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ABSTRACT

Most robot languages (RLs) have been developed as a need for them arises and are,
therefore, geared toward specific robots and their applications. This article is
intended to derive general desired features of an efficient RL of the future from an in-

depth study of the existing ones.



1. INTRODUCTION

The availability of efficient means of communicating with industrial robots is a
key factor to the success of contemporary, programmable automation. The communi-
cation means are commonly referred to as "Robot Languages”" (RLs). Conventionally
RLs have been developed in an ad hoc manner to meet the needs of a particular robot
and application, thereby resulting in a situation where there are almost as many
languages as there are robots. In this paper we intend to closely examine many (but
not all) of the RLs now available, determine their desirable and/or undesirable
features, and use this information to draw recommendations for an efficient RL of the

future.

In all, fourteen RLs in use or under development in industrial or academic
environments are reviewed, and principal characteristics are evaluated. Table 1 com-
pares the industrial robots for which the languages were developed, and Table 2 con-

tains background information on the languages.

The AL programming system at the Stanford Artificial Intelligence Laboratory
(SAIL) is a high level RL with: ALGOL-like control and block structures; predefined data
types for scalars, vectors, rotations, and positions; operations on those data types;

local coordinate systems which may be affixed to one another, and the ability to

specify motion in terms of objects grasped in the hands!?. The Anomatic Il Controller,
commercially available from Anorad Corporation, provides a powerful numerical con-
trol language with programmable mathematical expressions, variables, jumps and
subroutines, and the capability of self configuring® . AUTOPASS, a very high level pro-
gramming system for computer controlled mechanical assembly under development
at IBM.. is oriented towards objects and assembly operations which enable the user to
concentrate on the overall assembly sequence and to program with English-like state-
ments using names and terminology that are familiar to him* . EMILY is an early

attempt by IBM to develop a higher level workhorse RL with a reasonably simple pro-
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cessor as an extension to their robot control language, ML®. FUNKY, yet another

development of IBM, is an advanced guiding system which produces robot programs

through the use of manual guiding and a function keyboard®. General Electric’s RL,
HELP, is a high level procedural language which: is relatively easy to learn to use; sup-
ports structured program design; supports simultaneous arm movement; is suffi-

ciently comprehensive for robot operation, and has a special set of built-in

functions/subroutines to support robot operation’. MAPLE, an RL developed at IBM,

has a PL/1-like base language for computation and several extensions for directing a

robot to carry out fairly complex tasks®. MCL, an extension of the popular APT numer-
ical control language by McDonnell Douglas Corporation, is a high level language

designed for the off-line programming of industrial robots and associated equipment
under COf;trol of a robotic control systerﬁ‘“z. In the PAL programming system being
developed at Purdue University, tasks are represented in terms of structured carte-
sian coordinates and every motion statement is a request to position and orient the
robot such that a position equation is satisfied!. RCL is a command oriented motion

control language under development at Rensselaer Polytechnic Institute (RPI) to pro-

gram a sequence of steps needed to accomplish a robot task!*. RPL, a FORTRAN -like
user language developed by SRI International, is designed to facilitate the writing and
debugging of application programs for material-handling, inspection and assembly
tasks!®18,  SIGLA, available from Olivetti with their Super-Sigma robot, runs using only
BK of memory and still provides features such as parallel task control and variable

instruction sets for software tailoring!”-18

T3, the language provided with the T3
industrial robot manufactured by Cincinnati Milacron, is a commercially available sys-

tem which uses guided teaching and function buttons to program robot tasks!®?!

VAL, a system and language for programming computer-controlled robots, has been

developed over a period of several years at Unimation, Inc.??-23.

Comparative Study of Robot Languages
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In the following sections, the RLs are divided into five levels based on language
features, the languages are discussed in terms of characteristics of a good program-
ming language in general and additional characteristics important to RLs in particu-
lar, a programming example is included to provide a quantitative and comparative

feeling among the fourteen languages, and then conclusion follows.

2. CLASSIFICATION OF ROBOT LANGUAGES

Robot languages are almost as varied as the robots they are designed to manipu-
late. Language emphasis varies from simplistic point-to-point motion to complex task
oriented problem solving. The languages can be divided into five loosely formulated
levels. Overlaps between levels occur but do not interfere with the basic features of
each. A comparativé summary of language features is included in Tabie 3. Figure 1

contains a breakdown of the fourteen languages into the five language levels.

2.1. Microcomputer/Hardware Level

This level.consists of the lowest level of robot language control. The commands
are highly dependent on the physical structures of the robot and, hence, there are no
formal languages at this level. The emphasis here is on converting given joint coordi-
nates (an,gies for revolute joints and distances for prismatic joints) to torques and
forces on the motors and conveying sensory data to a higher level. This level per-
forms analog-to-digital and digital-to-analog conversions between the control com-

puter and the robot itself. The control of each joint is sometimes handled separately

by a microprocessor or some hard-wired device?®,

Comparative Study of Robot Languages
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2.2. Point-to-Point Level

Point-to-point languages are the most common type available on the market
today. They provide programmed robot control by enabling the user to save a series
of points obtained by guiding the robot through the motions. Usually the guiding is
done by-using a manual device to activate the joint motors in the robot and save
desired locations. Sometimes, however, the guiding is done while moving the robot
itself and saving points continuously (as with painting robots). Higher level guiding
systems provide specialized function buttons which allow editing of programs and

interaction with external signals.

Both the T3 language and IBM's FUNKY can be classified as higher level guiding
systems. The T3 is operated manually through the use of a teach pendant. Motion
clan take place in either the cartesian, cylindrical or joint coordinate systems. Pro-
gram revision is done by stepping forwards and backwards through the program
steps and inserting and deleting steps where desired. Functions which act on exter-
nal switches (e.g. a limit switch in the hand) can be associated with any step. The
system can wait for external signals and signal events itself. Both of these features
are very useful in a robot environment. FUNKY, which is similar to the T3 language,
has a joystick to control the motion of the robot. Control of the system is similar to a
cassette tape recorder. play, erase, record, reverse and fast forward modes are all
comparable to their cassette player counterparts. These modes allow insertion and
deletion of points and stepping forward and backward through the program. FUNKY
goes a bit beyond the function capabilities of the T3, however, providing a command
which uses touch sensors in the hand to center the gripper about an object and a

cornmand to operate an electric screw driver on an additional gripper.

Advantage of using point-to-point languages is that they are available and opera-
tional today. Once a task has been programmed, it can be repeated any number of

times without operator intervention (unless something unexpected happens). Pro-

Comparative Study of Robot Languages
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grams are also easy to debug because testing is constantly being done on the robot

itself.

Disadvantages include little or no branching and subroutine capabilities, very lit-
tle sensor interaction, emphasis on motion of the robot rather than the task to be
performed, no software to handle emergencies, and no expandability to off-line pro-

gramming.

2.3. Primitive Motion Level

The primitive motion level can be best described as "point-to-point motion in
language form". It is to point-to-point languages as an assembler is to machine
language. As with an assembler, the software helps shield the user from some of the
more cumbersome aspects of the lower language. The following aspects. are charac-
teristic of primitive motion languages: simple branching has been added, subrou-
tines (generally with parameter passing) are available, sensing capabilities are more
powerful (sometimes much more), primitive parallel execution is introduced, and

some attempts at frame definitions are made.

ANORAD, RCL, SIGLA, EMILY, VAL, and RPL are classified as primitive motion
languages. All of the 1anguages are based on interpreters or assemblers except RPL
which has a compiler. They all provide simple conditional and unconditional branch-
ing. (EMILY, VAL, and RPL are also capable of do-looping). Motion can be specified
using the joint angles directly or in cartesian coordinates. All of the languages pro-
vide absolute motion. (ANORAD, RCL, and VAL also provide relative and straight line
motion). Subroutines can be called in all of the languages except RCL. Of these five
only ANORAD and VAL have no parameter passing. ANORAD, VAL, SIGLA, and EMILY
allow files to be included as executable code. ANORAD, VAL, and SIGLA achieve this by
allowing all files to be run as subroutines. EMILY uses an include statement which

causes immediate execution of the desired file.

Comparative Study of Robot Languages
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Sensing features of the primitive motion languages vary widely. ANORAD, RCL,
SIGLA, and VAL are provided only with simple, binary touch sensing commands and no
vision commands. EMILY has several different kinds of tactile sensing, including
touch sensors in the hand, a "whisker-like” wand sensor on one finger, a sonar prox-
imity sensor, and an infra-red emitter and receiver which detect the presence of an
object between the fingers. EMILY monitors these sensors in an on/off manner to aid
in the assembly process, but it has no vision capabilities. RPL, on the other hand, has
only the simplest binary touch sensing commands and a very complex vision system
capable of taking a picture (pictur), determining object features (getfea), and recog-

nizing an object as one of those defined in its data base (recogn).

Simple parallel processing in the form of mutually exclusive operation of arms
with limits and c’onvergerice points to ensure collision 'avgbidance is used by both
SIGLA and EMILY. SIGLA allows execution of several different files on several different
arms all at the same time and provides an anti-collision command which sets up work
boundaries for the different robots. EMILY uses the synch command to provide a

convergence point for programs running simuitaneously on different arms.

VAL and RPL have limited capabilities in defining and providing coordinate
transformation capabilities. (See Ref. 24 for a detailed discussion on frames and
transformations). They both provide commands to define frames, invert transforma-
tions, and multiply matrices. The use of frames and transformations in robot pro-

gramming is not fully developed until the next level, structured programming level.

The primitive motion level provides advantages over point-to-point by adding
branching and subroutine control. It introduces the concepts of parallel processing
and the use of frames but does not develop them beyond a fairly primitive level. The

use of sensor commands is also greatly increased.

Although some of the basic disadvantages of the previous level have been solved,

the problems of emphasis on robot motion rather than the task to be performed, no

Comparative Study of Robot Languages
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software to handle emergencies, and unsuitable expandability to off-line program-
ming are still evident. More complex control structures and more effective parallel

processing techniques are also desirable developments for the future.

