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Abstract—Ensemble learning is a methodology that integrates 
multiple DNN learners for improving prediction performance of 
individual learners. Diversity is greater when the errors of the 
ensemble prediction is more uniformly distributed. Greater diversity 
is highly correlated with the increase in ensemble accuracy. Another 
attractive property of diversity optimized ensemble learning is its 
robustness against deception: an adversarial perturbation attack can 
mislead one DNN model to misclassify but may not fool other 
ensemble DNN members consistently. In this paper we first give an 
overview of the concept of ensemble diversity and examine the three 
types of ensemble diversity in the context of DNN classifiers. We 
then describe a set of ensemble diversity measures, a suite of 
algorithms for creating diversity ensembles and for performing 
ensemble consensus (voted or learned) for generating high accuracy 
ensemble output by strategically combining outputs of individual 
members. This paper concludes with a discussion on a set of open 
issues in quantifying ensemble diversity for robust deep learning.   

I. INTRODUCTION  
Neural network ensemble learning is a deep learning 
paradigm, which uses multiple (say N>1) individual deep 
neural networks (DNNs) to formulate an ensemble learning 
committee to work together by leveraging the strength of 
each member for  accomplishing a learning task, supervised 
or unsupervised.  

Ensemble Diversity, Accuracy and Robustness. The  
ensemble DNN prediction is performed by combining the 
individual predictions from all members of the committee via 
a consensus method. The architecture of an ensemble learner 
can be parallel, parallel hierarchical (e.g., Boosting), parallel 
cascading, gated parallel, to name a few. The consensus 
methods of an ensemble learner can be as simple as majority 
voting, sum, mean, median, or more complex, such as 
weighted averaging, voting by rank using a set of statistic 
metrics in terms of prediction confidence, rank score, rank 
confidence or more abstract ones. The best scenario is when 
all members of an ensemble committee of size N can learn 
and predict with uncorrelated errors. Then a simple averaging 
method can effectively reduce the average error of a member 
model by a factor of N. The worst scenario represents another 
end of the spectrum: namely, all N member models are N 
perfect duplicates such that they are identical in positive and 
negative predictions. However, when the errors are correlated 
to some extent, which is typical in practice, the overall error 
reduction will be smaller respectively and yet the expected 
ensemble committee error will not exceed the expected error 
of its member models by the Cauchy–Schwarz inequality. 
Concretely, given a learning task, say classification on 
ImageNet-1000, although each of the N neural networks is 

independently trained on the ImageNet and we obtain N 
member learners, it is unrealistic to assume that the errors 
from these N individual learners are completely uncorrelated. 
But it is realistic to argue that the prediction accuracy by the 
ensemble committee will be higher or not worst than the 
average accuracy of its members if the members of the 
ensemble committee has high disagreement diversity to 
promote strong robustness. This provokes several technical 
challenges: (a) how to create high accuracy DNN ensembles; 
(b) can diversity metrics be employed to measure accuracy 
increase as a function of diversity increase; and (c) how to 
quantify ensemble diversity and guarantee ensemble 
robustness. By ensemble diversity, we advocate high failure 
independence and low error correlation. By ensemble 
robustness, we endorse high resilience of ensemble in the 
presence of unseen examples, including adversarial examples 
generated by different deception attack methods [1-2]. 

Adversarial examples and their transferability are 
recognized as the two most intriguing properties of DNNs.  
Adversarial examples can fool DNNs to misclassify with 
high confidence. The adversarial transferability is initially 
studied [3] from two perspectives: the transferability between 
different models trained on the same dataset, and the 
transferability between the same or different model trained 
over disjoint subsets of a dataset. [4] stated that one root cause 
of transferability is that the adversarial perturbation is highly 
aligned with the weight vector. [5] showed a black-box attack 
to the privately trained target DNN model by querying the 
target model for labels and then construct a substitute model 
with a synthesis technique to generate a training set and 
annotates it with the learned labels from query probing to the 
target model. Using this approach, black-box attacks can 
break down the machine learning (ML) services from 
Amazon, Google and MetaMind [5]. The transferability is 
also studied between DNNs and other ML models, e.g., 
decision tree, SVM, kNN.  

Adversarial examples do not behave consistently across 
models [2]. The same adversarial example under different 
DNN models have different gradient information and thus 
behave differently across different neural networks. For 
untargeted attacks, such adversarial behavior divergence is 
reflected by different attack destination class. For targeted 
attacks, the same adversarial example tends have different 
most-likely and least-likely attack classes [2]. Also, the 
transferability of an adversarial example across different 
DNN models is not consistent. The transferability is 
relatively more severe for untargeted attacks but less so for 
targeted attacks [6]. Even for the same adversarial example, 



the probability of being misclassified by different models to 
the same wrong class label is not high. The transferability on 
cross-technique classifier is even weaker. Also for the same 
adversarial example, the chances of being misclassified to the 
same wrong label by different models is not high.  

Ensembles as defense against deception. Several 
existing research efforts propose to use ensemble as a defense 
strategy against adversarial examples [7-9]. As the attack-
defense arm races continue, [10-14] showed that adversarial 
examples can also be generated over multiple models by 
ensemble methods, which generate an adversarial example 
that persist over multiple models, and such adversarial 
example is more likely to transfer to other models. Combined 
with adversarial optimizations, e.g., CW attacks [15], such 
ensemble attacks [10-14] have challenged existing defense 
methods to fail badly for defending target model [1,16,17]. 

