ISPs. ISPs guarantee the execution of CSPs’ tasks at the

desired locations. To build such trust across CSPs, ISPs, and

MUs, we use a blockchain and smart contracts. To address

Q3 we design an auction using game theory.

Why blockchain? Blockchain is a distributed mechanism

that stores data in the form of transactions and can offer

additional functionalities such as transactional privacy and

smart contracts. It is maintained by interconnected nodes that

are responsible for securing the network, and keeping everyone

in the system in sync. Anyone interested in maintaining a

blockchain, and, as a consequence, in having access to the

stored data can partake. Blockchains have been used in mobile

environments such as for automated payments between mobile

devices in cooperative application execution scenarios [8]
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Fig. 1: The examined ecosystem. A blockchain is maintained by (i) the ISP and (ii) anyone else interested in the stored data.

Smart contracts are used to coordinate the interactions between the ISP, the CSPs and the mobile users.

and for enabling small payments between mobile users in

environments without internet connectivity [9].

In our scenario, we use the cellular access points of the

ISP network to maintain a blockchain, but we assume that

anyone (e.g., the CSPs) can participate. Transactional privacy

guarantees that the identity of the creator of one transaction

cannot be revealed. This functionality is used to hide users’

identities. Smart contracts are software processes that are

executed whenever a transaction is calling them when it is

added to the blockchain. Ethereum allows any application to

be deployed, using smart contracts, on the blockchain [5], [10].

For a smart contract to be executed, a certain amount of credits

has to be transferred to their address. We use this feature to

enforce payments. Blockchains are more preferable to servers

for various reasons. First of all, they are open and append-only

mechanisms that can guarantee that the stored data can not be

modified. This feature guarantees the integrity of the stored

data. Second, the use of the smart contracts allows anyone to

examine the validity of the produced outcomes [11].

Figure 1 shows the examined architecture and the participat-

ing entities (CSPs, ISP, MUs). Cellular towers can estimate,

with high accuracy, the current location of each user and for

that reason, we assume that a cell can be further split into

smaller areas to allow the submission of crowdsensing requests

with high granularity. The ISP employs smart contracts to (i)
give access to CSPs to the collected data they requested, (ii)
preserve the privacy of mobile users, (iii) run auctions, (iv) pay

mobile users and (v) get paid by the CSPs. This means that the

trinity of CSPs, mobile users and the ISP interact with each

other using smart contracts that are stored and executed in the

blockchain. In summary, our contributions are the following:

Contributions: We address the problem of privacy preserv-

ing crowdsensing in a cost-optimal way by proposing the use

of an ISP as the intermediary between CSPs and mobile users.

ISP uses smart contracts over a blockchain to preserve the

privacy of mobile users while ensuring the validity of their

locations. As far as incentives for mobile user participation,

we have designed a truthful, computationally efficient auction,

called CSOPT. The cost-effectiveness of CSOPT is compared

with a state-of-the-art algorithm, and the performance of the

proposed smart contracts is depicted using Ethereum.

II. RELATED WORK

Mobile users are motivated to spoof their location to pre-

serve their privacy and potentially decrease their execution

cost [12], [13], [14]. Privacy concerns might even discourage

users from participating. Depending on the type of a task,

the potential privacy breach changes. For example, a task that

requires an MU to report the time needed to travel from one

location to another by traveling at the time of the request,

might lead to the disclosure of their current location and

potentially sensitive addresses or even their identity through

location-based attacks [15]. In the case of frequent participa-

tion, even if participants are using pseudonyms, their trajectory

might reveal their sensitive locations or commutes [16] and

even eventually disclose their identities [17].

Although there is high research activity on mobile crowd-

sensing, neither blockchain nor smart contracts have been used

in the existing proposals, to the best of our knowledge. Pro-

posed crowdsensing architectures are composed of a mobile

application and a server that is responsible for the collection

and processing of the sensed data. Localized analytics on the

mobile devices are often performed to preserve users’ privacy

and reduce the amount of the data sent to the server [18].

Furthermore, similar to the deployment of smart contracts in

the orchestration of the crowdsensing process, the authors of

[19] develop Medusa, a framework to develop crowdsensing

applications. However, the authors consider a crowdsensing

application provider that is using cloud resources and do not

provide any privacy guarantees to the mobile users. Similarly

to this work the authors of [20] propose the ungearing of the

crowdsensing provider from the physical resources that are

responsible for the data gathering and processing. However

they consider cloud infrastructure providers for that role,

who do not provide any privacy guarantees. Liu et. al. [21]

consider the employment of a network provider to handle the

crowdsensing process but they do not consider an auction in

the determination of the users’ cost since they assume that the

ISP will determine the credits each MU gets.

