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Abstract

Increasingly, UML metamodels and profiles are adopted
to specify software architectures from different angles in or-
der to cope with analysis specific modeling needs. In partic-
ular, whenever two or more analysis techniques are required
over the same architectural model, different modeling tools
and notations are required, and feedback from one model to
the other is not propagated since integration is not univer-
sally established.

Model-Driven Architecture offers a conceptual frame-
work for defining a set of standards in support of Model-
Driven Development, where models are first class entities
and play a central role in software development. In this
paper, the coexistence and integration of different analysis
techniques at the architectural level is reduced to the prob-
lem of enriching multi-view descriptions with proper UML
elements by means of directed weaving operations.

1 Introduction

Software Architectures (SAs) serve today as useful high-
level “blueprints” to guide the production of lower-level
system designs and implementations, and later on for guid-
ance in maintenance and reuse activities. A Software Archi-
tecture specification captures system structure, by identify-
ing architectural components and connectors, and required
system behavior, by specifying how components and con-
nectors are intended to interact.

Over the last years, traditional formal architecture de-
scription languages (ADLs) have been progressively com-
plemented and replaced by model-based specifications. The
increased interest in designing dependable systems, meant
as applications whose descriptions include non-quantitative
terms of time-related aspects of quality, has favored the pro-
liferation of analysis techniques each one based on a slightly
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different UML profiles or metamodels. As an immedi-
ate consequence, each profile or metamodel provides con-
structs that nicely support some specific analysis and leave
other techniques unexplored. The resulting fragmentation
induces the need to embrace different notations and tools to
perform different analysis at the architecture level: for in-
stance, supposing an organization (using UML notations) is
interested in deadlock and performance analysis, a compre-
hensive result is obtained only using two different ADLs.
Additionally, whenever the performance model needs to be
modified, the deadlock model must be manually adjusted
(based on the performance results) and re-analyzed, caus-
ing frequent misalignments among models.

Shifting the focus of software development from cod-
ing to modeling is one of the main achievements of Model-
Driven Architecture [22] (MDA), which separates the ap-
plication logic from the underlying platform technology
and represents them with precise semantic models. Conse-
quently, models are primary artifacts retained as first class
entities and can be manipulated by means of automated
model transformations.

In this paper, the coexistence and integration of differ-
ent analysis techniques at the architectural level is reduced
to the problem of enriching multi-view descriptions with
proper UML elements through directed weaving operations
(realized by means of model transformations). In partic-
ular, such integration is obtained by firstly setting a for-
mal ground where models and metamodels are specified,
then weaving operators are defined for the integration of
the DUALLY [14] profile with the constructs needed for
performing specific analysis. The weaving operators are
mathematically specified through Abstract State Machines
(ASMs) able to execute the integration according to the se-
mantic of the used operator.

The structure of the paper is as follows: the next section
sketches languages available for software architecture spec-
ification and provides the preliminaries for the definition of



DUALLY. Section 3 briefly reviews the Abstract State Ma-
chines which are used for the specification of model trans-
formations, as illustrated in Section 4, and of the weaving
operators presented in Section 5 together with the definition
of the DUALLY profile. Section 6 describes a case study
which illustrates the use of DUALLY and how it can be
integrated following the proposed approach with constructs
needed for performing fault tolerance analysis. Section 7
discusses some related work, while Section 8 concludes the

paper.
2 Modeling Software Architecture

Two main classes of languages have been used so far to
model software architectures: formal architecture descrip-
tion languages (ADLs) and model-based specifications with
UML.

ADLs are formal languages for SA modeling and anal-
ysis. Although several studies have shown the suitability
of such languages, they are difficult to be integrated in in-
dustrial life-cycles and only partially tool supported. The
introduction of UML as a modeling language for software
architectures (e.g., [17, 15] has strongly reduced this lim-
itation. However, different UML-based notations are still
needed for different analysis techniques, thus inducing the
need to embrace different notations and tools to perform
different analysis at the architecture level.

Section 2.1 surveys existing ADLs, while Section 2.2 de-
scribes the use of UML for modeling SAs. Section 2.3 dis-
cusses the problems of these two kind of languages, posing
the basis for the solution that we propose for successfully
model Software Architectures in practice.