This paper is dedicated towards developing robust 
ensemble methods that integrate multiple deep neural 
networks by exploring and quantifying ensemble diversity 
and by enhancing and guaranteeing ensemble robustness. We 
establish the theoretical foundation for DNN ensembles from 
two perspectives. First, we define the concept of ensemble 
diversity by examining three types of diversity used in 
constructing classification ensembles: (i) the model diversity 
by their difference in DNN algorithm, neural network 
structure/topology, and hyperparameters used for classifier 
training and prediction; (ii) the model diversity by their 
disagreement on negative examples, aiming to promote 
failure independence of ensemble member models, to 
increase the overall performance (accuracy) of ensemble 
prediction, and the robustness of ensemble against deception; 
and (iii) the model diversity during training by altering the 
way that each individual learner traverses the hypothesis 
space, leading different classifiers to converge to different 
hypotheses within the classification manifold.  

Second, we develop the ensemble creation framework that 
consists of three main components: (i) creating a pool of 
candidate base models for ensemble construction; (ii) 
creating ensemble committee formation algorithms for 
strategic ensemble teaming using diversity and robustness 
measures, and (iii) developing a suite of ensemble consensus 
methods for on-demand creation of ensemble prediction that 
can effectively derive the best ensemble recommendation 
from its member models. We also highlight the importance 
of developing defensibility of ensembles under different 
diversity types and by quantifying the utility and the 
robustness of diverse ensemble methods. We provide some 
preliminary experimental results to illustrate the first two 
types of ensemble diversity, and show their robustness 
against a dozen of adversarial attacks.  

To the best of our knowledge, this paper is the first to 
define the concept of diversity by examining and 
differentiating three types of model diversity. We show that 
the proposed combination of model construction diversity 
and disagreement diversity can create robust DNN ensembles 
for protecting the target DNN model with stronger robustness 

and higher defensibility than those offered by existing 
representative defense methods against a known set of 
adversarial attacks, including adversarial training defense 
[18-19], defense distillation [20] and ensemble transformation 
[21-22]. Our preliminary research has shown some promising 
results of using disagreement diversity under black-box threat 
model, in which an adversary has no knowledge of the 
defense ensemble strategies, structure and parameters.  

The remaining of the paper proceeds as follows. We first 
define the concept of ensemble diversity by examining three 
types of diversity used in constructing classification 
ensembles in Section II. Then we develop ensemble creation 
algorithms in Section III, which focus on constructing and 
maintaining a pool of ensemble teams that meet the desired 
diversity requirements. Finally, we develop robust ensemble 
consensus methods in Section IV, which can effectively 
combine, rank and integrate predictions from members of an 
ensemble committee to produce ensemble prediction of high 
accuracy in the presence of adversarial examples. We 
conclude with a discussion on the potential effectiveness and 
possible limitation of our disagreement diversity optimized 
ensemble methods against grey box or white box threat 
models under both offline attack and online attack scenarios.  

II. DEFINING ENSEMBLE DIVERSITY 
A. Ensemble Learning and Ensemble Diversity 
Ensemble learning is a multi-learner parafigm, which 
employs multiple and yet redundant learners and generate 
ensemble prediction by combining the ensemble members’ 
predictions through a committee consensus method. The 
concept of redundant learners refers to the constraint that the 
multiple learners should be trained, preferably independently, 
on the same learning task, such as CIFAR-10, CIFAR-100, 
or ImageNet-1000. In an ensemble committee, its members 
play a redundant role by solving the same task with each 
offering a solution independently. The concept of committee 
is rooted from a Bayesian framework. Given a probability on 
a hypothesis, the task of ensemble learning could be taking 
an average of all member models. If we compute the 
weighted averaging by using each model’s prediction 
weighted by its posterior probability, i.e., the Bayesian model 
averaging, we can say that the probability distribution over 
the ensemble member models may reflect some uncertainty 
with respect to the prediction made by each of the member 
models.  

There are two main driving factors for ensemble learning: 
(1) The expected committee/ensemble error will not exceed 
the error of its individual member model in the committee. 
(2) Probablistically, if all M members of an ensemble 
committee make uncorrelated errors on the set of  hypothesis 
of a learning task (supervised or unsupervised), then the 
ensemble may reduce the error of its committee members by 
a factor of M. Thus, the concept of ensemble diversity is  
critical for achieving high emseble accuracy and strong 
ensemble robustness. Diversity is greater when the errors 
(negative examples) are more uniformly distributed across its 



member classifiers, and vice versa. This indicates that an 
ensemble of multiple redundant classifiers should be 
formulated not only by the set of base models trained by using 
diverse neural network structures, hyperparameters, or DNN 
models, but also using the disagreement based diversity.  