2.4. Structured Programming Level

The structured programming level is a major improvement over the primitive
motion level in that it incorporates structured control constructs into the RL and
provides extensive use of coordinate transformations and frames. Other characteris-
tics of these languages include complex data structures, improvements in sensors

and parallel processing, and the use of pre-defined state variables.

HELP, PAL, MCL, MAPLE and AL are included in this level of languages. PAL is not
truly a structured language, however it provides some structured control constructs
and uses coordinate transformations to such a great extent that it should be
included in this level. HELP does not make use of transforms at all but has struc-

tured programming constructs.

The languages within the structured programming level all have user definable
subroutines with parameter passing (except PAL which has no subroutines and HELP
which allows no parameters). They all, with the excéption of HELP, are provided with
complex data structures: PAL has transforms as its basic elerﬁent, MAPLE allows the
definition of points, lines, planes and frames. MCL provides for points, vectors, and
frames and AL utilizes scalars, vectors, rotations, frames and transformations. AL
and PAL allow explicit definition of transformations. MAPLE and MCL break transfor-
mations into a positional and a rotational part. MCL and AL also provide means of fix-
ing frames together so that transforms applied to one part are automatically applied

to another.

The term "state variable" is used to refer to a reserved word which represents

some physical quantity associated with the robot. In PAL, the two major state vari-

Comparative Study of Robot Languages
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ables are arm (the frame associated with the end of the robot arm with respect to
the world) and fol (the frame associated with the tip of the tool with respect to the
end of the arm). arm changes as the robot changes position and orientation. tol
changes when the tool is changed. MAPLE has several state variables which it moni-
tors and uses to perform tasks. Some of these are leftfinger (the position of the left
finger), wristroll (the current roll angle of the wrist), gap (the size of the gap
between the fingers), hit (a bit indicating that the fingers are contacting something),
and fgap (the force being exerted on the fingers). The user must define state vari-

ables for HELP, MCL, and AL.

Sensor commands at the structured level are similar to those at the primitive
motion level. There is a wide variation in the degree of sensing capabilities between
the languages. PAL has no sensing capabilities. AL, HELP and MAPLE have touch
sensing in the fingers. MAPLE has a proximity command. MCL has only simple binary
touch sensing commands yet it is only one of the four languages with vision capabili-
ties. The MCL system is capable of finding and identifying (locate) and inspecting

(inspec) objects.

Parallel processing is expanded at the structured level. All four of the languages
(excluding PAL) provide some sort of parallel execution. All have semaphore primi-
tives that are éctivatéd only when a given event occurs. MAPLE has an in parallel
construct for use when the order of execution of commands is irrelevant. AL has the
high-level cobegin and coend constructs for synchronization between two robot arms.

In all of these cases, the user is responsible for collision avoidance.

Motion on the structured level is defined in terms of transformations on the
frame of the robot hand. In PAL and AL motion is specified directly in terms of the
transform. PAL uses mathematical symbols of + and - and the mov stack to cause
motion, whereas AL uses the more understandable mowve fo statement. AL motion

can be made more specific through the use of clauses which define intermediate

Comparative Study of Robot Languages
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points, approach vectors,velocities and durations. MCL and MAPLE motion is
separated into rotations and translations. The MCL goto statement will perform a
translation and rotation but both must be specified (as a point and two vectors).
MAPLE uses move by for translations and rotate by for rotations. HELP is an excep-

tion, providing motion in terms of the more primitive joint coordinates.

The structured level does much to aid program understandability and task-
oriented programming. It provides more sophisticated parallel processing techniques
and introduces the concept of state variables. Point-to-point programming has been
replaced by manipulation of object frames. The structured languages themselves are
more powerful than those at previous levels because of the complex data and control
structures available. Off-line programming is more feasible at this level as long as
relational tfansformations are accurate. Any discrepancy between the model and

the robot environment can be expressed in terms of a transform.

The major asset with the languages at the structured level is also their major
problem. Coordinate transforms allow many advantages to robot programming but
they are difficult to understand and use. Even structured programming techniques
require more education in the user than primitive branch commands. This level is
more advanced than the primitive level but is also less feasible for robot applications
today; (hence, the 'rion;commercial origin of languages in this class). Questions which
are still left unanswered at this level are: Can collision avoidance be provided with
parallel processing?, Can we still maintain task-level operation and simplify the coor-
dinate transformation problems? and Can simple decision making capabilities which

allow the robot to recover after unexpected events be added successfully?

Comparative Study of Robot Languages
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2.5. Task-Oriented Level

The task-oriented level of robot programming is a yet unachieved dream for a
truly task-oriented language which conceals low-level aids like sensors and coordi-
nate transformations from the user. AUTOPASS is proposed by IBM to meet these cri-
teria. It is designed to resemble assembly instructions that might be given to a

human.

AUTOPASS uses high level commands such as place objectl on objectl. Execu-
tion of this command involves finding and identifying objectl and object2, determin-
ing a pick-up point and vector for objectl, moving to pick up objectl, deciding where
on object 2 to place objectl, placing objectl on object2 and remembering the new
relationship between them. This is easier said than done. AUTOPASS absolutely
requires a world modelling system to keep track of objects. Ideally this would involve
vision location and identification and tactile sensors for help in locating and picking
up objects. AUTOPASS must be capable of making assembly-oriented decisions, such

as, how to pick up an object.

AUTOPASS commands are divided into four types: State change statements
(such as place), Tool statements (such as operate), Fastener statements (such as
rivet) and Miscellaneous statements (such as wverify). AU'I.'OPASS statements mean
precisely what you think they should mean and are, therefore, easy to understand
and use. The high level of the statements, however, leads to ambiguities between the

user's intended actions and how the robot interprets them.

In order to alleviate these ambiguities, the AUTOPASS system proposed is
designed so that program debugging will proceed interactively with the user. Com-
mands are interpreted into lower level code and the user must verify the validity. The
user can alter any segment he wishes and the compiler can question the user about

any ambiguities in the AUTOPASS code.

Comparative Study of Robot Languages
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The AUTOPASS system is a highly task-oriented system with very English-like
commands. The high level of the commands, however, necessitates the use of a com-
plex world modelling system, artificial intelligence for decision making, and an
interactive debugging system. AUTOPASS is unfortunately not implemented and -still

does not solve the problems of collision avoidance and emergency decision making.

3. COMPARISON OF LANGUAGE FEATURES

In the analysis and development of an RL, it is essential to consider several fac-
tors other than specific language features. These factors are more general in nature
than the exact syntax and abilities of a language, but they are of equal importance to

its success in an industrial environment.

The five language levels introduced in the previous section are compared and
evaluated on the basis of (i) the features which apply to all programming languages in
general, and (ii) some additional features which apply to robot languages in particu-

lar.

3.1. Characteristics of a Good Programming Language

Pratt®® has cited six characteristics of a good programming language. These are
features important to both programming languages in general and robot languages in

particular.

A. Clarity, Simplicity and Unity of Language Concept

At the point-to-point level, the concept is extremely simple. Points are shown to
and remembered by the robot. Both T3 and FUNKY have external function buttons
and push-button debugging facilities. These languages are certainly clear and simple

(hence, their relative success in industry today) but they do not have the program-

ming power of the higher levels.

Comparative Study of Robot Languages
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Primitive motion level languages have a tendency to have a great number of
commands and few control constructs. Although the commands themselves are clear
and simple, there are so many of them (and not all are exceedingly useful) that the
user may get confused. The primitive motion level contains a hodge-podge of com-
mands from the point-to-point and structured programming levels. This leads to a

lack of unity.

Of the languages on this level, VAL is a good example of these inconsistencies.
VAL users are provided with a manual teach mode characteristic of T3. They are also
provided with the ability to define transforms and frames as with the structured level
of languages. VAL has six different commands to perform motion from point A to
point B with slight variations in the technique. The over-abundance of commands and
this lack of unity‘in concept is a result of the fact that VAL was developed (as with
many other primitive motion languages) on a dynamic basis. Commands were added
as a need for them arose and the language structure was not able to handle the
extensions in a reasonable manner. All four of the other languages in this group
suffer from the same problem. RCL and EMILY provide several different commands
to perform a branch, SIGLA is a language with so many different and specific com-
mands that all_users can only have a small subset. RPL has an entire package of user

callable routines written to allow it to interface with a robot.

Languages at the structured programming and task-oriented levels were
developed with consistent programming language characteristics in mind. The use of
structured programming and data structures eases the demand for specific com-
mands in the language. Coordinate transformation representation of points leads to
a more general way of expressing motion and, therefore, cuts down on extraneous
motion commands. The use of clauses in a single command to specify different
aspects of motion greatly increases the generality of the basic move statement and
eliminates the need for additional statements. All motion in AL is achieved by the

move statement followed by optional clauses specifying velocity, acceleration, path

Comparative Study of Robot Languages



RSD-TR-17-82 13

to follow, etc. MCL uses the send and receiv and a specification of which device to
transfer data between devices. MAPLE provides both absolute and relative motion by
allowing either fo or by to be used in conjunction with the move and rotate com-
mands. PAL specifies motion very simply by creating transformation matrices which
solve equations. This allows PAL to cause motion using its mathematical notation.
AUTOPASS provides all of the structured programming constructs but invokes certain
restrictions in order to provide a higher level of commands. These languages are

structured and consistent but their success in industry has yet to be proved.

B. Clarity of Program Structure

Structured programming techniques were developed to make programs easier
to comprehend and debug. The simple conditional and unconditional jump state-
ments were replaced by more "English-like" structured condition statements like
"while-do" and "if-then-else". These allow the prograrﬁmer to use more familiar logic
to produce programs and debug them. The languages at the structured program-
ming level all make use of these constructs. (AUTOPASS has them, too, but use is
restricted). The primitive motion level languages have only simple gofo and if state-
ments. This decreases the clarity of the program structure itself. It should be
noted, however, that structured programming techniques are more sophisticated and
require more time to master than simple jump statements. For a trained computer
expert structured programming techniques are essential, but they may not prove as
cost-effective for application programmers in the field who probably do not have as

appropriate a background.