2.1 ADL for Software Architecture mod-
eling

Formal architecture description languages are well es-
tablished and experienced, generally formal and sophisti-
cated notations to specify software architectures. An (ideal)
ADL has to consider support for components and connec-
tors specification, and their overall interconnection, compo-
sition, abstraction, reusability, configuration, heterogeneity
and analysis mechanisms [30].

Then, many ADLs have been proposed, with different re-
quirements and notations, and permitting different analysis
at the SA level. New requirements emerged, such as hierar-
chical composition, type system, ability to model dynamic
architectures, ability to accommodate analysis tools, trace-
ability, refinement, and evolution. New ADLs have been
proposed to deal with specific features, such as configura-
tion management, distribution and suitability for product
line architecture modeling. Structural specifications have
been integrated with behavioral ones with the introduction

of many formalisms such as pre- and post-conditions, pro-
cess algebras, statecharts, POSets, CSP, m-calculus and oth-
ers [18].

Papers have been proposed to survey, classify and com-
pare existing ADLs. In particular, Medvidovic and Taylor in
[18] proposed a classification and comparison framework,
describing what an ADL must explicitly model, and what
and ADL can (optionally) model. A similar study has been
performed for producing xArch [1], an XML schema to rep-
resent core architectural elements. ACME [2], the archi-
tecture interchange language, also identifies a set of core
elements for architecture modeling, with components, con-
nectors, ports, roles, properties and constraints.

Although several studies have shown the suitability of
such formal languages for SA modeling and analysis, in-
dustries tend to prefer model-based notations.

2.2 UML for Software Architecture mod-
eling

UML (with many extensions) has rapidly become a spec-
ification language for modeling software architectures. The
basic idea is to represent, via UML diagrams, architectural
concepts such as components, connectors, channels, and
many others. However, since there is not a one-to-one map-
ping among architectural concepts and modeling elements
in UML, UML profiles have been presented to extend the
UML to become closer to architectural concepts.

Many proposals have been presented so far to adapt
UML 1.x to model software architectures (e.g. [17, 15]).
Since such initial works, many other papers have compared
the architectural needs with UML concepts, extended or
adapted UML, or created new profiles to specify domain
specific needs with UML. A good analysis of UMLI1.x ex-
tensions to model SAs can be found in [17].

With the advent of UML 2.0, many new concepts have
been added and modified to bridge the gap with ADLs. How
to use UML 2.0 (as is) for SA modeling has been analyzed
in some books. The UML 2.0 concepts of components, de-
pendencies, collaborations and component and deployment
diagrams are used. In [23], components in a component
diagram are used to model the logical and physical archi-
tecture. In order to bridge the gap between UML 2.0 and
ADLSs, some aspects still require adjustments. Therefore,
much work has been proposed in order to adapt and use
UML 2.0 as an ADL [25, 15].

2.3 Modeling Software Architectures: a
practical perspective

The introduction of UML-based notations for SA model-
ing and analysis has improved the diffusion of software ar-
chitecture practices in industrial contexts. However, many



different UML-based notations have been proposed for SA
modeling and analysis, with a proliferation of slightly dif-
ferent notations for different analysis. Supposing an indus-
try making use of UML notations is interested in combining
deadlock and performance analysis, a satisfactory result can
be obtained only using two different notations: whenever
the performance model needs to be modified, the deadlock
model needs to be manually adjusted (based on the perfor-
mance results) and re-analyzed. This causes a very high
modeling cost, and creates a frequent misalignment among
models.

The solution that we propose is a synergy between UML
and ADLs proposing a new ADL, called DUALLY, which
maintains the benefits of the ADLs formality and with the
intuitive and fashioning notation of UML. DUALLY dif-
fers from previous work on ADLs and UML modeling for
many reasons: while related work on ADLs mostly focus
on identifying “what to” model [18, 2, 1], DUALLY iden-
tifies both “what to” model (i.e., the core architectural con-
cepts) and “how to” model (via the DUALLY UML pro-
file). Differently from related work which extend UML
for modeling specific ADLs, the DUALLY UML profile
focusses on modeling just the minimal set of architectural
concepts. Similarly to xArch and ACME, DUALLY pro-
vides extensibility mechanisms to facilitate modeling exten-
sions. DUALLY approaches the problem from a different
perspective: %) our starting point consists in identifying a
core set of architectural elements always required; then, i7)
we create a UML profile able to model the core architectural
elements previously identified. iii) We provide extensibility
mechanisms to add modeling concepts needed for specific
analysis. Finally, iv) we describe how semantic links mech-
anisms can be kept between different notations.