In our proposal the MUs are paid based on their costs and

for which we rely on auctions. A cost optimal auction is an

auction that minimizes the expected payments of the CSP

subject to feasibility constraints [22]. In his seminal work,

Myerson [22] introduces the notion of optimal auction and
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designs one for selling a single unit of a single item. Our

case is multiple units of multiple items (homogeneous but

location specific tasks and hence we refer to it as multiple

items). In economic terms, it falls under the category of

multi-unit combinatorial auctions, which is in general hard to

solve. Optimal multiple items auctions have been proposed for

specific settings. For example, Cai et. al. [23] consider additive

value settings. Iyengar and Kumar [24] design an optimal

multi-unit but single item auction. Mechanism design theory

has been used for crowdsensing to design incentives [25],

[26], [27]. Koutsopoulos [25] designs an optimal auction for

crowdsensing. However, there is no deadline or no limit on

the amount of the work a participant is willing to do or

any location specific tasks. Hence his work is single item

multiple units. Karaliopoulos et.al. [28] and Yang et. al. [26]

consider a setting the same as ours except for the fact that

we offer the flexibility to the ISP to assign MUs a subset

of tasks instead of a complete set of the tasks in which

they show interest. This leads to cost saving to the CSP as

we do not repeat any task more than required. In [28] the

authors design approximate cost minimizing solutions, but

do not consider the strategic behaviour of the participants.

Yang et. al. consider designing a truthful auction for the

settings very similar to ours. However, their goal is to design a

computationally efficient and truthful auction. In our settings,

we allow ISP to allocate an MU any subset of set of tasks in

which it has shown an interest. In addition, we minimize the

total expected payment made by the CSP. Another approach

to offer incentives is fixed rewards rather than auction based

mechanisms. For example. the incentive schemes proposed in

[29], [30], [31], [32]. However, in such settings the MUs are

either overpaid or there is a need for more MUs, since the

payments are less than their actual cost of delivering the task.

For more on game theoretic approaches on incentive design,

the readers are referred to [3].

III. MOBILE CROWDSENSING USING BLOCKCHAIN

CSPs send their requests to the ISP who uses a smart

contract to register the requests and collect the fees from the

CSP for their requests. Then the ISP runs the auction using

another smart contract to provide transparency in the selection

of the proper mobile users. This smart contract forces the MUs

to pay a participation fee that they will lose if they are selected

and not submitted their measurements. Before the auction, the

ISP creates a temporary id for each user in order to preserve

the identity of the MUs. Next, the ISP uses another smart

contract to collect participation proofs from the MUs and pay

them. The MUs will only submit their collected data to the

ISP but they will create a transaction that includes a hash of

their data in order to trigger the smart contracts that pays them.

Also, a fourth smart contract will give access to the CSP to the

collected data. In order to execute this smart contract and get

access to the collected data, the CSP has to transfer as many

credits as the auction cost. The proposed smart contracts can

be managed via mechanisms similar to [33]. Before going into

the details of our proposal, we introduce the used notation.

A. Notation and Assumptions
We consider a set of mobile users (MUs), N , of size |N | =

n, one crowdsensing service provider, CSP, and one Internet

service provider, ISP (the model can be generalized for more

than one CSPs). Whenever the CSP sends a request, CSreq , to

the ISP with deadline D, the ISP maps the request to a set of

tasks T and runs an auction on the appropriate cells. Each cell

Zi ∈ Z is further split into areas zij ∈ Zi. Each mobile user

MUi is associated with a location, li = zjl ∈ Zj ∈ Z and is

able to bid for the set of tasks Ti ⊂ T = {Ti1, Ti2, . . . , Tiki
}

that it can deliver based on its current location and using the

proper sensor before D. Each MU successfully completes

a task with probability α. The CSP requires enough MUs

at each location, in order for the probability to successfully

receive the task to be at least β. Given that the mobile users

need to move to the appropriate locations to do the tasks, we

assume that the maximum number of tasks a user can do is

k. The cost for the execution of the first task for MUi is ci1,

for the second task ci2 and so on. We denote its cost vector

by ci ∈ Ci and private information as θi = (ci, Ti), which

is called its type in mechanism design theory. It submits a

bid bi = (ĉi, T̂i), where ĉi is its reported cost and T̂i ⊂ Ti
the reported tasks of interest. The ISP collects all the bids