Comparative Study of Robot Languages
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C. Naturalness for the Application

Point-to-point languages are hardly languages at all. Points are remembered and
function buttons take the place of programmed keywords. This method has proved

quite successful for many robot applications.

Primitive motion level languages were developed because of the shortcomings of
point-to-point methods. The language itself becomes more important than recording
single points. Some languages at this level are more understandable than others,
however. SIGLA and ANORAD have two letter commands which give little or no indica-
tion of what the command means. RPL, VAL, EMILY and RCL command names all
make an att.er;npt to indicate the function of the command but are limited to six
characters. This is more effective than two, but still detracts from the understanda-
bility of individualéémmands. Control constructs at this level are only slightly more

sophisticated than at the point-to-point level.

The structured programming level allows the use of any length keywords and
variables. This not only makes the commands understandable but allows the user to
call his parts by self-explanatory names. They introduce use of complex data struc-
tures like vectors and frames which are very useful if you can understand them but
may not be easily comprehended by the average robot programmer. MCL still has the
six character; limitation of the previous level. It also is based on an already esta-
blished machine tool programming language, APT. This causes the disadvantage that
many MCL commands are useless additions for the robot programmer. However, MCL
has the advantage that APT is currently widely used. Many related programs have
already been developed in APT and machine tool operators are familiar with the
language. It is believed that a natural extension of APT to include robot commands
will be more easily assimilated into the market. PAL is based on matrix mathematics
and only allows two character variables. It is, therefore, only suitable for use by

those very familiar with robot control through the use of transforms.

Comparative Study of Robot Languages
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AUTOPASS is a task-oriented language. It is very natural to use as the com-
mands have "English-like" syntax. The use of transforms is hidden from the user.
This makes programming in AUTOPASS easy for any type of user. The high level of
the language however, creates ambiguities and therefore, the user must be able to

understand a lower level language used in debugging.

D. Ease of Extension

It is extremely important that robot languages be easily extensible. They should
have a modular and expandable structure so that they meet the needs of robotics
today and can be easily extended to handle the needs of the future. As new applica-
tions for robots are discovered and sensing devices are improved, the language
should be able to easily expand to meet these new needs and abilities. The most vital
wa'y to provide expansion easily is to provide user defined subroutines which allow the
definition of further commands. Parameter passing is fairly essential to expandabil-
ity to avoid the problem of re-use of global variables. Subroutines which provide
expandability should be allowed to be nested to several levels in order to allow the

language to grow upon itself.

The point-to-point level languages are difficult to expand because they have no
subroutine features and use hardwired function buttons instead of software routines
to perform tasks. Primitive motion languages vary in their extensibility. The VAL
interpreter is contained in programmable read only memories (PROMs). Any changes
to the language require re-programming of the PROMs. This does not lend itself to
easy expandability. SIGLA has many commands from which the user is allowed a
small subset. The language is constantly expanding to meet specific needs of dif-
ferent applications. SIGLA also allows user defined subroutines which become user-
defined commands. Expansion is limited, hbwever, by the amount of space available
on the system. RCL has no subroutine capabilities and therefore, extension would

involve rewriting part of the interpreter. RPL and EMILY have subroutine capabilities
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and allow parameter passing. This leads to relatively easy extension from the user's
and the system programmer's point of view. All of the structured programming level
languages, except PAL and HELP, have powerful subroutine capabilities including
parameter passing and nesting to several levels. They are, therefore, easily expand-
able. AUTOPASS has the same subroutine calling capabilities as the structured level

languages.

E. Debug and Support Facilities

Efficient debugging and support facilities are extremely important in the
development of robot programs. Facilities which allow quick and efficient alterations
to produce working application programs are just as desirable as useful features of
the language itself. Today, debugging time is esipecially crucial because programs
are developed using the robots themselves. Off-line programming, which uses graph-
ics simulations to help in program development, will make debugging features less
critical because the robot may not be in use as program development takes place.
Table 4 compares the debugging facilities which are available with the languages
analyzed. ‘The lower level languages have much more extensive facilities because
they are in actual use today and debugging must be done on the robot. Structured
programming level languages are designed with off-line programming in mind and,
therefore, provide fewer hands-on debugging aids. AUTOPASS provides a complex

off-line debugger which acts interactively with the user to produce executable code.

F. Efficiency

The efficiency of a programming language depends upon the ease with which
programs can be developed (programmability), and the ease with which the language

can be adapted to a new environment (transportability).

* Programmability: Programmability is a measure of the ease with which users of an

RL can produce correct, executable code. The best basis for measuring programma-
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bility is time. The amount of time that it takes to train an unfamiliar person to use
the language and the time it takes a user to write a program to perform a task are
especially important. It is very difficult to determine a quantitative measure of the
programmability of one language versus another. Perhaps the most accurate
method would be to take many programmers of different programming ability and
measure the amount of time that it takes them to program the same task in different
languages. In order to compare the languages most accurately, many different tasks
would have to be programmed by each programmer. This method is only as accurate
as the programmers involved (i.e., the same person may have different abilities on
different occasions dependent upon his psychological and physical condition, etc.).
The more programmers involved and the more tasks programmed, the more accu-
rate the results would become. This method can develop a somewhat quantitative

measure of programmability.

Other considerations for programmability include the format of statements (are
they easy to understand and remember?), the length of a program designed to per-
form a specific task, and the types of data structures used. In an attempt to com-
pare the programmability of the languages, an example of palletizing blocks from a

conveyor belt is selected and studied in the next section.

e Transportability: A transportable RL can be easily adapted to be used by any robot
and on any computing facility. A measure of the transportability of a language to a
system is the amount of time it takes to complete the interface between the

language and the system.

Because of the number of computing facilities and robot mechanisms available,
an intermediate step between the compiler and the system is one way to ensure
widespread transportability with minimal effort. This intermediate result (called a
p-code) is a low-level pseudo-language which can be easily translated into the base

machine language for the system. Another method would be to require the interfacer
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to rewrite only the lowest level of routines to provide the interface. Using this
method, no p-code interpreter must be written and with proper choice of routines,

interface would be simple.

For an interface with a robot, a p-code language or low level routines would indi-
cate, for example, the positions and orientations of the robot. This would require
robot software to determine displacements for revolute and prismatic joints and the
torques and forces required to produce the desired displacements. Any further spe-
cialization on the part of the p-code or routines would make it dependent upon the
configuration of the robot. With a modular structure, however, lower level routines
containing the transformations for different robot configurations can be included in
the packages for different robots. This would allow the high level language to deter-
mine displacemerits for a specific robot configuration. The forces and torques must
still be left to robot software because of the enormous variations in the physical
robots themselves. RLs today are very specific to the robot and computer system
they are being developed on. With the exception of an effort at Stanford University to
make AL transportable, very little has been done in the development of highly tran-

sportable RLs.

3.2. Additional Characteristics of a Good Robot Programming Language

There are several properties that the developer of an RL must consider in addi-

tion to those presented by Pratt®®. These are areas which apply specifically to RLs

but not to programming languages in general.
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A. Decision Making Capabilities

It is desirable to equip robots with capability of making intelligent decisions.
Some ability to make decisions already exists in robotic vision systems capable of
recognizing objects (like those provided with the languages RPL and MCL). This is
only very primitive and limited to the set of objects within the data base for a partic-
ular assembly. The next higher level of vision recognition is to allow parts to obstruct

each other in the camera's eye. The robot must be able to differentiate between

objects and move the top one to reveal those underneath?®”. These are fairly simple
capabilities which are very useful for assembly tasks, but perhaps the most impor-

tant types of decisions involve the more complex problem of robot safety.

In order to function with the most efficiency and safety in real time, the robot

system should be able to handle unexpected changes to the robot environment???®,
This requires some sort of dynamic model of that environment, constant monitoring
of this model for unexpected changes, and the ability to make intelligent decisions
based on any changes. The robot must execute its task concurrently with the moni-
toring system. When an unexpected change occurs, the monitor interrupts task exe-
cution and attempts to return the model to its expected state. For example, if a part
needed in an assembly operation is not positioned correctly, the monitor will stop
execution and perhaps use the robot to reposition the object. When the world model
is back in its proper configuration processing can be resumed from where it left off
or from some point in the future depending on how intelligent the monitor system is.
(i.e., The monitor system can simply have the robot reposition the object and return
to the interrupted position or the monitor can attempt to use the object for its
intended purpose since the robot is holding it anyway and then return control to the
robot execution program at some later point.) If the change in the model happened
to be a person who had moved within the reach of the robot, the monitor would sim-

ply hold execution and wait for the expected world model (without person) to return
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before allowing the robot to continue moving. This type of concurrent monitoring
system requires complex sensing and decision systems which have not yet been fully

developed.

Of the languages analyzed, only AUTOPASS has any simple decision making capa-

bilities based on'a dynamic world model of the robot environment.

B. Interaction with Fxternal Devices and Sensors

It is extremely important that an RL be able to handle interaction between the
robot and external devices. It is very rare that a robot will operate as a stand-alone
unit, independent of the actions of the devices around it. Usually robots are required
to work in conjunction with other devices, such as conveyors, vision systems,
machine tools, and even, sometimes, other robots. Desirable language features
include messages which can be sent and received between devices and commands

which allow concurrent activities of different devices.

The languages at the point-to-point level allow only very primitive interaction
with external devices. FUNKY provides control of the gripper and a screw driver as
its only "external” devices. It also allows monitoring of tactile sensors in the fingers.
T3 allows input from and output to signal lines indicated by numbers. T3 provides a

simple but fairly effective means of interacting with any external device.