Going back to the problems stated at the beginning of
this section, the definition of the DUALLY UML profile al-
lows for an easier integration of software architecture mod-
eling and analysis in industrial processes. However, dif-
ferent notations are still needed for different analysis tech-
niques. To overcome this problem we outline an extendible
framework that permits to add models and to extend existing
ones in order to support the introduction of analysis tech-
niques. Weaving operations will be introduced and used for
the purpose of binding different elements of different mod-
els.

While sections 3 and 4 provide the formal ground and
technique for model transformations, Section 5 proposes the
DUALLY profile together with weaving models.

3 Abstract State Machines

Model Driven Architecture (MDA) [22] consists of a
set of standards forming an implementation of the Model
Driven Development approach even if the way for specify-

ing and executing transformation of models is not yet uni-
versally established. The forthcoming QVT [21] language
will provide a proper foundation for model transformations
even if in parallel with the OMG process, a number of
research groups have proposed their own approach giving
their contribution in the discussion of a key operation for
the success of MDA. Our experience has shown the validity
of using Abstract State Machines (ASMs) [6] for the formal
specification and execution of model transformations as it
will be explained in the next section. In the rest of the sec-
tion, we only briefly introduce ASMs here insisting on few
introductory aspects.

ASMs bridge the gap between specification and com-
putation by providing more versatile Turing-complete ma-
chines. The ability to simulate arbitrary algorithms on their
natural levels of abstraction, without implementing them,
makes ASMs appropriate for high-level system design and
analysis. Additionally, ASMs are executable and several
compilers and tools are available both from academy and
industry. In the sequel of the paper, ASM rules are given
in the XASM [3] dialect compiler. ASMs form a variant of
first-order logic with equality, where the fundamental con-
cept is that functions are defined over a set &/ and can be
changed point-wise. The set U, referred to as the superuni-
verse in ASM terminology, always contains the distinct el-
ements true, false, and undef. Apart from these, U/ can con-
tain numbers, strings, and possibly anything, depending on
the application domain.

Being slightly more formal, we define the state \ of a
system as a mapping from a signature ¥ (which is a col-
lection of function symbols) to actual functions. We write
[ for denoting the function which interprets the symbol f
in the state \. Subsets of U/, called universes, are modeled
by unary functions from U to true, false. Such a function
returns true for all elements belonging to the universe, and
false otherwise. A function f from a universe U to a uni-
verse V' is a unary operation on the superuniverse such that
foralla € U, f(a) € V or f(a) = undef otherwise. The
universe Boolean consists of true and false.

A basic ASM transition rule is of the form

f(tl, e ,tn) = t()

where f(t1,...,t,)and ¢ are closed terms (i.e. terms con-
taining no free variables) in the signature 3. The semantics
of such arule is this: evaluate all the terms in the given state,
and update the function corresponding to f at the value of
the tuple resulting out of evaluating (¢1, . . . , ¢,,) to the value
obtained by evaluating ¢;. Rules are composed in a paral-
lel fashion, so the corresponding updates are all executed
at once. Apart from the basic transition rule shown above,
there also exist conditional rules where the firing depends
on the evaluated boolean condition-term, do-for-all rules
which allow the firing of the same rule for all the elements
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Figure 1. The DUALLY profile

of a universe, and lastly exfend rules which are used for in-
troducing new elements into a universe. Transition rules
are recursively built up from these rules. Of course not all
functions can be updated, for instance the basic arithmetic
operations are typically not re-definable.

4 ASM based Model Transformations

Over the last years, a number of model to model transfor-
mation approaches have been proposed both from academia
and industry even if a standardized way for specifying and
executing transformations between models has not been
reached yet. Different classifications [9, 20, 33] of model
transformation approaches have been proposed and all of
them recognize at least declarative and hybrid solutions.
In the former category, graph transformation approaches
(like AGG [32], PROGRESS [29], GreAT [31] and VIA-
TRA [8]) play a key role as inspired by heavily theoretical
work in graph transformations, while hybrid solutions offer
declarative specifications and imperative implementations,
like ATL [5] that wraps imperative bodies inside declara-
tive statements.