Ensemble Diversity. Let E={C1, …, CM} be the set of M 
classifiers in an ensemble team and Ω={𝜔1, …, 𝜔L} be a set 
of L class labels. For an input vector x of n features to be 
labeled in Ω, denoted by x∈ ℛ$, the output of the ensemble 
E includes the following three possible output [27]:  
(1) Class label. Ci∈ Ω, i=1,…M. 
(2) The oracle output (correct/incorrect prediction). Given the 

correct label of x for some finite subset X⊂ ℛ(, Ci(x) = 1 
if x is classified correctly by Ci, and Ci(x) = 0, otherwise. 

(3) A L-element vector 𝜇* = ,𝜉*,.(𝑥),… , 𝜉*,3(𝑥)4
5
, i=1,…,M, 

representing the supports for the L classes. An example is 
a probability distribution over Ω, estimating the set of L 
posterior probabilities for each input x, i.e., 𝑃(𝜔7	 | x), 
l=1,…,L, thus we get a set of M confidence vectors, each 
of size L, one per member classifier.  

Given that the outputs of the M classifiers are the estimates 
of the posterior probabilities, denoted by 𝑃9(𝜔7	|	𝑥)	such that 
𝑃9*(𝜔7|𝑥)  = 𝑃(𝜔7  | x) + 𝜂7*(𝑥),  where 𝜂7*(𝑥)  is the error for 
class 𝜔7 made by classifier Ci. The outputs for each class by 
the M classifiers can be combined by averaging, or a rank 
statistic, such as max, median or min. Section IV is dedicated 
to ensemble consensus methods for combining outputs of 
member classifiers for high ensemble accuracy.  

B. Three Types of Ensemble Diversity 
We define three types of diversity, representing three ways 
to create diversity ensembles for robust deep learning: 

The type 1 diversity captures the structural diversity of 
DNN models with respect to their training process, such as 
varying training dataset, initial weight filters, neural network 
structure, neural network algorithm employed (e.g., LeNet, 
VGG, MobileNet, ResNet-50, ResNet-101, ResNet-152), or 
by using different settings of hyperparameters (e.g., feature 
vector size, mini-batch size, #epochs, #iterations, learning 
rate functions, optimization algorithms).  

The type 2 diversity captures the disagreement diversity 
in outputs of DNN models, aiming to promote failure 
independence of ensemble member classifiers and increase 
the overall predictive performance (accuracy). By failure 
independence, we mean that the members of our chosen 
ensemble defense method should have high training accuracy 
and high benign test accuracy with no attack and yet have 
high error disagreement diversity such that the ensemble 
committee has little or very low negative correlation. There 
are several disagreement measures such as kappa statistic 
[24-25], Q-statistic [23,25], 𝜌-statistic [27], and so forth.  

The type 3 diversity captures the posterior distribution 
diversity during training by altering the way in which a 
learner traverses the hypothesis space, which may lead 
different classifiers to converge to different hypotheses [23]. 
For instance, by using random strategy to inject randomness 

into the learner, it may increase the independence among the 
ensemble member learners. Generally speaking, type 3 
diversity can be ensured by forcing neural networks to be 
decorrelated with one another by means of diversity-
enhanced ensemble training algorithm, which incorporates an 
error decorrelation penalty term designed to encourage DNNs 
to make errors which are decorrelated from those made by 
other DNNs, and advocates DNN learning from diverse 
hypothesis. 

In all three types of diversity, the greater the diversity is,  
the more uniformly distributed the errors of an ensemble 
prediction are, and vice versa. There also exists a great 
correlation between ensemble accuracy increase and 
ensemble diversity elevation. In general, positively correlated 
classifiers in an ensemble only slightly reduce the added 
error, uncorrelated classifiers may reduce the added error by 
a factor of 1/M for an ensemble of M classifiers, and 
negatively correlated classifiers reduce the error even further. 
However, ensemble accuracy does not have a great 
correlation with ensemble team size, indicating that ensemble 
team of smaller size may not lead to loss in accuracy. Several 
hard challenges that need to be addressed:  
à How do we define and measure diversity?  
à How are the different types of diversity and different 
measures of diversity related to one another?  
à How are the diversity measures related to the accuracy of 
the ensemble team?  
à How do we use the types of diversity and measures of 
diversity in creating ensemble team?  
à Is there a diversity measure that is best in minimizing the 
error of an ensemble committee?  

We attempt to address some of these questions in the 
remaining of the paper.  

Both type 2 and type 3 diversity are defined and 
quantified based on disagreement among ensemble members. 
Although the diversity ensemble is beneficial since the more 
uniformly distributed the ensemble members’ classification 
errors are, the smaller their error correlation will be, and vice 
versa, the problem of quantifying the type 1 diversity remains 
an open problem. Due to the space constraint, in the rest of 
the paper, we focus on type 1 and type 2 diversity ensembles. 
We first describe a set of metrics for quantifying type 2 
diversity, and then present the ensemble creation methods 
and the ensemble consensus algorithms for creating type 1 
and type 2 diversity ensembles.  

C. Pairwise Ensemble Diversity Metrics 
Let E={C1, …, CM} be the set of M classifiers in an ensemble 
team, and D={x1, …, xd} be a labeled dataset with a set of L 
class labels, denoted by Ω={𝜔1, …, 𝜔L}. For an input vector 
xj of n features to be labeled in Ω, denoted by x∈ ℛ$, we can 
represent the output of a classifier Ci (i = 1, …, M) as a d-
dimensional binary vector, denoted as yi = [y1,i, …, yd,i]T, such 
that yj,i = 1, if Ci correctly classifies xj, and yj,i = 0, otherwise. 
These notations are used to define four pairwise diversity 



metrics [27]. Other statistics can also be used to compute the 
similarity between the outputs of two classifiers [30].  