b = (b1, b2, . . . , bn) = (bi, b−i) where b−i represents the

bids from all MUs except MUi. Upon receiving b, ISP

determines the assignments, A(b) = (AT 1,AT 2, . . . ,AT n),
where AT i ⊂ T̂i is a set of tasks assigned to MUi, and the

payments p(b) = (p1(b), p2(b), . . . , pn(b)). Then, the CSP

is informed about the availability of the requested data.
Let ni =| AT i | denote the number of the tasks that

assigned to MUi. With these, MUi obtains utility ui(·) by

participating in the crowdsensing auction. For given bids b
and true type θi, ui is given by:

ui(b; θi) = pi(b)−
j=ni∑
j=1

cij .

We drop argument b and just use pi, ni whenever it is clear

from the context. We use either bi or (ĉi, T̂i) based on

convenience in the proof and the same for θi and (ci, Ti).
In our model, we assume that the MUs will not submit their

bids for the tasks they cannot do. This is a valid assumption

and we show how to ensure this using smart contracts. We also

assume that there is enough competition between MUs and

even if we exclude one MU , the request can still be served.

In the next section, we explain the role of the blockchain in

our model and after that, the required smart contracts in order

for the model to be functional.

B. The use of Blockchain
There exist two types of interactions in our model:

1) Conventional: There are three interactions of this type.

(i) The requests from the CSPs that contains the characteristics

of the tasks (SCreq), (ii) the advertisement of the tasks

from the ISP to the MUs and the initiation of the auctions

ADV(T , C), and (iii) the submission of the sensed data from

the mobile users.
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2) Blockchain-based: These interactions take the form of

transactions and are stored in the blockchain. Such interactions

require the interacting entities to have an account. Transactions
are the building blocks of blockchains, represent interactions

between two or more entities and are associated with some

data. In its simplest form, a transaction represents the exchange

of money [34], [35] but it can also be used in more complicated

forms, like the one where a mobile user submits a sensor

reading. There are two types of accounts, the externally

owned ones (CSPs, MUs) and the smart contracts. Smart

contracts are special types of accounts, which have a set of

functionalities, are stored on the blockchain, and are uniquely

identifiable. They also have their own storage, which can

be changed whenever they are triggered by a transaction.

Smart contracts allow us to have general purpose computations

on the chain. Whenever such transactions are created, every

miner automatically executes the contract and considers the

data included in the transaction as an input. Then, the whole

blockchain network operates as a distributed virtual machine.

All the remaining interactions belong to this type.

C. Proposed Smart Contracts

Whenever the ISP receives a CSreq , it creates a transaction

which is signed with the public key of the CSP. The transaction

includes the timestamp of the request, the deadline D and

the address of the smart contract called Request Registration
(RR) that the CSP will call after the deadline in order to get

access to the collected data on the external database of the ISP.

Before the deadline, the ISP creates another smart contract,

called Data Access (DA), and stores its address to RR. DA

contains the credentials to the external database where the ISP

stores the collected data. The credentials are encrypted using

the public key of the CSP in order to allow only the CSP that

submitted the request to get access to the collected data. When

the CSP, will trigger RR, it has to create a transaction with

the RR as the destination and in order for the smart contract

to be executed, the CSP has to include enough credits (in the

Ethereum project, these credits are called ether [5]). In this

way, the CSPs have to pay a fee included by the ISP in order

to get the address of DA. Then for the execution of DA, the

CSP will have to pay the amount the ISP paid to the mobile

users after the collection of the data. The ISP is responsible to

store in RR the address of DA and the hash of the collected

data for CSreq . If these two entries are not filled before the

deadline, the RR generates a transaction from the ISP to the

CSP and transfers back the credits.

The ISP, after the reception of CSreq , decides which are

the locations of interest and broadcasts the characteristics of

the tasks to the MUs on these locations (ADV(T , C)). Also,

the ISP creates a temporary account in the blockchain for

each of the MUs that it will be used on for this auction.

Each mobile user, MUi, submits a bid bi = (ĉi, T̂i) in a

form of a transaction, to express its interest on executing

tasks T̂i ∈ T , to the blockchain using its temporary address.