Recently, our experience has proven the validity of Ab-
stract State Machines (ASMs) as a formal and flexible plat-
form on which to base a hybrid solution for model trans-
formations: on one hand they combine declarative and pro-
cedural features to harness the intrinsic complexity of such
task [27]; on the other hand, they are mathematically rigor-
ous and represent a formal basis to analyze and verify that
transformations are property preserving (as in [7]). Further-
more, we believe that ASMs could serve also for having
better insights on transformation languages in general, on
their intrinsic nature and for eventually having a basis for
comparative analysis among such complex objects. Possi-
bly, they could also prelude to a common semantic ground
(kind of normal form of transformations and models) where

evaluating properties of transformations [7] and weaving
operations even written in different languages.

ASM based model transformations start from an alge-
bra encoding the source model and return an algebra en-
coding the target one. The signature of an algebra encod-
ing a model is canonically induced by the corresponding
metamodel whose elements define the sorts of the signature.
For instance, the meta-class and meta-association elements
of MOF give place to the MetaClass and MetaAssociation
sorts, i.e. the algebra has two universes containing distin-
guished representatives for all the meta-classes and meta-
associations in the model. Additionally, the metamodels in-
duce also functions which provide with support to model
navigation, e.g. MetaAssociation elements have source and
target functions

source, target : MetaAssociation — MetaClass

which return the source and the target meta-class of a meta-
association. For instance, in Figure 2 the algebraic encod-
ing of the DUALLY profile, graphically depicted in Fig-
ure 1 and described in the next section, is given. Such
canonical encoding, with some minor considerations, en-
ables the formal representation of any model (conforming
to a specified metamodel) which can be automatically ob-
tained. Moreover, the encoding contains all the needed in-
formation to translate the final ASM algebra into the corre-
sponding model.

S Dually

This section introduces the DUALLY profile for SA
modeling, by describing the provided constructs. Then, the
weaving operators required to extend the core profile are
given and specified via the Abstract State Machines formal-
ism.

5.1 TUML Profile

Goal of the DUALLY profile is extend UML 2.0 in order
to model core architectural concepts: components (with re-
quired and provided interfaces, types and ports), connectors
(with required and provided interfaces and types), channels,
configuration (with hierarchical composition), tool support,
and behavioral modeling. This profile is not meant to cre-
ate a perfect matching between UML and architectural con-
cepts. Instead, it wants to provide a practical way, for soft-
ware engineers in industry, to model their software architec-
tures in UML, while minimizing effort and time and reusing
UML tools.

The DUALLY profile is depicted in Figure 1 and defined
in a <profile>> stereotyped package. Within this package
the classes of the UML metamodel that are extended by a
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Figure 2. Algebraic encoding of DUALLY pro-
file

stereotype are represented as a conventional class with the
optional keyword metaclass. A stereotype is depicted as
a class with the keyword stereotype. The extension rela-
tionship between a stereotype and a metaclass is depicted
by an arrow with a solid black triangle pointing toward
the metaclass. In particular, the new concepts provided the
DUALLY profile are discussed in the following:
Architectural components: an SA component is mapped
into UML components. “Structured classifiers” permit the
natural representation of architecture hierarchy and ports
provide a natural way to represent runtime points of interac-
tions. As noticed in [25], SA components and UML compo-
nents are not exactly the same, but we believe they represent
a right compromise.
Relations among SA components: the “Dependency” re-
lationship between components in UML 2.0 may be used to
identify relationships among components, when interface
information or details are missing or want to be hidden.
Connectors: while a connector is frequently used to cap-
ture single connecting lines (such as channels), they may
also serve as complex run-time interaction coordinators be-
tween components. The DUALLY profile makes use of
UML (stereotyped) components that, from the architectural
point of view, seems the cleanest choice.
Channels: a channel is usually considered as a simple bind-
ing mechanism between components, without any specific
logic. UML 2.0 provides the concept of assembly con-
nectors which is semantically equivalent to the concept of
architectural channel.
Behavioral viewpoint: depending on the kind of analysis
required, state-based machines or scenarios notations are
usually utilized to specify how components and connectors
behave. As a core element, we take UML 2.0 state machines
and sequence diagrams as native notations for behavioral
modeling.