(1) The Q statistics [26,27]. Let Nab denote the number 
of elements xj of D for which yj,i = a and yj,k = b for the two 
classifiers Ci and Ck. The Q statistics for these two classes is   

𝑄*,> =
?@@?AAB?A@?@A

?@@?AAC?A@?@A
         (1) 

Qi,k varies between -1 and 1. Qi,k is negative when the two 
classifiers produce errors on different objects, and positive 
when the two classifiers recognize the same object correctly. 
If Ci and Ck are statistically independent, the expectation of 
Qi,k is 0. For an ensemble team E with M member classifiers, 
the average Q statistics over all pairs of the classifiers is 

𝑄DEF =
G

H(HB.)
∑ ∑ 𝑄*,>H

>J*C.
HB.
*J.          (2) 

 

(2)The correlation co-efficiency 𝝆. [27] The correlation 
for two classifiers’ outputs (correct/incorrect), 𝑦* and 𝑦>, is 

𝜌*,> =
𝑁..𝑁SS − 𝑁S.𝑁.S

U(𝑁.. + 𝑁.S)(𝑁S. + 𝑁SS)(𝑁.. + 𝑁S.)(𝑁.S + 𝑁SS)
				(3) 

 

(3) The binary disagreement metric [27]. It gives the 
ratio between (i) the number of input examples on which one 
classifier is correct and the other is incorrect and (ii) the total 
number of predictions made for the two classifiers Ci and Ck: 

𝛿*,> = 	
𝑁S. + 𝑁.S

𝑁..+𝑁.S + 𝑁S. + 𝑁SS												(4) 
  

(4) The Kappa statistics [27]. The pairwise Kappa 
statistic, denoted by 𝜅, is used as a measure of diversity 
between two classifiers by considering the class label 
outputs and calculating 𝜅 statistic for each pair of classifiers 
from their coincidence matrix. A so-called 𝜅 error diagram 
plots kappa against the mean accuracy of the classifier pair. 
By [25], the pairwise kappa 𝜅 for classifiers Ci and Ck is  

𝜅 = G(?@@?AAB?A@?@A)
(?@@C?@A)(?A@C?AA)C(?@@C?A@)(?@AC?AA)

.        (5) 

 

Let L be the number of class labels and d be the number of 
input examples. The time complexity of computing pairwise 
𝜅 statistic for an ensemble of M classifiers is O(M2(d+L2)).  

Although there are several disagreement measures such 
as kappa statistic [24,25], Q-statistic [26,27], 𝜌-statistic, and 
so forth, most of them are correlated [27], which is also 
observed from our preliminary experiments (see Section 
3.D). We also observed that the pair-wise kappa (statistic) 
values may help remove bad ensemble teams that have high 
Kappa values, indicating low level of disagreement diversity. 
However, ensemble teams with low averaging Kappa values 
may not ensure the best predictive performance in ensemble 
accuracy (see Section III).  

D. Non-Pairwise Ensemble Diversity Metrics 
There are numerous non-pairwise diversity measures [27]. 
Due to the space constraint, we present the entropy measure. 

(5)The entropy measure [27]. For input xj ∈ ℛ$ , the 
highest diversity among all M member classifiers in an 
ensemble is defined by the ⌊𝑀/2⌋ votes with the same value (1 
or 0), and the other 𝑀− ⌊𝑀/2⌋ votes for the alternative value 

(0 or 1). If they were all 0 or were all 1, then there is no 
disagreement and the ensemble is not diverse. Let 
𝐶𝐶(𝑥 )	denote the number of classifiers in the ensemble E, 
which correctly classifies xj, i.e., 𝐶𝐶a𝑥 b = ∑ 𝑦`,*H

*J.  (£M). 
We compute the entropy measure, denoted as 𝒮,  of the 
ensemble of size M accordingly 

𝒮 =
1
𝑑f

1
𝑀− ⌈𝑀 2⁄ ⌉

j

`J.

minn𝐶𝐶a𝑥 b,𝑀 − 𝐶𝐶a𝑥 bo.			(6)	 

The entropy 𝒮 ranges in [0,1], where 1 indicates the highest 
possible diversity and 0 indicates no diversity. 

As pointed out in [31], one can decompose the 
classification error of a classifier into bias term and variance 
term. By using the variance term as a measure of ensemble 
diversity, we can capture the variability of the predicted class 
label y for x, across the data set, for a given classifier.  

𝑣𝑎𝑟t =
1
2u1 −f𝑃(𝑦 = 𝜔*	|	𝑥)G

3

*J.

v.					 

Where Ω={𝜔1, …, 𝜔L} is a set of L class labels for 𝑥 ∈ ℛ$.  
 In summary, we have described five diversity metrics and 
all are symmetrical. For three pairwise metrics: Q-statistic, 𝜌-
statistic, 𝜅-statistic, the smaller value, the higher diversity. 
For the pairwise disagreement measure and the entropy 
metric, the larger value, the higher diversity.  