All the bids are submitted to the designed smart contract

called Crowdsensing Optimal (CSOPT) that produces a new

Name Type

SCreq Conventional

Request Registration (RR) Blockchain-based

Data Access (DA) Blockchain-based

ADV(T , C) Conventional

Crowdsensing Optimal (CSOPT) Blockchain-based

Submission of Sensed Data Conventional

Mobile User Payment (MUP) Blockchain-based

TABLE I: List of possible interactions among the entities.

For conventional interactions the ISP employs a server that

receives the requests from the CSPs.

CSP ISP Mobile Users

CSreq

ADV(T,C)

Sensed Data

CSOPT

Bids

RR

MUP

DA

T
im

e

Temporary IDs

Deadline (D)

Data Hash

Conventional

Smart Contract 
output

Transactions
that trigger 

Smart Contracts
MUP

Fig. 2: Interactions between the crowdsensing service provider,

the Internet service provider and the mobile users.

transaction that contains the task assignment. The optimality

of CSOPT is presented in Section IV. In this way, the ISP is

not able to manipulate the bids, the CSP is also able to verify

the cost of its request and the mobile users are not revealing

their identity. Since each MU needs to transfer certain credits

in order to trigger CSOPT, CSOPT after the production of

the assignment creates a transaction and sends back to the

non selected MUs the credits they spent for the auction. The

selected ones will get their credits back after the completion of

their tasks. If they fail to submit their tasks, they will lose their

credits. Also, CSOPT triggers another contract called Mobile
User Payment (MUP) and stores in it the produced assignment.

Each mobile user that executed one or more tasks, by the end

of these tasks, uploads the data to the external storage of the

ISP and using a hash of them triggers the MUP smart contract

that transfers the payment and the credits used for the calls of

CSOPT and MUP.

Table I lists and Figure 2 depicts the interactions between

the participating entities. Overall, four smart contracts are

used. Two between the ISP and the CSPs and two between the

ISP and the MUs. These contracts guarantee that (i) the CSP

will pay in order to get access to the collected data, (ii) the

mobile users will get paid if they do their tasks and will loose

some credits if they will not, (iii) the identity of the mobile

users can not be revealed to the CSPs. Given that for each

smart contract to be executed a transaction that has its address
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as a destination needs to be mined, it is worth mentioning that

we assume that the mining time of a block in the blockchain

is much shorter than the deadline of the crowdsensing request.

D. Desirable Game Theoretic Properties of Auctions

We need the mobile users to report their costs as well as

the tasks they can do truthfully. If the payment scheme is

not designed properly, as indicated in the following example,

MUs can mis-report their bids to earn more money.

Example: Challenges in the design of a truthful auction:
Suppose there are 10 tasks and 3 interested MUs. MU1 can

do all these tasks at $1 per task, MU2 can do only task T10

at $1.5 and MU3 can do all these tasks at $2.5 per task. If

we decide to optimally select the set of MUs and pay them

the first losing bid, all the tasks will be assigned to MU1 who

will be paid $15 since the first losing bid is $1.5 from MU2

for T10. However, MU1 can misreport his bid to be $1 per

task but only for tasks T1 to T9. With this, he will obtain

a payment of $22.5 (2.5*9) since the first losing bid will be

from MU3 for tasks T1 − T9 and MU2 will execute T10 and

earn $2.5. The total cost in this case is $25. Thus a careful

design of the auction is necessary.

If it is a best response for all the MUs to report their private

information truthfully to an auction, we say the auction is

incentive compatible. We study auctions with respect to the

following two notions of incentive compatibility.

(DSIC) Dominant Strategy Incentive Compatible: An

auction is called DSIC if reporting truthfully gives every MU
the highest utility regardless of the bids of the other MUs.

(BIC) Bayesian Incentive Compatible: An auction is

called (BIC) if reporting truthfully gives an MU highest

expected utility when the other MUs are truthful, and the

expectation is taken over bids of other MUs.

Apart from incentive compatibility, we also need an auction

to satisfy the individual rationality property.

(IR) Individually Rational: An auction is called Individ-
ually Rational (IR) if no MU derives negative utility by

participating in the auction.

Auctions could be designed with different goals. DSIC is a

strong requirement that may be difficult to achieve. For that,

it is a common approach in the design of auctions to enforce

BIC and IR together with the desirable objective. The most

popular objectives on the design of an auction are the auction

to be Allocatively Efficient or Cost Optimal. An Allocatively

efficient auction allocates the tasks to MUs having the least

costs and achieves a socially good outcome while a cost

optimal auction minimizes the cost incurred by the CSP.