Section 6 describes the use of the profile for the specifi-
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cation of a sample software architecture.
5.2 Weaving Models

The separation of concerns in software system model-
ing avoids the constructions of large and monolithic models
which are difficult to handle, maintain and reuse. At the
same time, having different models (each one describing a
certain concern or domain) requires their integration into a
final model representing the entire domain [24].

The weaving operation [4], typically exploited for
database metadata integration and evolution, can be used for
setting fine-grained relationships between models or meta-
models and executing operations on them based on link se-
mantics. Furthermore, the integration of models or meta-
models can be performed by establishing correspondences
among them by means of weaving associations specifically
defined for the considered application domain. The descrip-
tion of such links consists of precise models conforming to
appropriate weaving metamodels obtained by extending a
generic one (inspired by [10]) with new constructs needed
for the integration purposes.

In the sequel, weaving operators for extending the
DUALLY profile are described and an example of their
application is also provided. Such operators are inspired
by [24] and they aim at extending the profile in a conserva-
tive way in the sense that deletions of constructs are denied,
and only specializations or refinements of them are allowed.
In particular,

— the inherit operator used for connecting an element of
a UML profile with one of DUALLY is used in weav-
ing models by means of <inherit>> stereotyped asso-
ciations as the one in Figure 4. The result of its appli-
cation is the extension of DUALLY with a new stereo-
type (if it does not exist) having as base class the target
element of the stereotyped association and the tags of
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the source one. The operator can be applied for extend-
ing the DUALLY elements and all the metaclasses of
the UML metamodel.

— the integrate operator is used by means of
<integrate>> stereotyped associations as for ex-
ample the one in Figure 4. The aim of such operator is
to extend the available DUALLY constructs with the
characteristics of elements belonging to other UML
profiles. For example, the profile depicted in Figure 3
(described later in Section 6) and the one in Figure 1
both extend the standard metaclass Connector. The
former provides an additional tag not provided in the
latter. Connecting these two elements by means of
an <integrate>> stereotyped association will result
in the addition of the tags belonging to the source
element into the target one. In case of conflicts (e.g.,
tags with the same name but with different types) the
elements of DUALLY are predominant. Furthermore,
the extensions of the source elements are added to the
target one.

The semantic and the execution of the discussed opera-
tors are defined by means of ASMs rules, like for model
transformations as described in Section 4. This allows pre-
serving the same formal ground for model specifications,
their transformations and weaving operations among them
as well.

The transformation phase which has to extend the
DUALLY profile starts from an algebra whose signature in-
cludes the following universes and functions which are the
union of the signatures derived from the metamodels of the
involved source models, i.e. the profile specifications and
the weaving model respectively.

universes MetaClass,
universes Inherit,

Stereotype, Extension,

Integrate

Tag

function name( ) — String
function source( ) —

function target( ) — _

function belong(Tag) — Stereotype
function type (Tag)} — DataType
function dually() — Bool

function icProfile() — Bool

Some auxiliary functions are used, in particular the func-
tion dually() and icProfile() are defined in order to establish
whether, given an element, it belongs to the algebra en-
coding the DUALLY profile or the Ideal Component one.
Moreover, the functions belong() and type(), given an ele-
ment of the set Tag, return the stereotype to whom it belongs
and its data type, respectively.

The weaving operation mainly consists of two ASM
rules each devoted to the management of the previously de-
scribed weaving operators. Specifically, the Inherit rule for
each element contained in the set Inherit of the algebra en-
coding the weaving model, extends the algebra encoding the
DUALLY profile. The updating of the algebra consists of
the addition of new stereotypes (see line 3 below) which can
have as base class a UML metaclass (see line 8 below), as
for the associations depicted in Figure 4 where the Interface
and Port metaclasses are involved, or an existent DUALLY
stereotype (see line 12 below).

asm Inherit is
do forall x in Inherit
extend Stereotype with s
name (s) : =name (source (x) )

dually(s) :=true
extend Extension with e
choose ¢ in MetaClass
source (e) :=s
target (e) :=c
endchoose
choose ¢ in Stereotype :
source (e) :=s
target (e) :=c
endchoose
dually (e) :=true
endextend
propagateExtension (s, source (x))
endextend
enddo
endasm

: name (c) =name (target (x))

name (c) =name (target (x))

The auxiliary submachine propagateExtension(s1,ss) re-
cursively updates the sets Extension and Stereotype of the
algebra encoding DUALLY, in order to extend the stereo-
type s; with the extensions (if available) of the stereotype
59.