III. DIVERSITY ENSEMBLE CREATION ALGORITHMS 
We develop a three-step diversity ensemble creation 
algorithm: (1) Creating a pool of candidate ensemble member 
models, or so called base models; (2) Creating a pool of 
candidate ensemble teams with their diversity scores higher 
than the pre-defined minimum diversity threshold; and (3) 
Developing robust ensemble consensus methods, which can 
effectively combine, rank and integrate predictions from 
members of an ensemble committee to produce high accuracy 
ensemble prediction output against adversarial examples. 
Different ensemble creation methods tend to have varying 
level of diversity. 

A. Creating Ensembles of Type 1 diversity 
We want to construct a pool of N redundant DNN models 
trained on the same learning task as the base classifiers. 
Preferably, the best ensemble committee members are those 
base classifiers that are relatively diverse and have high 
individual test accuracy. The type 1 diversity ensemble 
creation algorithm requires that every base model in the pool 
meets the type 1 diversity and has high benign test accuracy 
comparable to that of the target model under protection. One 
approach is to add one member model to the pool at a time. 
Assume that we initialize the pool with a privately trained 
DNN model. We only allow the next model to be added to 
the pool if it is trained independently using different hyper-
parameters or different neural network structures or 
algorithms and it meets the high benign test accuracy 
requirement.   

Creating ensembles of type 1 diversity is simply carried 



out by finding all the subsets of the base model pool of size 
N, which will be a total of 2N ensemble teams of type 1 
diversity. For ensemble defense of a target model, we want to 
include the target model in every ensemble. Thus, we will 
create a pool of type 1 diversity ensembles of size 2(N-1). Thus, 
the pool of type 1 ensemble teams for ImageNet, CIFAR-10 
or MNIST has the size of 24=16, 27 = 128, or 29=512 
respectively. If we want to remove all ensemble teams of size 
2, then we have 2(N-2) type 1 diversity ensemble teams for a 
base model pool of size N. At runtime, we randomly select 
one ensemble from the respective pool as the type 1 diversity 
defense ensemble to defend the target model prediction. For 
benchmark datasets like MNIST, CIFAR-10, CIFAR-100, 
ImageNet-1000, instead of training N redundant DNN 
models, one can also collect from the public domain those 
pre-trained DNN models on these benchmark datasets.  

Table 1 shows ten base models for MNIST, eight base 
models for CIFAR-10 and five models for ImageNet-1000, 
all obtained from public domain pre-trained model zoos. All 
include TM as a member of the base model pool. 

 
Table 1. Multiple pre-trained models from the public model zoos with 

benign test accuracy on par to that of the target model. K denotes the kernel 
size (#weight filters) and e represents the training epochs. 

B. Creating Ensembles of Type 2 Diversity 
Type 2 diversity ensembles are created by computing the 
disagreement diversity score for each ensemble team in the 
pool of ensembles with type 1 diversity. We show some 
example ensembles of type 2 diversity by Kappa score for 
MNIST, CIFAR-10 and ImageNet respectively in Table 2.  

 
Table 2. Kappa value based type 2 diversity ensembles with the smallest 

average Kappa value for each size of the ensemble teams. 
 

For ImageNet, we show 3 ensemble teams of type 2 diversity 
for ImageNet, indicating the three ensemble teams of size 3, 
4 and 5, each representing the team with the smallest Kappa 
score among those ensemble teams of the same size. 
Similarly, for CIFAR-10, we show six ensemble teams of 
type 2 diversity by Kappa score for team size of 3 to 8. For 
MNIST, we show eight ensemble teams of type 2 diversity 
for team size of 3 to 10.  

C. Preliminary Results 
We implemented ensemble creation algorithms for type 1 
diversity and type 2 diversity and performed a set of 
experiments on three popular benchmark image datasets: 
MNIST, CIFAR and ImageNet. We evaluate our diversity 
ensembles against adversarial examples with 12 attacks: two 
untargeted attacks: FGSM [4], BIM [28], and ten targeted 
attacks: targeted FGSM (TFGSM) [2], targeted BIM [28], 
JSMA [6], Carlini & Wagber attacks (CW0, CW2, CWy) [15, 
29]. For each targeted attack with target yT (≠Cx), without 
loss of generality, we study two representative attack targets: 
the most-likely attack class (yT = argmax �⃑�: most) and the 
least likely class (yT = argmin �⃑�: LL).  
 We create type 1 diversity classifiers using different 
input transformation techniques provided in SciPy library, 
such as bit depth flipping, rotation in the range of -12 to 12, 
local spatial smoothing, which uses nearby pixels to smooth 
each pixel with Gaussian, mean or median smoothing, and 
non-local spatial smoothing (NLM), which smooths over 
similar pixels by exploring a larger neighborhood instead and 
replace center patch (say 2x2) with the (Gaussian) weighted 
average of those similar patches in the search window, and so 
forth. Figure 1 shows an example of three diverse classifiers 
for MNIST under 6 attacks (Bit depth flipping based 
classifier, med-filter 3x3 based classifier and rotation -12 
based classifier. Figure 2 shows an example of three diverse 
classifiers for ImageNet under 5 attacks (Med-filter 2x2, 
NLM 12-3-4, rotation -12). We can see that both ensemble 
majority and ensemble weighted can successfully defend 
adversarial examples under all five attacks for ImageNet 
example. The MNIST digit zero example scenario shows that 
the majority voting consensus failed under two attacks out of 
six when the majority of member classifiers are being fooled. 
In comparison, the ensemble consensus weighted on 
confidence succeeds to defend the target model under five out 
of six attacks. However, the weighted averaging fails under 
FGSM attack on MNIST example. This is another motivation 
for leveraging the type 2 diversity ensemble.  