At the primitive motion level, interaction ranges from practically none (as with
FUNKY) to interaction with a fairly complex vision system. RCL and EMILY only have
the ability to monitor inputs from the outside world. VAL, SIGLA and ANORAD have
abilities similar to T3. RPL has vision interaction commands in addition to 1/0 signals
which can be sent and received. Parallel processing at this level, if it does exist, is
restricted to concurrency between more than one robot. It should be noted, how-

ever, a device that was signalled to begin by the robot program can be active as the

program continues.
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The structured level languages have abilities which range from no interaction at
all (PAL) to allowing portions of code to apply to any device in the robot environment
(MCL). MAPLE can only monitor inputs. HELP and AL allow signalling and waiting on
external events. MCL can send and receive signals from any device. It also allows one
program to control the actions of several different devices. Parallel processing, if
provided, is in the form of waiting and signalling events. These can be used effec-

tively for the control of external devices.

The task-oriented level provides commands which imply interaction with exter-
nal devices and concurrent control of devices but they do not have explicit com-
mands to send and receive signals. AUTOPASS has an in parallel statement which will
execute commands at the same time and several statements, such as aperate, which

imply the use of external devices.

C. Compilers versus [nterpreters

In robot applications, an interpreter provides many advantages over a compiler.
An interpreter executes code as it is encountered, regardless of what happened
before or after. A compiler passes through the code more than once before it gen-
erates executable code for the statements. It is easier to change a program which
runs on an interpreter quickly because changing one. statement does not require
recompilation of all of the statements. Interpreters allow easy partial execution of
sections of code (i.e., does not have to check the entire program) and hot-editing
changes into the code as the program is being executed. Interpreters are generally
slower, however, at run-time because parsing and interpretation must take place
then. It is also much more difficult to implement structured control constructs with

an interpreter because of the more complex branching requirements.

A popular solution to this dilemma is to provide a structured level language
which compiles into a lower level primitive language. This allows the programmer to

use the advantages of an interpreter during the debugging stages. The major
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disadvantage to this compromise is that the original structured code is not always
the true source code for the lower level program once it has been debugged. Little
attempt has been made to recreate a structured level program from the lower level
code. Languages which utilize this solution include FUNKY, EMILY, RPL, AL, and
HELP. AUTOPASS and MAPLE use a variation on this theory involving a high level
interpreter which creates lower level interpretable code. Most of the other languages
are comprised of a single interpreter only; T3, VAL, RCL, SIGLA, PAL and ANORAD.

Only MCL is based on a single compiler.

D. Concurrent Operation of Devices

In order to achieve maximum efficiency in use of the computing system and to
allow the robot(s) and peripheral devices to perform in a synchronous manner, paral-
lel task execution must be provided by the RL. Currently RL facilities to perform
concurrent operations have two forms: signal/wait primitives and parallel block exe-

cution. Both are very useful in robot operations.

Concurrent operation of tasks using signal/wait primitives involves the use of
events which can occur only when certain conditions are met. An event is "waiting”
for a condition to become true before it can begin execution and it is "signalled" to
begin when the condition becomes true. An example of this ié a conveyor belt which
has been halted and is waiting for a signal from the robot in order to resume move-
ment. The code to control the motion of the conveyor is an event and it is waiting for
a "go" condition from the robot. Of the languages which provide concurrent opera-
tions, most allow specification of signal/wait primitives: AL, VAL and HELP use signal

and waif, MAPLE provides a when structure, and SIGLA uses ez (signal) and ew (wait).

Parallel block structure, a more sophisticated technique in parallel processing,
involves the parallel execution of statements or blocks of statements by different
devices. This type of concurrency can be used to control more than one robot arm

and peripheral devices at the same time. Only those languages with more advanced
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parallel processing abilities provide this type of concurrency: SIGLA allows parallel
execution of any number of files, AL provides a cobegiri/coend block structure, MCL
provides an inpar statement for running more than one task, and AUTOPASS allows

execution of many statements with the in parallel do construct.

E. Interaction with World Modelling Systems

The ability to interact effectively with a world modelling system is the key to the
development of a truly intelligent robot programming system. Without a world
model, the robot is essentially blind to its environment. The user must specify any
changes that the robot’s activity makes to the environment. A dynamic world model-
ling system would not only keep track of the initial state of the robot environment

but would adapt changes_ made by the robot into the model. Some work has been

done in the area of advanced world model development3®32 but a functional dynamic

world modelling system is not currently available.

AUTOPASS is the only one of the languages which requires a highly intelligent
world model. In order to be successful, the AUTOPASS mterpreter and the world
modelling system would have to pass information about object placerﬁents and
attachments between one another. This interaction should be hidden from the user.
AL makes use of simple world modelling techniqués through the use of a program
called POINTY. POINTY is used to determine initial positions and orientations of
objects in the robot environment and pass this information to the AL program. Any
changes to the world model, however, must be specified by the user (the affiz and
unfiz statements are provided for this purpose). POINTY positions and orientations
are specified by using a manual pointing device. The use of such a device is time con-
suming but it is an early attempt at world model development. MCL uses vision to
provide world model information to the robot program. Object position is returned
implicitly and frames are calculated relative to the new data found. All picture tak-

ing and manipulation must be specified by the user. RPL uses "blobs" to represent
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object features. They have not managed to attach blobs together, however, to specify

a single object.

Although the development of complex world modelling systems is far in the
future, some of the robot systems today have simple world modelling facilities under
development. The most important fact to consider in the current development of a
robot programming language is the ease of extension of the language to accept infor-

mation from a world modelling system when a more powerful one becomes available.

4. APROGRAMMING EXAMPLE FOR COMPARING LANGUAGES

In order to provide a quantitative and comparative feeling between the languages

we selected the following programming example:

"A robot is assigned to pick blocks off of a conveyor belt and deposit them in a pallet
with a three by three array of positions for the blocks. It is assumed that the blocks
are precisely positioned on the conveyor and the conveyor stops automatically when a
block has arrived at the pick-up point. Re-activation of the conveyor is done either
manually or via signals from the robot program.” (See Figure 2)

This example is not only typical of robot operations today, but requires several impor-
tant language features such as subroutine usage and interaction with external devices

and sensors.

The example task is programmed in the fourteen different languages, and an
attempt is made to derive a quantitative comparison of the programmability of each
language as it relates to this specific example. The term "programmability” refers to
how easy it is to program in the language. Measures such as program length, develop-
ment time, readability, ease of extension, range of users, ability to program complex
tasks, and necessary support facilities have a direct or indirect influence on pro-

grammability.

We have quantified these qualitative measures of programmability by ranking

several of their aspects. By examining the rankings that each of these languages has
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achieved in this example, it is possible to establish quantitative comparative relation-
ships between the languages themselves. In general, aspects which are lower in
number (close to 1) are more desirable features and those which are higher are less

desirable.

With the quantification below Table 5 is constructed to show a quantitative com-

parison between the languages.

e Number of Instructions: Of the seven measures, this is the only absolutely quantita-
tive one. It is the number of instructions in the program (excluding comments). In
some cases, two numbers are provided. The first represents the actual number of
statements. The one in parentheses is the number of statements that the program
could be reduced to if extraneous assignments are removed. (The assignment state-

ments are added to increase readability).

e Development Time: This measure is divided into seven aspects:
1. fast and simple
2. quick, but requires some thought and/or intelligence

3. quick with background in structured programming and
knowledge of transforms

4. quick but instructions are not easy to read
5. encumbered by awkward control constructs
8. encumbered by complicated coordinate transform usage

7. requires extensive knowledge of coordinate
transformation arithmetic.

» Readability: Since readability is also quite varied and complex, it has been divided
into several sub-measures which effect the readability of the languages. These include

understandability of instructions, use of structured format, and flexibility of user-

defined variable names.

e Understandability of Instructions: Understandability is categorized into
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seven aspects:
1. reads very much like "English”
2. uses function button control

3. instructions are words in English but does not
read like english

4. readability is markedly improved through
proper choice of variable names

5. instructions/variables limited to 6 characters
8. instructions/variables limited to 2-3 characters
7. instructions are not "English-like” at all.
¢ Structured Format: The degree of program structure in a language can aid
in readability by enabling a known format for all programs and forcing vari-
able declarations. There are three degrees of structure:
1. structure is an inherent language feature
2. can structure programs but are not forced to do so
3. language is inherently unstructured.
e Fleribilily of Choasing Variables: The following categories were used:
1. essentially unlimited variable naming
2. variable names limited to six characters
3. variable names limited to 2-3 characters
4, variables available but only by number
5. variables not available.
« Fase of Eztension. There are four degrees of expansion in the fourteen languages:

1. subroutines or other extension facilities
available

2. expandable through subroutines with some loss
of "English-like” syntax

3. Somewhat expandable through subroutines but
nesting is prohibited

4. must rewrite code to add instructions.
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* Range of Users: The users are divided into five levels:
1. inexperienced person
2. NC programmer or machine operator
3. person with some programming experience

4. person familiar with structured programming
and/or transformations

5. person with extensive knowledge of transformations.
e Programming Complex Tasks: The languages vary in their ability to program dif-
ferent tasks. Some are limited to very simple pick and place operations while others
are capable of complex tasks, such as fastening and compliant motion. This measure
is not directly related to the example but it is included for comparative purposes. The
task ability of the languages is divided into four levels:

l. capable of programming complex tasks using multiple
arm operations such as fastening

2. capable of programming complex tasks using visual
feedback, such as part recognition

3. capable of programming complex tasks using touch and
force feedback sensing, such as compliant motion

4. capable of only simple tasks with minimal or no touch
sensing in fingers.

¢ Necessary Support Facilities: Although these measures are not directly related to
the above example, they re included in the table to portray a more realistic view of

what languages are actually feasible for use today. The measures of support con-

sidered are:
¢ Computing Power Regquired:
1. micro-computer or small mini-computer
2. mini-computer

3. combination main-frame and small mini-
computer.

s Sensing Ability Needed:

1. Only simple touch or no sensing required for
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complete operation

2. proximity sensing specified in addition to
touch sensing.