The Integrate rule aims at weaving the source ele-
ment of the <Integrate>> stereotyped associations with
the target one. Firstly, all tags of the source stereo-
type are added to the target one if there are not con-
flicts (see line 6 of the rule) and in case of overlap-
ping, the elements of DUALLY are predominant. In line
15 of the rule the submachine propagateExtension(s1,S2)
is called. For instance, the application of the Integrate
rule, taking into account the weaving model of Figure 4,
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will modify the DUALLY stereotype <<SAComponent>
by adding the tag HasException and the stereotypes
<NormalComponent> and <ExternalComponent> as
extensions of < SAComponent>>>.

asm Integrate is
do forall i in Integrate
do forall t; in Tag
if ( icProfile(t;) and belong(t;)=source (i) )
then
if not (exists t2 in Tag: dually(f2) and
name (t2) =name (t1) )

then
extend Tag with i3
name (t3) : =name (t1
type (t3) :=type (t1
belong (t3) :=target (1)
dually (t3) : =true
endextend
propagateExtension (target (i) , source (i))
endif
endif
enddo
enddo
endasm

Once the weaving operation is performed, the obtained
extended algebra contains all the information required to
translate it into the corresponding model. The next section
describes a case study showing firstly the use of DUALLY
for describing a software architecture, then the extended
version of the profile, obtained by means of the previously
described weaving operation according to Figure 4, is used
to design the same system with other constructs needed for
performing some fault-tolerant analysis.

6 Using Dually for Designing Fault-tolerant
systems

In this section we show how DUALLY can be extended
in order to integrate SA-based concepts with fault tolerance
information. We make use of the mining control system
case study [26], a simplified system for the mining environ-
ment. The mineral extraction from a mine produces water
and releases methane gas on the air. These activities must
be monitored. Figure 5 shows the SA for the control sys-
tem modeled by using the basic features of DUALLY. It is
composed of two components, the Operator Interface com-
ponent, which represents the operator user interface, and the
Control Station, which is divided in three subcomponent:
Pump Control, Air Extractor Control, and Mineral Extrac-
tor Control. Pump Control is responsible of monitoring the
water level, Air Extractor Control, switching on and off the
subcomponent Air Extractor, controls the methane level,
and finally the mineral extraction is monitored by Mineral
Extractor Control.

However, the possible responses of a component when
implemented and operating are normal and exceptional.
While normal responses are those situations where compo-
nents provide normal services, exceptional responses corre-

<<SA Component>>
Control Station
<<SA Component>>
Air Extractor Control
<<SA Component>>

Air Extractor

<<SA Component>>

Pump Control

<<SA Component>> <<SA Channel>>f
Operator Interface

<<SA Component>>
Mineral Extractor
Control

Figure 5. The mining control system SA

spond to errors detected into a component. Typically, ex-
ceptional responses are called exceptions [12]. Therefore,
it is natural to design not only the normal behavior, but
also the exceptional one. Similarly to the normal behav-
ior, exceptional behaviors can be elicited from requirements
and modelled. In order to successfully model fault toler-
ant systems, the basic features offered by DUALLY are not
enough.

Ideally components are composed of two different parts:
normal and exceptional activities [16, 26]. The normal part
implements the component’s normal services and the ex-
ceptional part implements the responses of the component
to exceptional situations, by means of exception-handling
techniques. When the normal behavior of a component sig-
nals an exception, called internal exception, its exception
handling part is automatically invoked. If the exception is
successfully handled the component resumes its normal be-
havior, otherwise an external exception is signaled. Exter-
nal exceptions are signaled to the enclosing context when
the component realizes that is not able to provide the ser-
vice.

Figure 3 shows the profile for the idealized components.
The SA component is specialized in the stereotype <IC
component>> that contains the boolean tag HasException
that is true if the component have a description of the fault
tolerant behaviour, false otherwise. IC Component is even
specialized with the stereotypes <NormalComponent>>
and < ExceptionalComponent>> describing the normal and
the exceptional behavior respectively. Ports are special-
ized by the stereotype <IC Ports>> in order to model com-
munication ports for signaled exceptions. Finally inter-
faces are used for the exceptions propagation from the nor-
mal to the exceptional part specialized with the stereotypes
< HandlerInterface>> and < Signalinterface> representing
the handler and the signaler respectively.