Table 3 compares individual member classifiers from the 
type 1 diversity using different DNN algorithms and topology 
as shown in Table 1 with the Kappa type 2 diversity ensemble 
in Table 2 as well as the combo of type 2 ensemble with the 
rotation denoising classifier.  

We make several interesting observations. First, the four 
member classifiers for ImageNet performs better than the 
target classifier under 12 attacks (2 untargeted and 10 
targeted) from 7 attack algorithms, which are expected since 
the adversarial examples are generated over the target model 
and adversarial examples do not transfer well under these 
type 1 diversity classifiers, especially for the 10 targeted 
attacks. Second, the best Kappa based type 2 diversity 
ensemble performs better on average under all 12 attacks 
compared to rand-kappa ensemble team, which randomly 
picks one of the three kappa ensembles. Interestingly, the 
random ensemble of team size 3 in this case outperforms the 
random Kappa ensemble. This shows that the low kappa 



score ensembles only ensure good predictive performance but 
do not guarantee the best predictive performance. Finally, we 
also compared with the multi-strategy ensemble, which 
combines the type 2 Kappa diversity ensemble with a rotation 
denoising classifier. We observe both good news and bad 
news. The good news is that transforming the target model by 
the rotation 6 denoising and adding this input transformation 
classifier to the best Kappa ensemble team, the ensemble 
consensus will outperform other ensemble teaming strategies 
under the 12 attacks. The bad news is that if we perform the 
rotation 6 on the input to the target classifier first and then 
perform the Kappa ensemble on the prediction output of the 
rotation 6 transformed target model, such sequential 
combination of the multi-defense strategy may not work as 
well, likely due to the error propagation from the rotation 6 
transformed target model due to denoising error. These 
preliminary experiments motivate the study on how different 
ensemble architectures may impact on the robustness of 
ensemble learning, ranging from parallel ensembles to 
hierarchical ensembles. 

D. Ensemble Accuracy and Cost  
We evaluate and compare the diversity metrics on a variety 
of ensemble creation techniques, to determine whether a 
diversity metric can be used to predict ensemble accuracy 
increases as a function of diversity increases. There are 
several perspectives one can focus on when conducting 
comparative analysis on ensemble diversity, ensemble 
accuracy and ensemble robustness. The first one is related to 
the architecture used for creating ensemble over its member 

models, including parallel (e.g., majority voting), parallel 
hierarchical (e.g., boosting), parallel gated or parallel 
cascading, to name a few.  

The second one is related to correlations between 
different diversity measures and between increase in diversity 
and increase in accuracy. Given a learning task (supervised 
or unsupervised), it is interesting to study the correlation (in 
%) between (a) the improvement of the accuracy of the 
ensemble team over the single best accuracy among the 
ensemble member classifiers and (b) the set of ensemble 
diversity measures. It is also interesting to measure the rank 
correlation coefficiency (in %) between different diversity 
metrics, knowing whether different diversity measures are 
correlated, which ones are more similar. One approach is to 
create pairwise coincidence matrix to illustrate the results of 
clustering the set of ensemble diversity measures. The higher 
coincidence value, the more similar their diversity measures.  

The cost of ensemble creation methods is also important 
for comparative analysis. Two important observations are 
made regarding the ensemble creation cost. First, it is 
recognized that ensemble learning with multiple classifiers 
may greatly increase the ensemble classification accuracy. A 
fair number of algorithms for generating ensembles realizes 
the accuracy increase with a largely reduced training time, 
thanks to ensemble induced fast convergence and parallel 
architectures for concurrent training [32]. However, the cost 
of testing will grow relative to the size of ensemble team (the 
number of member classifiers) in most cases. For applications 
that requires very short testing time, this can present a 
challenge. Also, for applications, such as mobile clients, 

  
 

 
         Table 3: Prediction Accuracy of the target model(TM) with 15 attacks, the baseline defense model (DM), the random baseline ensemble (RandBase),                    
                        the random κ ensemble (Randκ) and the Bestκ ensemble for ImageNet. The adversarial examples are generated from the target 
model. 