In crowd-sensing, it should be ensured that each task is

completed with probability β or higher. Let r be a repeat

factor, that is, each task is assigned to at least r different

users. The probability that the task is completed by at least

one user is 1 − (1 − α)r ≥ β or equivalently r ≥ log(1−β)
log(1−α) .

We use Xij as an indication variable with Xij = 1 if Tj is

assigned to MUi. Any auction on the examined setting needs

to guarantee the following feasibility conditions:∑
i Xij ≥ log(1−β)

log(1−α) (1)

{Tj | Xij = 1} ⊂ Ti ∀i (2)

With this constraints, we define allocatively efficient (AE)

and cost optimal (CO) auctions as follows.

(AE) Allocatively Efficient Auction: An auction that

chooses assignments that minimize the total cost incurred by

MUs for every reported cost.

Optimal Auction: An auction that chooses assignments

that minimize the total cost paid by the CSP.

DSIC, BIC, IR and AE are formally the extended ver-

sion [36], while the optimal auction is discussed in the next

Section. In order to design a BIC and IR auction, we also

need to describe the conditions on the allocation rules and

payments.

Truthfulness characterization: Assuming that the cost

per task is constant for all MUs. That is ∀i ∈ N , ci =
(ci, ci, . . . , ci) and ci ∈ Ci = [ci, c̄i]. Let ni =

∑
j Xij(b)

The utility of a mobile user i with bid bi is given as,

ui(bi, b−i; θi) = pi − nici

Ui(bi; θi) = Pi(bi)− ciNi(bi)

where Ni(bi) is the expected number of tasks for MUi

where the expectation is with respect to the bids of the

other agents and Pi(bi) is the expected payment.2 We write,

Pi(bi) = ρi(bi) + ĉiNi(bi), where ρi(bi) is an additional

incentive to report private information truthfully. Thus,

Ui(bi; θi) = ρi(bi)− (ci − ĉi)Ni(bi) (3)

Thus ρi represents the offered utility when all the agents

are truthful. With the above offered incentive, we have the

following theorem.

Theorem 1: An auction is BIC and IR if and only if ∀i ∈ N ,

1) Ni(ĉi, T̂i) is non-increasing in ĉi∀T̂i ⊂ Ti.
2) ρi(bi) is non-negative, and non-decreasing in k̂i and ∀ ĉi ∈

[ci, c̄i]

3) ρi(bi) = ρi(c̄i, k̂i) +
∫ ci
ĉi

Ni(z, k̂i)dz

We refer to the above statements as conditions 1, 2 and 3.

Proof: Though the key ideas in the proof are similar

to [24], [22], note that our settings are quite different and we

characterize the results in terms of Nis and not Xijs. We

present the proof in the extended version [36]. �

E. Ensuring the quality of Crowdsensing

It is possible for some malicious mobile users to misreport

the sensed data and affect their overall quality. This makes

the building of a reputation system and a careful integration

of reports in the final data necessary. There have been various

approaches, such as in [37], [38], proposed in the literature

2In general, the design of an optimal auction calls for designing the expected
assignment and the expected payments for every user and every possible bid.
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to limit the influence of low quality reporting. In particular,

the Community Sensing Influence Limiter (CSIL) proposed

by Radanovic and Faltings [37] is the most suitable for our

setting. In CSIL, each MUi has a reputation score ρi and data

is added to the collected data with probability ρi

ρi+1 . Thus, the

influence of a malicious user on the aggregated data becomes

limited. To build reputation scores, the ISP deploys certain

trusted MUs across all cells. These MUs always perform the

tasks assigned with honesty. Whenever, the ISP receives the

data from trusted MUs, it updates the reputation score of each

MU who has reported data for that time slot. The reputation

score update function captures how much the data supplied by

MU adds a value to the collected data.

F. Attack model and Defense

In order to justify that our proposal preserves users’ identi-

ties and location privacy, we design an attack from a CSP that

wants to find them and we explain how it fails. In order for

CSPs to identify the sensitive locations (home/work) of mobile

users, they need to submit requests with short deadlines at

times that they expect the participants to be at such locations.

However, the ISP assigns a different temporary id to each

participant every time. Even if the CSP submits the same

request multiple times with a short deadline in a limited

geographic area and even if it is always the same participant

that completes the request, the ISP will preserve her privacy

since she will be assigned a different randomly selected id

every time. If the id is of the same length as the addresses in

Ethereum (64 bytes), the range of the possible ids is [1, 2512].