Figure 6 shows the result of the weaving, obtained apply-
ing the mega operators, inherit and integrate, between the
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Figure 6. Air Extractor Control component with fault-tolerance information

DUALLY profile, explained in Figure 1, and the idealized
component profile shown in Figure 3. As show in Figure 4
the IC Component is “integrated” with the SA component
of DUALLY. Consequently the components in Figure 6 are
SA components extended with the tag HasException and
they can be specialized in NormalComponent and Excep-
tionalComponent, as happens for the Air Extractor Control
component.

On the contrary the inherit operator is used for interfaces
and ports. In fact for exceptions propagation we want to use
ports and interfaces of the IC profile while for the classical
communication between components we want to use ele-
ments of the DUALLY profile.

More in details, the exceptions I_SwitchAirExtractorOff,
I AirExtractorFailure, and I_SwitchAirExtractorOn are in-
ternal exceptions signaled by the normal part (Signal In-
terfaces). These exceptions are catched by the exceptional
part (Handler Interfaces), which signals external exceptions
in the case of the exceptional component realizes that is
not able to provide the service (Signaler Interfaces and IC
Ports).

The subcomponent Air Extractor does not have ex-
ceptional behavior and then is modelled as an extended
DUALLY component, contained into the normal part of the
Air Extractor Control component.

7 Related Work

The concept of weaving appears in a number of ap-
proaches for model management with the objective of han-

dling fine-grained relationships among elements of distinct
metamodels. Typical applications of model weaving are
database metadata integration and evolution, as in [19]
where the authors propose Rondo, a generic metamodel
management algebra which proposes a number of algebraic
operators to manage mappings and models. The techniques
presented here have a more general purpose flavor since
ASMs constitute a formalism for defining algebraic (non-
homomorphic) transformations, i.e. macro operations over
the algebras.

In [13] a UML extension is introduced to express map-
pings between models using diagrams, and illustrates how
the extension can be used in metamodeling. The extension
is inspired by mathematical relations and it is not really con-
ceived for extending or refining UML profiles as the ap-
proach proposed in this paper.

Another generic metamodel to support weaving opera-
tion is given in [11]. The approach is based on the possible
extensibility and variability of mappings among metamod-
els and it is supported by a prototypical implementation.
In [24] a number of operators for model integration are de-
scribed and they have partially inspired the weaving con-
structs proposed in this paper.

Finally, the idea of using formal languages for per-
forming model transformations and weaving operations, is
slightly related to [28] which proposes a formal approach
based on a relational calculus for checking and transforming
models of complex systems. Even if these two approaches
share a formal flavor, transformations are used for different
purposes. While in [28] formal model transformations are



addressed to support a development process from abstract
models down to the final software product, in our proposal
we apply model transformations at a different layer of ab-
straction in order to weave a minimal core language with
domain-specific concepts for software architecture analysis.

8 Conclusions and Future Work

There is not best or unique language for software ar-
chitecture specification, since it depends on which aspects
of architectural design we want to represent and then an-
alyze. At any time a new slightly different analysis is re-
quired, new modeling concepts are needed. This consider-
ation justifies and motivates the need of different profiles
and metamodels for specifying software architectures. Un-
fortunately, the proliferation of such profiles is leading to a
fragmentation of tools and techniques for SA specification
and analysis, then limiting the adoption of such technolo-
gies in industrial contexts.

This paper has discussed the use of (ASM based) model
transformation techniques, where weaving operators are in-
troduced for extending the DUALLY profile. After their
definition, we have shown how weaving operators can be
applied to extend the DUALLY profile with fault tolerance
information. It is important to note that the weaving oper-
ators here defined are independent from the specific target
domain (i.e., fault tolerance modeling) and can be applied
to other domains. Further work will contribute to their re-
finement and generalization to different modeling domains.

The integration among software architecture modeling
concepts and fault tolerance information is the first step in
our wish list. Our long term goal envisions the integration
among different modeling profiles for software architecture
modeling, proposed so far for functional and non functional
analysis. A plugin-based framework for assembling differ-
ent analysis tools and for automated model-transformation
is also in our desires.
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