which have limited space to store the ensemble models, if the 
size of ensemble team is large, then even with 25MB per 
member classifier, this can present a problem. Thanks to the 
fact that diversity ensemble with high accuracy does not 
directly correlate to larger ensemble team size and small size 
ensemble committee can provide high ensemble accuracy, we 
argue that it is more desirable to compose ensembles with 
smaller team sizes while maintaining high individual 
accuracy and ensemble diversity. For instance, if a member 
classifier makes an incorrect prediction on an example, which 
the majority of the others get right, then removing this 
classifier has no effect on ensemble accuracy. There are a 
number of ways to choose the examples for this removal test: 
(1) We reward a member classifier if it makes a correct 
decision, and reward more if it makes a correct decision even 
when the ensemble output is incorrect. (2) We penalize a 
member classifier when both the ensemble and the classifier 
are incorrect, and get penalized more when the error of the 
classifier is highly correlated to the error of the ensemble 
(making an identical error). (3) A classifier can be eliminated 
if its removal causes the diversity measured in Q-statistic, 𝜌-
statistic, 𝜅 -statistic to increase the most or the entropy 
measure to decrease the most, since greater diversity brings 
about larger boosts in ensemble accuracy, and vice versa. (4) 
After generating the pool of ensemble teams, we can further 
optimize the ensemble teaming by examining each member 
model and find the most effective one to remove such that its 
removal increases the ensemble accuracy the most. In all 
these scenarios, the number of examples to consider should 
be no smaller than the reciprocal of the number of classes, 
which represents random guessing at best. Clearly, the mean 
individual classification accuracy plays an important role in 
determining this lower bound. 

IV. ENSEMBLE CONSENSUS METHODS 
In ensemble decision making, it is intuitive and statistically 
guaranteed that a combination (committee) of member 
classifiers (experts) can perform better than any single one 
alone, provided that the ensemble decision maker has the 
right methods and tools to combine their individual opinions.  

There are several consensus methods for combining the 
outputs of multiple classifiers. An ensemble of independently 
trained DNNs can make a collective classification in several 
ways, each is defined by an ensemble consensus method. 
Consider a type 1 or type 2 diversity ensemble of size M, 
when it takes an input example xj ∈ ℛ$ , we will get M 
outputs, one per member classifier, each includes the top-1 
prediction class label and its confidence (probability) vector. 
We can represent the output of each classifier Ci (i = 1,…, M) 
as a d-dimensional binary vector for the test dataset of size d, 
denoted as yi = [y1,i, …, yd,i]T, such that yj,i = 1, if Ci correctly 
classifies xj, and yj,i = 0, otherwise.  

Averaging and weighted averaging. A ensemble output 
can be created based on the outputs from a set of M member 
DNN classifiers via simple averaging (or sum, max, median, 
min). A weighted averaging method embraces the relative 

accuracy of the ensemble member DNN classifiers, e.g., the 
confidence of the top-1 class label. In general, averaging and 
weighted averaging are popular aggregation methods for the 
linear opinion pools.   

Non-linear combining methods. Voting is one of the 
most representative non-linear combining methods by  
combining using rank-based information. The majority 
voting is the simplest method, which chooses the 
classification made by more than half of the DNN member 
classifiers, i.e., ⌊𝑀 2⁄ ⌋.  When there is no agreement among 
more than ⌊𝑀 2⁄ ⌋ number of the DNN member classifiers, the 
ensemble result is considered an error. The downside of the 
majority is the scenario where ⌊𝑀 2⁄ ⌋  classifiers of an 
ensemble misclassify, and a majority voting in this case 
results in ensemble error. The most powerful voting rule is 
the plurality in which the collective decision is the 
classification reached by more DNN classifiers than any 
other. A correct decision by majority is inevitably a correct 
decision by plurality, but not vice versa.  

Supra-Bayesian. The Bayesian combining methods are 
the most theoretically motivated, since they produce a formal 
probabilistic interpretation to the combination process [33]. 
Bayesian inference offers two approaches for combining 
models: (1) Bayesian model averaging, which is a natural 
extension of the Bayesian inference approach, and the 
combined model is the weighted average of the models used. 
(2) Supra-Bayesian classifier combination, which is a method 
of aggregating expert opinions and pooling expert opinions, 
assuming each opinion is associated with some uncertainty 
(in the form of a probability distribution). The ensemble 
decision maker (DM), upon receiving all the opinions 
(distributions) represented as data, and aggregates them into 
one distribution to make the decision. Thus, for an ensemble 
to reach a consensus, it employs a supra-Bayesian method to 
combine the probability distributions provided by the experts 
with its own prior distribution (prior knowledge) using the 
Bayes rule. Bayesian model averaging may be applied for 
combining, provided that the models are probabilistic. In 
many applications, particularly in classification, some 
models may produce discrete outcomes, not associated with 
a probabilistic model. The Supra- Bayesian framework is 
needed in this scenario as a more general framework [33].  

Stacked Generalization. Stacked generalization [34] 
uses a non-linear model to learn ways to combine the member 
neural networks by varying the weights over the feature 
space. It takes the outputs from a set of generalizers from 
lower level as the input to a next level generalizer. In addition 
to the method of stacking classifiers, the term stack 
generalization [34] is also used to create base model members 
of ensembles by training on different data partitions.  

V. RELATED WORK AND DISCUSSION 
Ensemble approaches to DNN classifications have attracted 
a renewed interest in recent years. The diversity optimized 
ensemble methods are shown both theoretically and 
empirically to outperform individual member classifiers on a 



wide range of tasks. Consequently, ensemble defense 
methods against adversarial examples have been a heated 
topic [2, 7, 17, 19, 35]. One key motivation of ensemble 
defense is that an adversarial example is less likely to fool 
multiple DNN classifiers in the diversity-optimized 
ensemble, when the ensemble member models have high 
disagreement diversity and low error correlation, thus it is 
unlikely that their loss functions will increase in a correlated 
fashion. In the context of adversarial attacks,  

To study the effectiveness and limitation of disagreement 
diversity powered ensemble methods against adversarial 
examples, we argue that it is important to articulate and 
differentiate black box, grey box or white box threat models 
under offline attack scenario and online attack scenario.  