IV. CROWDSENSING OPTIMAL AUCTION

For optimal request assignments, the true costs from the

MUs are needed and hence we use mechanism design theory
to design auctions [3]. The goal can either be to minimize the

cost incurred by the mobile users (AE auction) or to minimize

the expected payment of the CSP (cost optimal auction). Note

that, the CSP’s goal is not to care about game theoretic

property, AE, but to minimize its cost of such crowd sensing

activity. Thus, we need to design a cost optimal auction for

the CSP. In the examined setting, the mobile users bid for a

certain set of desirable tasks and may get assigned its subset.

In addition, we need to assign each task to multiple users

to ensure high assurance on completion of tasks. Thus, the

auction we design is categorized as an optimal multi-unit

combinatorial auction. In general the characterization of an

optimal combinatorial auction is an open problem. We leverage

from the fact that although our setting is combinatorial, the

tasks are homogeneous except from their locations. That is, a

mobile user is indifferent to any constant size subset of tasks

within its interested set of tasks. For example, a MU who is

interested in tasks T1, T2, T3, T4, incurs the same cost if it is

assigned T1, T2 or T3, T4 or any two of these fours tasks.

We start designing an optimal auction with game theoretic

properties BIC and IR. With our BIC and IR characterization

result, we provide sufficient conditions for an auction to be

an optimal auction in our context. Next, we study the concept

of Regularity and prove that the optimal auction we have

designed is also AE under regularity. Then we design a

payment rule which along with AE allocation rule qualifies

to be an optimal auction. The proposed payment rule offers

difference between the cost of AE auction with their presence

and absence as incentives to report their costs truthfully. That

is if the cost of a MU is $5 and the AE cost increases

in his absence by $2, it is paid $7. We design an efficient

allocation rule to determine allocation rule satisfying AE

property (Algorithm 1, subroutine ALLOC-RULE). We call

the proposed auction as CSOPT. Note that, though we set

the goal to design an optimal auction with BIC and IR as

constraints, CSOPT along with cost optimality also satisfies

AE and DSIC.

A. CSOPT: Cost Optimal Mobile Crowdsensing Auction

An auction is called optimal, for CSP, if it minimizes the

total expected payment to the MUs, is BIC and IR and is

feasible [22]. That is:

minimize Eb

∑
i∈N pi(b)

subject to: BIC Ui(ci, Ti; θi) ≥ Ui(bi; θi)∀ci, ∀Ti
IR Ui(ci, Ti; θi) ≥ 0

FEASIBILITY
∑

i Xij ≥ log(1−β)
log(1−α)

FEASIBILITY {Tj | Xij = 1} ⊂ Ti ∀i
Let Fi(ci|ki) and fi(ci|ki) denote respectively the cumulative

distribution and probability density function of cost (ci) of

MUi given the number of tasks it can perform.

Theorem 2: Suppose the allocation rule minimizes

n∑
i=1

∫ c̄1

c1

. . .

∫ c̄n

cn

(
ci +

Fi(ci|ki)
fi(ci|ki)

)
ni(ci, ki, c−i, k−i)

f1(c1, k1) . . . fn(cn, kn) dc1 . . . dcndk1dk2 . . . dkn (4)

∀ki subject to conditions 1 and 2 of Theorem 1, Equation (1)

and Equation (2). Also, suppose the payment is given by

Pi(ci, ki) = ciNi(ci, ki) +

∫ ci

ci

Ni(z, ki)dz (5)

then such a payment scheme and allocation scheme constitute

an optimal auction satisfying BIC and IR.

Proof: The proof is given in the extended version [36]. �

(Regularity): We define the virtual cost function as

Hi(ci, ki) := ci +
Fi(ci|ki)
fi(ci|ki)

, ∀MUi ∈ N

We say that a type distribution is regular if ∀i, Hi is non-

decreasing in ci and non-increasing in ki. Analogous to the

literature on optimal auctions [24], [22], we assume regularity

on our distribution type. We assume the type distributions

satisfy regularity and all the MU types are independently

and identically distributed (i.i.d.) over [cl, cu] × [kl, cu]. We

make a further assumption that the costs for all MUs are

identically distributed. With these assumptions, we present the

pseudocode of CSOPT in Algorithm 1.
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Algorithm 1: CSOPT