3. vision in the form of part recognition required

4, complete dynamic world modelling system needed
for operation.

e Availability: Is the language as it is presented operational at present?
1. operational and available commercially

2. mostly operational but not commercially available

3. only a small subset is operational

The table presents AUTOPASS as the most programmable language, however it
needs the most complicated and undeveloped support facilities; T3, FUNKY, AL and
MAPLE indicate fairly good programmability; VAL, EMILY, and HELP fall into an aver-
age category; RCL, SIGLA, RPL, MCL and ANORAD are somewhat less programmable for
various reasons; and PAL is perhaps the least desirable language, mostly because it is
based on coordinate transforms and mathematical notation. These categorizations
are quite general and can vary greatly. ANORAD, for example, is categorized as some-
what less programmable because of the coded nature of its instruction set. It does,
however, require the least number of instructions (next to AUTOPASS) to code the pro-

gram.

5. CONCLUSION AND DISCUSSION

From the above analysis and comparison, some general conclusions on the
development of robot languages can be drawn. These are based on observations made

within the report of the good and bad characteristics of the fourteen languages.

Because of the interactive nature of robot programming and the need for rapid
debugging techniques, an interpreter-based language is favored over a compiler-based
language. In order to alleviate the two major disadvantages associated with an inter-

preter (i.e., slow at run-time and less suitable for structured code) one can conceive
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two compromises: (i) place some restrictions on program structure and commands
provided in order to keep the interpretive nature of the language, and (ii) use an
interpreter to produce correct programs and have a separate compiler which pro-

duces fast, efficient code from the same program to use at run-time.

RLs should be provided with as many of the debugging features shown in Table 4
as possible. Off-line debugging and development facilities, which use computer graph-

ics techniques to simulate the robot and its environment, allow development to take

place without the use of the robot333% An RL should be written in such a manner that

it is easy to interface such a system.

In order to meet the needs of the growing robot industry, a robot language must
be extensible. This implies a modular language structure with easy extension through
user definable subroutines. Routines must be provided with parameter passing in
order to allow re-use of the same variable name. The use of all global variables puts
unrealistic restrictions on the user's choice of variables as the language grows. For a
modular language structure which can build upon itself, subroutines must be allowed

to be nested to as many levels as possible.

The RL should maintain structured programming techniques, but should present
them-in as simple a manner as possible. Although declaration of variables is impor-
tant to readability, forced declaration of all variables may be cumbersome for simple
program development. It may be desirable to have default values which indicate cer-
tain data types (as in FORTRAN) and also provide facilities to declare variables. The
use of transforms in an RL is important because it allows definition of object locations
instead of robot points. In order to make transforms as easy to use as possible, they
should be broken into translations and rotations (as in MAPLE). A user with little
training in transform arithmetic can still understand a change in position and/or
rotation. Variable names should be unrestricted in length. There must be some cut-

off, however, in the degree of recognition. In order to provide the user with maximum
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flexibility, recognition should involve as many characters as feasible.

In order to make a language readable and understandable, "English-like" syntax
should be used. Languages such as MAPLE, AL, and AUTOPASS which make attempts
to supply commands which read very much like English are good examples of this.
The major problem with providing “English-like"” syntax is maintaining th same syntax
through language extensions. Subroutines provide a means of extending the language,
but the method used to invoke these routines will, in many cases, not conform to the
language syntax. Perhaps some facility should be provided in the language which
allows special extensions to be written by systems programmers which will provide a

syntactically correct extension to the language.

A robot environment usually involves interaction of several devices. Some truly
useful language features would be to allow commands to apply to any of the robots or
peripheral devices in the environment and to allow concurrency of operation of the
different devices. The simple ideas used in MCL, which allow the use of any device and
provide facilities to transfer signals between devices, are general enough to apply to
any situation. They would have to be expanded, however, to allow parallel operation of

devices in the form of events with signal /wait primitives and parallel execution blocks.

The most important aépects in the development of a robot language are the use
of a modular and expandable structure and the ability to interact with external dev-
ices and sensors. Without modularity and expandability, a language will not only be
difficult to interface to different systems, but it will soon become outdated because of
advances in technology. Without interaction with sensors and peripheral devices, the
robot will be isolated from the world arcund it and will never be able to perform with
any high degree of proficiency. These two aspects are the key to the success of any

robot programming language.
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Table 2. -Backyround Information on the Robot Programming Languages

T3 ] FUNKY | VAL | EMILY I RCL
t t t 1
I I | | I
Robot Language| 2 | 2 | 3 (4) | 3 (4) | 3
Level | | [ [ |
I I I I I
----------------- I‘--~-—m--~I~—-—------I-—--=-“°-~I-—~-—~-—--I—--~=°°-““
I I I | I
Origin |Cincinnati | IBM | Cnimation]| IBM | RPI
| Milacren | | | |
I I | | I
1= R e === —————- e o= | =————————e
|[Controller| | | IBM | -
Computer | based on | IBM | LSI 11/82| 379/145 | PDP 11/83
Facilities | AMD2968 | System/7 | | and |
|[bit-cslice | ] | System/7 |
-------------- e B ] T P —
| I | | | ‘
Robot Arm | T3 | IBM arm | PUMA | IBM arm | PACS arm
I | | | |
| | | | |
-------------- et R Rt Ly P ) P
| | [ | |
Number of I 1 | 1l | 1 | 2 I 1
Arms I | | | |
I | | | |
-------------- i Bl Bt B S [
l. | I | |
Flexible to | no | no | no | yes | no
other arms? | | | | ' |
| | | J I
-------------- e e B ] D
ICan specify | | |
Changeable |tool | power | none | none | none
Tools - |dimension | screw- | | |
| | driver | | |
-------------- R B el e —
| | | [Touch in |
Sensors | Limit | Touch in | none |[Fingers, J none
Available | switch in| Fingers | [Proximity, § -
| hand | | | presence |
-------------- T B It e
| | I I I
Vision | none | none | none | none | none
Interaction | | | | |
‘ I I I I I




Table 2 (continued) 37

| sicra | ReL | AL | mMcL | MAPLE |
--------------- I—-----*--‘I------‘---I—-----*---I-------—--I--——-—--——[
| | ! | | | |
|Robot Language | 3 | 3 (4) | 4 | 4 | 4 |
| Level | | | | | I
I I I I I I |
--------------- I----------I-----*“---I---—------I—‘------—-I----——---~I
| | | | [McDonnell | |
[ Origin | Olivetti | SRI | stanford |Douglas | 1IBM |
| | | Interna- | |- | |
| l | tional | I I |
--------------- I-----—----I------*---I-~-~------I----------I--—-------I
| | [ I | | IBM |
| Computer | mini- | PDP-11/45| PDP-11/45| Mainframe| 378/145 |
| Facilities | computer | or | PDP-KL1® | | and |
l l | LSI-11 | I | System/7 |
| == s e | == == | == l
l A | SIGMA | [ | ‘ | . ,
| Robot Arm [(1-4 arms)| PUMA | Sstanford | not | IBM |
| | (3-8 DOF) | | | specific | |
| I | | | | |
R Rt fomm—mmmne | === | ===-- = === -===|
I | |- | | , | |
| Number of | 1 to 4 | 1 | 2 | more than| 1 ]
| Arms | | | | one | |
I I | | [ I [
I e Al Dt | == === [ === [ ==———— I
| | | | : I | |
| Flexible to | yes | no | yes i yes | yes |
| other arms? | | | | | |
| [ | | | ‘ |
e == e e == == l
| | | | Electric | | |
| ‘'Changeable | yes | no | screw- | none | none |
| Tools | | | driver | | |
| l | | w/ tools | | [
== e == | === | === === [
| | | tactile |[force and |Simple and| force |
| Sensors | Force and| feedback §torque |Complex | feedback, !
| Available | Torque | machine |feedback |(touch and| proximity &
{ | feedback | vision |sensors | wvision) | presence
------------ I—---------I-------—--I-----—----I---—------I—--------—I
| I | orienting| vision IModelling, | |
| Vision | rone | and | verifica-|Recogni- | none |
{ Interaction | Iplacement | tion |[tion,. and | |
I |

| system |Inspecticn] |

——-—_—————-—-——--_——————-_—-_-————-————-—_-—-.—_-——-—.....———.-—--—-——————_—————_—



Table 2 (continued)

»
———-——_—-———-—--—-———_-_—-—_-.—__—-—-—..___m_-_-___e—.n_._uwemm—

| FAL | AUTOPASS | HELP |  ANORAD | ]
--------------- | == e | e e e
| I | I I I |
|Robot Language] 4 | 5 | 4 (3) | 3 | |
I Level | I I [ | l
| I | I | [ [
--------------- it B Rttt el FE T i A —|
| I | | | | I
| Origin | Purdue | IBM | GE | Anorzd | |
| | | | | [ I
| | | | | | I
--------------- e Bl Dl B ] |
| | | . | I | |
| Computer | PDP11/78 | mainframe| PDP-11 | Motorola | |
| FPacilities | | | | 6800 | |
I | | | ! [ |
| ==mmm e |==mmmmmmm- | =mmm - | == | -=mm | —mmmmmm I
| : | | | I | |
| Robot Arm | Stanford | IBM | Allegro | Anomatic | ]
| | | | | | |
| | | | | [ I
| == [ == [m=———m e [-m—m—————— | m———————— [==——————— I
I ’ | | [ | | I
| Number of | 1 Imore than | 1-4 | 1 | |
| Arms | one | [ | I
| | | [ | | |
[ =————— e == === [ === == [m=———————e I
[ | | | [ | |
| Flexible to | yes | yes | yes - no | |
| other arms? | | | | | 1
| [ | | ! | |
| mmmmmm e R —— | -—mmmmmm- | —=mm e | == I
| | electric |many tools| . ] | |
| Changeable | screw- l[indicated | no | no | |
| Tools | driver |by instru-| | | |
| | lction set | | [ |
=== R et L Jmm———————e == === —=———————- !
l | |sensory | | I |
| Sensors | none |feedback | none | none | |
| Available | Inecessary | | | |
| | I I [ | |
== |- == |—————————- | ==———————- | === |
I | [Verifica- | | [ |
| Vision | none |tion and | none | none ] |
: Interaction | |[vision | | | |
| I | I I

Imodelling

—————————--—-__—_—-._—__--———_———-—-__—-—_-.—.__.————_——_—-—,_.;.___-~_...,—>—-——_~_—



Table 3.