Offline attacks refer to those adversarial examples that 
are generated offline over the target model or a surrogate of 
the target model using existing attack algorithms, e.g., [1-6] 
[10-15]. If an adversary has only access to the prediction API 
and knows the dataset or can generate the dataset by 
membership inference attacks [37], it can generate a 
substitute of the target model [5-6], which is similar or 
identical to the target model. Then the adversary can generate 
adversarial examples over the substitute of target model, and 
utilize the adversarial transferability to succeed the attack to 
the target model. We call such adversarial examples the 
black-box offline attacks. If adversary also has full (or 
partial) knowledge of the DNN model and parameters used 
for training the target model, we call it the white box (or 
grey-box) offline attack. Such attacks can generate 
adversarial examples over either the target model directly 
(white box offline) or a high quality substitute of the target 
model (grey box offline). 

Online attacks refer to those adversarial examples that 
are generated online against a target model by using existing 
attack algorithms. By online, we mean that the generation of 
the adversarial examples is performed over the prediction of 
the target model regardless whether it is alone or under 
protection by a defense method. For a protected target model, 
the online attack is gaming at against the union of the target 
model and its defense structure. By black-box online attack, 
we refer to the scenario where an adversary has only the 
online access to the prediction API and has no knowledge of 
the defense protection of the target model (structure or 
parameters). We have shown that diversity ensemble defense 
can be robust against deception under all three types of offline 
attacks as well as the back-box online attacks. By white-box 
(or grey-box) online attack, we refer to the scenario where the 
adversary also has the full (or partial) knowledge of the 
defense strategy, structure and parameters. Not surprisingly, 
if a fixed ensemble committee is chosen as the defense 
protection of a target mode, then this protected prediction 
model is just another target model, and existing attack 
algorithms [1-6] remain to be effective since they can 
generate the adversarial examples online over the combo of 
the target and its defense ensemble. However, if we use an 
ensemble committee that is dynamically selected at runtime 

for each prediction query, then our preliminary study shows 
higher robustness of our diversity ensemble defenses under 
white-box and grey-box online attack scenarios [17].  

Quantifying Robustness under New Attacks. One of 
the main benefits of diversity ensemble defense is that it is 
attack independent and holds the potential to generalize well 
over attack algorithms against past, present and future 
attacks. In addition to evaluate and compare our proposed 
diverse ensemble defense methods with existing defenses 
against the 12 representative attacks, the diversity ensemble 
defense approaches should also be evaluated against the 
ensemble attacks and the new attacks in recent literature.  

We also advocate multi-tier strategic ensemble learning 
[17,36]. We argue that such cross-layer hybrid approach can 
combine several ensemble strategies to further increase the 
diversity of ensemble members, providing more robust safe-
guards for the inputs to DNN models, the training of DNN 
models and the outputs of DNN models. 

To combat online attacks under white (or grey) box threat 
models, where adversary may have full or partial knowledge 
of both target model and the defense system structure and 
parameters, we propose to develop a non-deterministic 
mechanism to select an ensemble defense team for each query 
example on demand, by utilizing the pool of ready-to-use 
ensemble teams that are top ranked by high diversity. The 
idea is to some extend aligned to those in Random forests, 
which uses a non-deterministic approach to creating an 
ensemble of decisions trees from bags of data. For example, 
for each node in the decision tree, it selects an attribute to 
perform test randomly. It creates training sets by randomly 
picking certain percentage of the attributes. It randomly 
chooses a test on which to split out of the best k (e.g., 20) tests 
across all attributes. Analogously, in our diversity ensemble, 
two randomization techniques can be employed. First, we 
periodically add new individual models to the base model 
pool, which we use to create the type 1 and type 2 diversity 
ensemble teams. Second, for the pool of ready-to-use 
ensemble teams, instead of choosing the best diversity 
ensemble in the ranked list, we randomly select one ensemble 
team for each test query example on demand, from the pool 
of ready-to-use ensembles, ensuring that each query probing 
will trigger a different ensemble team at random.  

VI. CONCLUSION 

We have described the problems and the challenges of 
quantifying ensemble diversity and guaranteeing ensemble 
robustness for creating high accuracy ensembles. Diversity is 
greater when the errors of the ensemble prediction is more 
uniformly distributed across its member DNN models. We 
have shown that different ensemble creation methods tend to 
have varying level of diversity. Another attractive property of 
ensemble learning is its robustness against deception. We 
also show that ensemble accuracy does not have a high 
correlation with ensemble team size, thus high diversity 
ensemble teams of small size may have higher accuracy than 
those ensembles of larger teams. Although the concept of 



ensemble diversity is attractive and its effects and benefits are 
recognized by many, several issues are not yet well defined 
with theoretical formulation, including how to quantify 
ensemble diversity, how to utilize the elevation in diversity 
to foresee the expected increase in ensemble accuracy, and 
how to correlate increase in diversity with increase in 
ensemble robustness. 
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