Input: N , T , ĉ, (T̂i)i∈N , r
Output: Allocations A = (AT 1,AT 2, . . . ,AT n) and

Payments P = {p1, p2, . . . , pn}.
Allocations:
T ← rT // Make r copies of each task in T
A = ALLOC-RULE(N , T , ĉ, (Ti)i∈N )

[p1, p2, . . . , pn] = PAYMENT-RULE(N , T , ĉ, (Ti)i∈N ,A)

Subroutine: ALLOC-RULE(N̊ , T̊ , c̊, (T̊i)i∈N̊ ) ;

Input: 〈N̊ , T̊ , c̊, (T̊i)i∈N̊ 〉
Output: Vector A = (AT 1,AT 2, . . . ,AT n) tasks

assigned to each MU .

while T̊ 	= ∅ do
Sort MUs based on cost per task for tasks in T̊
Add the most economic MU , say MUi to the

selected MUs

ATi = T̊ ∩ T̊i
T̊ ← T̊ − ATi

A = (AT1,AT2, . . . ,ATn)
Subroutine: PAYMENT-RULE(N , T , ĉ, (Ti)i∈N ,A) ;

Input: 〈N , T , ĉ, (Ti)i∈N ,A〉
Output: Vector P of payments of each agent.

fcost = COST(A)

// COST finds out the cost of allocation A
for j ∈ N do

Åj=ALLOC-RULE(N \ {j}, T , c−j , (T̂i)i∈N\{j})
scost=COST(Åj)

pj= nj × cj + scost-fcost

Observation 1: Under the assumption of regularity and i.i.d.

MUs, an allocatively efficient auction is an optimal solution

to Equation (4) and maximizes Equation (4) for each b.

Observation 2: Under the assumption of regularity and

i.i.d. MUs, for a fixed b−i, the following payment satisfies

Equation (5).

pi(ci, ki, b−i) = cini(ci, ki, b−i) +

∫ c

ci

ni(z, ki, b−i)dz (6)

Since we are using an AE allocation, the payment (6) can be

written as:

pi() = cini(ci, ki, b−i) + V ∗−i − V ∗

where V ∗ is the cost of AE allocation and V ∗−i is the cost

of AE allocation if MUi is not in the system. Observe that,

keeping b−i fixed, whenever MUi increases its cost, either

ni() remains the same or drops by some integer until it goes

to zero. Let us assume ci < ci1 < . . . cil < c are the costs at

which ni drops. Since we assume there is enough competition,

eventually it should drop to zero that is ni(cil, ki.b−i) = 0.

Precisely ci1, ci2, . . . .cil are the costs which get added into an

AE allocation when MUi is not there in the system.

With all the above discussion, we propose our mechanism

CSOPT as given in Algorithm 1. COST(A) returns the total

cost of allocating tasks as described in A. Hence scost
captures the total cost incurred by MUj in optimal allocation.

Lemma 3: CSOPT is an AE auction for the CSP.

Proof: By construction, it satisfies FEASIBILITY conditions.

We need to show that it minimizes the total allocation

cost. Let Ae be an AE allocation given bids as b. Let

MU1,MU2, . . . be the order in which CSOPT allocates the

tasks to MUs. Let MUi be the first MU whose allocation

in CSOPT differs from that of in Ae. Thus at least one of

its tasks is assigned to MUj j > i. However, ci ≤ cj . Thus

not awarding all ni() tasks to MUi which are allocated by

CSOPT the cost is not going to improve. Using induction,

it follows that no allocation Ae can improve on cost of

allocation over CSOPT. �

Theorem 4: CSOPT is an optimal auction for the CSP.

Proof: It follows from Observations 1,2, Lemma 3 and

Theorem 2. �

V. PERFORMANCE EVALUATION

We conduct two set of experiments to depict the quality of

our proposal. First, we compare the cost of the proposed auc-

tion with another state-of the-art algorithm. Next, we examine

the time needs of the architecture to process crowdsensing

requests. Figure 3 shows the results from the first set of

experiments and Figure 4 of the second.

CSOPT: Since we have proved mathematically that CSOPT

is allocatively efficient we only need to compare the cost of the

allocations it produces with other state-of-the-art algorithms.