Language
Basis

Language
Type

Control
Structures

Céilable.
Routines

Nesting of
routines

Data Types
Available

Simple Motion

Straight Line
Motion

- S ———— ——— — —— —

Continuous
Path Motion

Comparison of the Actual Features Available 39
in the Robot Programming Languages
T3 | FUNKY | VAL | EMILY | RCL

---------- il Dl e B
I I I [ I
|Programmed |Programmed| Assembler| Assembler| Assembler
| Points | Points | | |
I I I I |
| = ee Eat— | == | = | ==
| | Compiler, | | |
| Inter- |Assembler,| Inter-~ |Assembler | Inter-
| preter |and Inter-| preter |and Inter-| preter
| | preter | | preter|
R e E— e E—
[Conditional | GOTO | BRANCH |  GOTO
|execution | none | IF/THEN | LOOPFOR/ | BR**
lon signals| |IFSIG/THEN| ENDLOOP | (** is
| | | | BRCOND |condition)
== | ~=mmm e |-m e R — e
| all | | | INCLUDE |
| sequences| none | GOSUB | SUBR | none
| are | | RETURN | RETURN |
| routines | | (no P) | (P) |
| === [~m e et e EEERER
I | I | I
I I | | I
| none | none | 18 levels| 4 levels | none
| [ I | !
| === | === == | === [ ===
| linteger, | | INTEGER |
| real |hidden | FRAME | ARRAY | INTEGER
| |[vector and] | | POINT
| |scalar | | |
= = mm e == e ==
| | , | 2 |
| none | none | REM | H | ;
| | | : | |
I | | | I
[===—m————- | == | === | === [====—————e
| Obtained | Obtained | GO, MOVE, |[MOVE,MOTOR| DRAW
| by motion| by motion| MOVEI, | GOPOINT, | MOVE
| to points| to points| APPRO | joint | APPRO, DEPRT
| | | ' | motion | MOVEA
P — —— | = |-=mm e | ==
|Only when {Only when | | Cartesion| DRAWS
| using | using [ MOVES, | robot | MOVES
| Teach | Joystick | APPROS | provides | APPROS
| Pendant | | | st line | DEPRTS
| =mmmmmm e e | —m o | == | ==
I |Yes, uses | I |
| Yes |varying | Yes { none { none
| I
I | I

|tolerances

I




Table 3 (continued) 40

T S > S G e S e S G = S S s S T s e T G € S > G WA G Tt . D G > T Sme W T T St - e - — O = o

| SIGLA | RPL | AL |  MCL |  MAPLE |
--------------- e Bl Bt D ]
I I | | I I |
| Language | Assembler| FORTRAN | ALGOL | APT | PL/1 |
| Basis | I | I I |
| |- I | I I I
[==mmm— e | == e === | ==———————- e I
I [ I | | I I
| Language | Inter- [Compiler | Compiler | Compiler | Inter- |
| Type | preter |[and Inter-|and Inter-—| | preter |
} | | preter| preter| | {
-------------- R B B P D
| | | GOTO IBegin/end,IWHEN..ELSEIif/tth/else
| Control | IF | IF |while/do, |ENDOF/WHEN|do/end,goto
| Structures | JU | DO LOOPS |1f/then/ |WHILE..END|while/do/enc
| | - | else, etc|OF/WHILE |begin/end |
e — E—— | == e e !
| lall files | CALL |Procedures |[EXTENsion | ' |
| Callable lare call- | RTNSUB |[Functions |Invocation|Procedures |
| Routines™ lable rou- | (P) |Macros |TASK,macro]| (P) |
I |tines (P) | | (P) [ (P) I I
| == - | == == |--—- [-= e !
| | | | | I |
| Nesting of | yes | yes | yes | 9 levels | yes |
| routines | | | | | |
| | | | | | I
| -= == == m—————e | === | =————————- j==———————e
| | | INTEGER |SCALAR, | STRING |INTEGER |
| Data Types | real | REAL |VECTOR |REAL, ARRAY |REAL , ARRAY |
| Available | | COMMON |ROT, TRANS |LOGIC | FRAME, POINT
| | | ARRAYS |FRAME, etc|FRAME |LINE, PLANE |
[=mmmmmm e | == —mem R | == R | =mmmmm s I
| | | I | | |
| Comments | none | COMMENT | {....} | $§ | /*.oo*/ |
| | | ; | I I [
| | [ | | | I
| e Bt bt [ === | === | == I
| | | [MOVE wit | FROM, |[MOVE TO/BY|
| Simple Motion| MO | MOVETO |[constraint| GOTO, |ROTATE TO |
| ' | | |clauses | WKPNT |ROTATE BY |
| | | | | | SWEEP TO/BY
| ==mm o | —= = | —m - === e E—— |
| | | - | , | GOFWD | Cartesian]
| Straight Line| none | none | none | GOLFT | robot has|
| Motion | | | | GORGT | straight |
| | | | | ' |line motion
| === | = |~ | —=—— e [ I
| | | "smooth | Yes | GOFWD I |
| Continuous } none | path IVIA gives | GOLFT | ncne |
{ Path Motion | | control" |intermedi-| GORGT | {
{ I |

|ate points|

———-——————--————_—-_——-—--———-—-—————-———-_—_—__--_____—__-_—--—-————— - e —

* (P) means parameter passing capability
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routines

|

| Data Types
| Available
|

|

| Straight Line
| Motion
|

Continuous.
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Table 3 (continued)
PAL | AUTOPASS | HELP | ANORAD |
---------- el Dl R |
| | | |
Transform| PL/1 | PASCAL | NC I
Basis } { FORTRAN ;programmin?
---------- e e B
| | compiler | |
Inter- | Inter- [ and | inter- |
preter | preter | inter- | preter |
| | preter | |
—————————— R et EEE R
_ |If/then/ |IF/THEN/ | | |
for/to/do |else,while |ELSE/END, | Jd(seq ) | |
beg/end |/do,begin/|FOR/TO/DO, |[J<cond>(s ) |
lend, etc. |WHILE/DO,etc |
---------- e B B
: I | |
none |[Procedures| GOSUB | K(segq )
| (P) | RETURN |
| | |
————————— |=————————- R ———— | =————————-
l l |
none | yes | none | 18 levels
| l I
| | |
---------- R e EEEE R
Matrices | Integer | real, |
Arrays | Real | ASCII, | real
Scalars | Array | arrays |
Stacks lworld model |
---------- e et e EEER
I K I
none | /*eoo*/ | ! | Gé69
| I |
| | |
---------- R R B
I | |
mov ] MOVE TO | MOVE | X,v,2,C
| MOVE | |
| | I
—————————— R et EEEE
| | |
none | PUSH | none | Gl
| SLIDE l |
[ | l
---------- e et LSRR
| | I
yes | implicit [ SMOVE | G9
| | |
| I l

|
|
| Path Motion
|

-—.—-——————-——-.——-—_——————-—_————-———————————--———-——-——-—-——-——-——

e S E G S G — e G— . S G — S — — T — G— — — —— — — G— S—— S— Gi— SO G- — t—— s w——
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Table 3 (continued) 42

| Commands

| T3 | FUNKY | VAL | EMILY | RCL |
--------------- [===—mm e | e e [
[ | | | SHIFT, | PART l }
| Coordinate | none | none | INVERSE, | defines | none |
|Transformation| | | FRAME | part | |
| Commands | | | | frame | |
| == R R R —— | === | === |
| | use [ | OPEN. | l |
| Gripper | external | GRASP | OPENI, | HAND, | OPEN, |
| Operation | signal | RELEASE | CLOSE, | DHAND | CLOSE, |
| | commands | | CLOSEI | | FLIP |
| == | == | === e o |~ i
I | | | | SYNCH | |
| Parallel | none | none | SIGNAL |provides | none |
| Processing | | | WAIT |convergenc| |
| | I l | point | |
| == e |- R R — |- - | |
| | WAIT | | IGNORE | | |
| Interaction | OUTPUT | none | IFSIG | none | none |
| with external| EXTERNAL | | REACT | | |
| devices | | |SIGNAL,etc]| | |
| == e | -—mmmmmeee E— |—=mmm e | = 1
| | | A one P | | I
| Force/Torque | none |dimensional CALIB | TOL, | STATSP |
| Feedback | | SEARCH | | CALIB, | |
[ | N : | | GETPOS | |
| == [=====- === |- | === == I
| | SEARCH | A command| REACT, | WAND, | |
| Touch Sensor | command |to CENTER | REACTI, | SENSOR, | SENSOR |
| Commands | for |the hand | SIGNAL, | GETSEN | |
| | stacking |on an obj.| WAIT | | l
--------------- e B B Bl
| | | | | | |
| Vision | none | none | none | none | none |
| Commands | I | | | l
| | | I | I |
--------------- it D et e et B
| . |TOOL STATUS TOOL | TOOL | l |
[Tool Operation]and exter-—| operates | defines | none | none |
| Commands fnal signal| screw | tool | I : l
| |commans | driver | frame | | ' |
et D B | == | === | === |
| | | |
| Higher Level | none | |
l l |
I | I

o]
o]
3
(1]
3
(o]
o
(1]