For that we selected [28] because it adopts to our scenario

and it is also fast in terms of time since it operates in a

greedy manner. The authors named their algorithm greedy

heuristic for selection under stochastic user mobility, but here

we refer to it as GSSUM for short. We consider an area that

is composed by a 100 by 100 grid and we randomly place

mobile users on this grid. Then we generate crowdsensing

requests with deadlines and we assume that each user bids for

a task only if it is within a certain distance. Each user has a

cost per allocated task in a range between 50 and 100. Figure

3a shows, in logarithmic scale, that the total cost (payments

to the MUs) of CSOPT is decreasing as the number of MUs

is increasing. This result is expected because the increased

competition between MUs decreases the cost per task. On

the other hand, the GSSUM algorithm operates in the opposite

way because whenever it selects a mobile user to assign a task

to, it assigns all the tasks on which she has a bid.

Next, we compare the two algorithms in terms of the number

of requests. Figure 3b shows that CSOPT is at least one order

of magnitude less costly while the cost in both algorithms is

increasing at the same rate. Next, in Figure 3c we show how

the costs increase when the number of requests reaches 200 but

there is a repeat factor r = [1, 2, 3, 4, 5] that ensures that the

requests will be satisfied, as explained in Section III-D. This

case differs from the previous one because the requests are

less disseminated throughout the whole area and the average
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Fig. 3: Performance evaluation of CSOPT and comparison with GSSUM algorithm that was proposed by the authors of [28].
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Fig. 4: The two components that affect execution time. Mining difficulty determines the time needed for the execution of a

smart contract. CSOPT cannot be executed instantaneously and for that we measure its time requirements separately.

number of the participants that can handle a request is much

smaller. r in Figures 3a and 3b is 1.

Architecture: We install Ethereum in a Desktop with Intel

Core i7-7700 CPU @ 3.60 GHz and 16 GB of RAM. We

then measure the time required for a block to be mined for

different values of mining difficulty and the time requirements

of CSOPT. Figure 4 depicts these measurements. In order

to produce Figure 4a we set the mining difficulty on the

genesis file of Ethereum and wait for 100 blocks to be mined.

Small values of mining difficulty can produce a new block

every few millisecond but this will produce the generation

of many empty blocks that are a waste of storage. For the

time measurements of CSOPT for different numbers of MUs

and crowdsensing requests, we implement the algorithm and

measured its performance on the same desktop. Figure 4b

shows that the time CSOPT needs to determine the task

assignment and the payments increases with the number of

requests and MUs. However, it does not require more than

10 seconds in the case of 1000 MUs and 1000 tasks. We

denote the time requirements of CSOPT with tCSOPT and

the mining time of a block by tB .

These experiments are important since all the blockchain-

based interactions as described in Section III-B will have this

delay. In total, any request from a CSP needs: 1 block to be

mined in order to register the request (RR) while in parallel

the ISP contacts the mobile users and announces the tasks

(tann). If the announcement time takes more time than the

mining of RR, the mining time of this block can be ignored.

Next, the users bid for a predefined time period (tbidding) and

after that the CSOPT is triggered, whose termination triggers

MUP. If the crowdsensing task duration ttask is longer than

tB , the mining of the block that is caused by the MUP is not

counted in the total delay. By the end of the task execution,

the users submit the collected data and DA is triggered after

tB notifies the CSP that the data have been collected. The total

delay between the submission of the request and the access to

the collected data is:

max(tB , tann) + tbidding + tCSOPT +max(tB , ttask) + tB .

From this set of experiments we can conclude that if the

duration of the crowdsensing tasks is in the order of tens of

seconds the time overhead of using a blockchain instead of a

centralised server is negligible while the benefits in terms of

preserving the users privacy are high.

VI. CONCLUSION

In conclusion, we proposed a novel architecture for event-

based spatial crowdsensing tasks that is deployed by an ISP

and is based on blockchain technology. The proposed archi-

tecture employs smart contracts (i) that allow crowdsensing

service providers to submit their requests, (ii) to run a cost-

optimal auction for the determination of the most suitable

mobile users that are interested in executing the crowdsensing

tasks, (iii) to deal with the payments for the mobile users
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and (iv) to give access to the crowdsensing provider. The

proposed architecture preserves the privacy of the mobile users

in the sense that the crowdsensing provider cannot know their

identity and can not derive their sensitive information such as

the location of their home/work. Moreover, we have shown

that the employed incentive compatible cost optimal auction

that determines the selection of the mobile users that will

handle each crowdsensing task, outperforms state of the art

proposals when adopted to the examined setting by one order

of magnitude for high numbers of mobile users and tasks.
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