T D S i S e S G e e s e s s . s S D . S > T > " — > T = S~ > Eoa —— S — . S G2 W S GO W G G G —— O —— - - T o -~ — —— S _— —
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s = s - . G S e e W T e T e s e S > e e " Pt ———— ———————— — ————————

| SIGLA | RPL I AL |  MCL [  MAPLE |
--------------- el B e Iam T TP PR S
| l | TMULT | *, ==> | USEFRM | TRANSLATED |
| Coordinate | none | TINVER | AFFIX | CONECT |ROTATED |
|Transformation] | TWRITE | UNFIX | DISCON |FIXED |
| Commands . | TREAD | | |RELATIVE |
| === | ~m e |~ s == R e I
I I | | | SEND/HAND, | I
| Gripper | AX | RELAYO | OPEN | OPEN | OPEN TO |
| Operation | (external | RELAYC | CLOSE | SEND/HAND, | OPEN BY |
} ; signals) { { { CLOSE } }
| |AU (// exe) |Cobegin/ |INPAR |IN PARALLEL
| Parallel |EW,ES wait| none | coend |runs more |WHEN event|
| Processing land signal] |[SIGNAL and|than one |BEGIN..END|
| |events |- | WAIT | TASK | |
=== e Rttt [————————— [-==—————— | === | =m———————- [
| | AX,PP |[DTLRD,DTLWR | | ’ |
| Interaction | (I/0 | SETOX,CLROX SIGNAL | SEND | STATUS ]
| with external| signals)|RDDXV,REL-| WAIT | RECEIV | [
| devices | |AY0,RELAYC | | DEVICE | |
| == - | == [ [rmemm———— [~mmmm e Rt !
l l | | | | TORQUE, |
| Force/Torque |RP (exert)| INIARM | FORCE | SEND and |FLEFTFINGER
| Feedback |[MT (read) | : | TORQUE | RECIEV |FRIGHTFINGER
| I | I | |FGAP I
| === [ === R == == [====m————= |
| - | DTLRD | | | |
| Touch Sensor |TS and PP | DTLWR | CENTER | SEND and | RIT |
| Commands |(test and | DTLINI | | RECEIVE | RANGE |
I | set). | | | I [
--------------- | === m = [ e [ o |
| | |INIVIS,PIC| | REGION, | |
| Vision | none | TUR.GETFEA| none . ] PROJEC, | none |
| Commands | |BLINK,DELB]| : | LOCATE, | : |
| ’ | |LO,RECOGN | | INSPEC | |
--------------- R R buam R B EEY
| | I |OPERATE | TLAXIS | |
|Tool Cperation|external | none |lwith | defines | none |
| Commands [signal | ’ |constraint| tool | |
} |commands | |clauses | frame | |
-------------- el Rttt Bl B R e Lt
| |IV,2AV rel | RECOGN [Compliant | REGION | |
| Higher Level |and abs |[identifies|motion if | defines | LIMITS |
| Commands Imotion; | an object|FORCE set | part dim-| SETLIMITS|
| |AC anti-col |to zero | ensions | |

T D i o T S e, e — D W G, S, S T G —— — > v G e W G G — — G — - G —— — — — — ——————— — — — ——— — - G —— A ————— ———- S ——— —
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. . > o W P — P S —_— o — T — . . T > — ———— o — o — T —— S 2 e —— —— — .

| FAL | RU'TOPASS | HELP |  ANORAD | |
--------------- il el Bl B |
| | + (mult) | | | l |
| Coordinate | = (invert] none | none | none | |
|Transfcormation|and mult) | I | | |
| Commands | | | | | I
== jm————————- i [-————————- [—————————- === I
l I I | | | i
| Gripper [ gra | GRASP | PULSE [K100-1195 | |
| Operation | rel | RELEASE | VALUE | [ |
l l l : | | | |
| mmmm e == == == == = |
| : | | IN | SIGNAL | | ]
| Parallel | none | PARALLEL | WAIT | none | ]
| Processing | | DO | ACTIVE | | |
I | | | TEST I l I
e | -mmmme R ——— E— R | == !
| | | SWITCH | SET | , | |
| Interaction | none | LOAD | RESET IM100-M195 | |
| with externall | UNLOAD | PULSE |M200-11223 | |
| devices | | FETCH | STROKE | | }
[=m———m e [~—m——————- et == == [=r=——————-
| |compliance| GRASP, | | | |
| Force/Torque |by equating INSERT, | A<axis> | none | |
| Feedback laxis align] PUSH | FORCE | | i
| |-ments | I | [ [
| ==mmmmm o | === e Et— | == [—mmmmemmee l
| | |INSERT, | IF TESTE | ] i
| Touch Sensor | none |EXTRACT, | TEST IM280-M223 | |
| Commands | |LOWER/ONTO| HIGH | | l
| | | LOWER | | I |
--------------- e Bl Bl R Dt e
I , | | | | l |
| Vision | none | VERIFY | none | none | |
| Commands | | | | | |
l I | l | | |
--------------- it Bl Dl B P |
| | | OPERATE, | | | l
[Tool Cperation| scr | FETCH, | none | none | |
| Commands [ | REPLACE, | | | l
| | | SWITCH | | I l
=== | == === === |- == l
[ : [ |PLACE/CN., | | G2, G3 | |
| Hicher Level | none IDRIVE/IN, | none | circular | |
| Commands | INAME/ASS- | [interpola-] l
| | |EMBLY, etc] | tion | |

—~———--—-———~—-—_—_—-———-—-———---—.—--—————_——--‘_-‘_ﬂ-:_—_——---_--~—-—--



Table

4.

of the Robot Programming Languages
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Debugging Facilities Available for Each

Mode

Trace
Feature

Single step
execution

Hot Editing

Language Type

Manual Teach

with
external
functions
Gives
current
robot
location

using
function
buttons
Yes
can insert
and delete
steps

Halt
Execution

Immediate
Execution

Partial
Execution

High Level
Facilities

- e - e S - —— - ——

- — - te G - —— —— = —

|

|

l

I

I

I

I

I

|

I

I

I

I

I

|

I

|

|

|

|

I

|

I

|

|

| Yes

| using
| function
| buttons
l __________
| Yes

| using

| function
| buttons
|
|
|
|
I
[
|
|
|
|
|
|
|
|
|
[
I
|
|
I

using
Teach
Pendant

using
function
buttons

- e e e G - —— —

Compiler,
Assembler,
and Inter-

preter

Yes

with
external
functions

Yes
in PLAY
and LIST
mode

|
f
|
[
|
|
|
|
|
|
|
I
|
|
|
[
I
I
|
|
I
|
Yes |
by using |
ERASE and|
RECORD |
|

I

I

|

|

[

I

|

|

I

|

|

|

[

|

|

|

I

|

|

[

using

mode

—— s s > e — — ——

using

Yes |
Modes work |
like tape]
recorder |

I
|
none |
|
|

VAL | EMILY |
—————————— | === |
| I

Inter- |Assembler |
preter [and Inter-|

| preter |
—————————— | ===
Yes | Yes |
using | using |
EERE or | Joy |
T command| command |
---------- e
| Yes |

none | using |

| TRACE ]

| command |
—————————— Ea—
Yes | Yes ]
using | using |
NEXT | TRY |
command | command |
----- e
| ML steps]

none |[may be in-|
|serted or |

| deleted |

—m e E——— I
Yes | Yes |
using |by pushing|
ABORT | panlc |
command | button ]
---------- | ==
| |

none | none |

| |

| |
---------- === |
Yes | Yes ]
using | using TRY|
WAIT lor partiall
command | execution]
---------- ||
Yes | ML |
using | commands |

DO | can be |
command | issued |
—————————— e
Yes | Yes |
can give | can give |
starting | start |
step | address |
—————————— | ==
| I

none | none |

I I

| I

Inter-
preter

using
MOV and !
or HERE

Yes, in
interactiv
mode and
error mcde

Yes,
use IMM
command in
monitor

————— ——————
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- e - ———-— T T T T e e e o e e e e e e . - -~ — — = ————— — —

| FAL | AUTCPASS | HELP | ANORAD | |
--------------- l---‘------l-—“---*""l-~---~----l-°------—-l--------—-I
| I [ | | I |
| Language Type] Inter- | Inter- | Compiler | Inter- | |
| I preter | preter | Inter- | preter | l
I I l | preter | | |
---------------- el B D e il [ ———
| | read | | yes using] | i
| Manual Teach | current | none |  Teach | none | [
[ Mode | position | | butten | | |
l | planned | l | | l
=== e === == === | === e i |
| |Automatic |Interac- | | | l
| Trace |[trace in |tive veri-| ECHO |done | |
| Feature |teach [fication | lautomati- | |
| |[program |of int. code | cally | |
e ettt |——m——————- === R | === === I
| | |Automatic | | | |
| Single step | none |step thru | STEP | STEP | [
| execution | linterpre- | | button | |
| | |table code| | ] |
== it B jom———————- === == |
| |Interac- |Can modify| | | |
| Hot Editing |tive |lcode in | | | |
| | teaching |interpre- | none | none | |
| | program |ting phase] 1 | |
|=——m—— e [ === == === [ === | ==——————- I
| [ | [ ' | I |
| Halt | none | halt lhold and | RSTRT ] |
| Execution ] | available|EMERGENCY | button | ]
| [ | | buttons | I |
[ === [s=———————— |-————————- R === === |
| I |Can Backup] | | |
| Back Stepping| none = |at any time none | none | |
| | |to change | | | |
] | lint. code | |- | |
| === |—————————e |- === R [====——e—- l
| | | | N | l
| Breakpoints | none | none | ASK | none | l
| | | | commands | | |
I [ | | | l I
== [e———omm—— [——=—————— === [m=———————- e l
| | | | | I [
| Immediate | rione | none | none | MDI mode] |
| Execution | | | | - | |
l l | | | | l
e e === ————m———— [————————— == e !
I | | | | | |
| Partial l none | none I none | none | |
| Execution | | . | l '
l | | | | | l
| === = =———————-- === === R et |
b | |[compiler | l | |
I High Level | teach lcan ask | memory | none I |
| Facilities | program |user fcr | map | | |
| l linfoermaticn l | I

- — — — —a—— — = ———
——---——_--——.--_—-—_-—-‘_——..__———._——-—_--—.—_——-————_-—‘.______



Table 5. Quantitative Comparison between the Languages 48
for the Programming Example of Palletizing Blocks

T3 | FUNKY | VAL | EMILY | RCL
---------- e Rt B D .
I | | I I
Number of | 94 | 94 | 35 (22) | 34 (27) | 76
Instructions | | ’ | | |
l I | I I
-------------- el el ] Rl T EETT -
: | | I I I
Development | 1,5 | 1,5 | 2 | 2 | 2,5
Time | | I I |
| | I | |
------------ e Bl B ] et S P
I I I I | )
Understanda- | 2,6 | 2 | 3,4,5 | 3,4 | 3,4,5
bility of | | | l |
Instructions | | | | |
------ I R B B ettt Y (R
I | | I |
Structured | 3 | 3 | 3 ] 1 | 2
Format | | | | |
| | | | |
-|-- e R e B
' | | | | |
Flexibility | 4 | 5 ] 2 | 2 | 2
of variables]| | | | |
| I | | |
-------------- |—= [—— il Rl Bt D
| : | | l |
Ease of | 4 | 4 | 4 | 1 | 4
Extension | | | | |
| | | l !
e - [—m e [-==mmmme | -mmm
| | | | I
Range of | 1-2 | 1-2 | 2-3 | 2=3 | 3
Users | | | | |
' | | | : | |
-------------- el B B B e
| | | | |
Programming | 4 | 4 ] 4 | 4 ] 4
Complex tasks| | | | |
| | | | |
-------------- Rl I B B e
| I I | |
Computing | 1 | 1 | 1 | 2 | 1
Power | | | | |
| | | | |
----------- e B Bl ettt ) [RE
| | I | |
Sensing I 1 | 2 | 1 I 2 I 1
Ability | | | [ I
| | | ' I |
-------- |—- e e [ | e
) | | | | |
Availability | 1 | 2 | 1 l 2 I 2
I [ | [ I
| i | | I




49

(continued)

Table 5

e e e W W e s = — ————— ———— ——

S SV G— — — T T —— A — O I S — — — —— — — — —— — — — G S t—— S— — — — O — —— — —— — —— ——— —— — o — Gt et et g Srv— St T— —

| i i ) | { | | | ] |
] — { i | | ] | | | i {
3 | (Ta)] I ] ! I | | | ] | |
1 | ™ ] | . | | 1 | | | | |
(a VRN | ~ I | < { | | i | | i |
< | I ™ | ~ { (= ! 4 | o~ I ™ | ™ ] ™ { o~ | ™
= | < i | —~ | | { ! ! | I |
{ < | | | | | ] | | i )
i | | | ] | | | | | |
I | | I i | | ! 1 I !
i | | | | ] | I [} | |
| | [} | [} ] [} | [} | |
] | | | | | | I | | |
| ) ] wn ] | | | ] | 1 |
3 | (o)} | ! ~ ] o~ | o 1 | | { | |
(GNN (Vo) | (o} | < | ] | ™ | Rl | o~ | ™ ] ™ | —
= | i | ~ | ] | | | i ] ]
| i | ™ ) | | ) | i i |
| | | | | | | | | | |
| ! | | | [} I ! | [} |
| | { ! | | | | I | |
1 | | | | | | | | I |
| | | | | | | | — { | |
| | ] | | ] [ | — | ! ]
%_ = 1 I A | ] ] | | ~ | ! ]
| Te) | ™ | - 1 — | ~ | o~ { < | { o~ | — | o~
| | | — | | | ! | ™ ] ! !
| | ] { | ] | | | ] |
| I | | | | | { | | |
| i | | | | | } } | |
i | : [} [ | | | ! [} [} |
| | ! | | i | I i | 4.
| ! | i ] | | | | I |
| | Vel | Te] ] | ! ) ] | ]
i I | 1 ~ | ~ | i ! | | | ] N
(AP | © | wn | < | ™ o~ ~ | < ] o~ ] o | ™ |
(o AN | Te] | | -~ { | | | | |
] } ] ™ | | | | | |
| | ! | | | | | ! ] |
| [ | L} | | | 1 ] i 1
| 1 ! | | | 1 I |
| | I | ] | | | ]
! | } i { ! i $ H |
< | | | _ 1 | | | | | |
[ Iy i | ~ | i { | | |
(O wn | s ) ] ~ ™ = < | N | b | ~ | — | —
H | ™ | [ (V] | | | ! |
w0l I | | ] § I |
| | | | | ! | ! | | |
| 1 | [} | | | | | I [
| | { | )] | t | )] | I |
| D] i v | | n ko) >N o | { | A | | | >
| o] i o) | (1] o (] 4 — | | | o u ] | | 's)
| (@) | ()] ] TWH O 8] -~ .0 | = | ] (ol ] [} o | [} Ha
[ Yy~ § =] ] = O~ | 34 ~ ] w o [ I - 43 [} [ | ] —
| oy | (ol I [} SN | Yo | ord o | O -~ | o { g | o | O > | Ea
{ 0 [} (o) | & >0 | O E [} 0 ] )] | ‘0 [} E X | Ee | [ogn &) [} 0
| b I — ] nyYs o IR 1 | ~ ] ) I = | U W | © ] o IR ¥ ] aka | (1]
| Q- | (I} ] S M “ 0 x > I n v | oo | o~ | (O} { 0~ | —
| Ko EN | > B8 ] (VS ) fy ] | o | o 0 | o | £ 2 | o | s
| E 0 i -~ | -~ 0 w0 — Yy | 3 - | g D | o E [} o O | e% | °
1 o BN o I A e | (oo BN of O ] <] | o~ B | “ 0 | (@ V] | wn { >
M 5 7 | | | o | =

- - - —— — ——— ——— — —— — — —————— ——— ————————



50

(continued)

Table 5

O s — ———— ———— —— T — —— - >

e > A T . . B B e S e S W P S B B P, e D e s o P> D G O - e .

e M S s o o ) Gty )| D) ) ) G (S G Gy T S— D LD S———t) U S— G—— S— s —— OIS C— S T— St S— o— T— — — Sr— —— G O St SPrrs SotS Smetn opman Pea Srmet  Smeets s amerrt s aeene s e,

| i i i [} | ] | I i |
I l § i | | I ! | | I
! ! 1 I . | | I ] | } !
] i | | | | | ! | 1 1
| | f | | | | | | i |
| | § | ! | ] | | | |
| | ] | I | [} { | | i
| | | | | | i | ! ! i
) | § | | I | ] | | |
| | f I | | | } f | |
| | ! ] i ] [} | | | I
{ | | | I [ [ | [} | [
| ! | | ] | { | | | I
(ol | ] | | | | | I | I
< | l ~ | t | ] | ] { ]
(ol | S | <t ! -~ } ™ ] o~ | < | o~ | <t ] ~ ] — ] ~
0O 1 o~ ! | Ve ! ) | t | ! I ]
=z | { i ] | { | I | |
< | ! | | | | | | | | !
[} | | ! ] | ! [} L} [ [
} | I | | | | | | | |
i | | ) | | | | | | |
| | i | I | | | | | |
| ] | | ] | | < I | | |
[a TR ] | <t ! I | | | | | i
— | [>] I o~ | - | N —t [ ™ ] (aa) [} < | o I — | ~
SO} ™ i ! o™ | | | | | 1 ! |
oo i i | | | o~ | | | |
| | ] | ! ] 1 } | | |
| ! ! | | | | | I | |
| | i | I ! | i | I
vl g | | | [} [} | { | I
w | i I | i | ] | I |
<5 | ] | | | | | | i |
[STI | | { < [} B | | I I | < | ™
O i w© i —~ | ~ ! o~ ~ ] o | ~ l — ! ™ | |
| i | =i ] | | | | ] |
o I | | - ! | | ! { | |
< | i | | | I | | { | |
i i - l 1 | | ' t 1 [
| | | | i | ] [} 1 | |
I | ! | ) | | [} i ] |
] ] 1 . I | | ] | | i
] 1 | : { | 1 | | { | |
M_ l Vo) | ] | | | i o~ | —~ | o~
| n | ~ | ~ | ™ ] ™ | <t t n | A ] | |
(a PR | o~ | | ™ ] | | | | | | |
| i l | | | ] | | i }
1 | | | ! | ] | | | |
| } I | ! | [ [} | | |
[ [} | | [} u | ] | )] ] [} |
| 0 ! | ] 0 | o} | > | | { o { | | >
1 o ! NS i L) o | (7] 2~ ! l ] o0 | { | o
| o} | (o] | TWH O | M -~ .Q | = | - o o | o | ] -~
| Yd o | [J] | = O~ | ja QB | — ] Yy o | W | o~ ) | = | [} —~
| oy [} E i « o <o | Hala I O -H | o i =] | o | o >4 | -~
| 6] ! (oh | H >0 | U E i 0w | 0] ] n ! g % | XE) | oY ! o]
| e | o | n4yP 3| = W Sa i) | ([ - t U M | g o | = IR ¥ | - ] )
| U M | — | e M | 0 > | 0 w i oo | 4~ [ Qo [ n A | —~
| Nolus 1 (V) ] oY | 4 [y )] ( [V IE S I [olNT)} ! o i (=3 ! (ol | o
{ E 0 { > B | o~ v | 1)} ~— Uy | = X ] Lo J ] ! o E | (oK) | Acm | "
| jo I o} | -~ | cQOoc |l sy O | m [} (A I [Se} | Oy I - o [} >
| A ] | [a WS | o) L I | | | | | (TR | | | oY
“ I I | | I ' | | | I .



