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ABSTRACT 

The Restructurable Integrated Circuit, a highly flexible and programmable 
multimicrocomputer is presented. The goal of this integrated circuit is to 
apply the large number of gates that are available on a custom designed VLSI 
IC to the design of a highly flexible integrated circuit . The main 
application of the Restructurable Integrated Circuit (RIC) will be the 
implementation of digital system hardware through programmation of a RIC. The 
flexibility provided within the RIC includes: user definable micro language, 
user programmable assembly language, user programmable microcode, dynamic 
coordination of multiple internal processors, coordination of processors on 
multiple RICs, internal memory use as caches or as a member of a virtual 
memory hierarchy, qeneral topology for interchip communication and external 
data paths, and a user definable interrupt mechanism. By providing this high 
degree of flexibility, the cost and reliability advantages of high volume 
production can be accrued, while providing performance comparable to a custom 
VLSI IC. 

1. INTRODUCTION 

The concept of a highly programmable, restructurable VLSI integrated circuit 
i s an extremely important step towards achieving the maximum impact from VLSI. 
Not only do programmability and flexibility provide new creative opportunities 
for the system designer, but they help overcome two major obstacles to 
pervasive use of VLSI, as well. 

Design cost and design cycle time are critical barriers to implementing VLSI 
systems . Typically a state-of-the-art LSI custom design consisting of 5K 
gates and 5K bits of read-only memory costs approximately $500K and takes 
about 18 months to design and layout. This works out to about $100 per gate 
in the design. Even if, over the next five years, design costs are reduced by 
an order of magnitude to $10 per gate, a typical state-of-the-art VLSI custom 
des ign in this time frame, consisting of 50K gates and 50K bits of read-only 
memory, will still cost $500K to design. A very flexible restructurable VLSI 
chip that can be structured to provide a wide range of capabilities with 
state-of-the-art performance presents a viable alternative to custom designs 
in low volume appli cations. 

Reliability, testing and maintenance considerations are extremely important in 
complex VLSI systems. When reflected in the cost of service calls or returned 
products, poor reliability can contribute more to system lifetime cost than 
the initial manufacturing cost. Traditionally, reliability has improved with 
each increase in the level of integration. However, reliability benefits from 
accumulated learning, as shown in Figure 1. A generic programmable chip, in 
thi s case the Texas Instruments TMS-1000 microcomputer, increases in 
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reliability as more are manufactured. Although any specific programmation of 
the chip may not he made in any significant volume, each proqrammation still 
benef it s from the reliability improvements of the generic device . Custom 
designs, even using an identical process , do not benefit significantly from 
the h~~h volume reliability learning of other ch ips. A restructurable VLSI 
circuit will provide a high degree of reliability learninq, even though the 
volume of most proqrammation types may be smal l. 

The RIC is a semi -cust om IC similar in purpose to gate arrays or 
mast~r- slices . The g~te array approach allows a logic diagram to be 
transl3ted into silicon through software. The software creates an 
interconnect pattern between the qates so that the logic diagram is 
implemented in silicon. The qate array approach is very flexible, but the 
gate array approach does not provide any special structure for implementinq 
proqrammahle digital systems. The RIC approach uses the large number of gates 
on a VLSI IC to build a chip which is highly flexihle for implementinq 
progr-ammab 1 e di gita 1 sys terns. The RIC approach di ~fers from qate arrays in 
that the RIC has the vast majority of silicon committed to a specific design . 
The flexibility of the RIC is achieved through the design of a programmab l e 
mechanism for control lin~ the hardware resources on the chip. The block 
diaqram of the Restructurable IC is shown in figure 2. 

The RIC is a multimicrocomputer containinq four 16 hit processors called 
Microprogrammable Slices (MPSs) . The MPS resources can be controlled at two 
basic levels. One level is the coordination of MPSs. The four MPSs can be 
dynamically confiqured at run time into any combination of three fundamental 
structures . One structure is the lockstep in which two or more MPSs are 
structured to form a wider word computer. This structure is formed by 
rlirectinq the same microinstruction stream to all of the MPSs in the lockstep 
an~ struct~ring the arithmetic status , carry chain, and shift/rotate linkage 
to configure the MPSs into a wider v10rd computer. The second fundamental 
s truct11re is independent MPSs. In this structure each MPS has its own 
microinstruction stream. A set of array processors can he structured in the 
independen t confiquration by directing the same microinstruction stream to the 
MPSs without any coordination of arithmetic signals between MPSs. The third 
fundamental structure is pipelined MPS s. Each MPS forms a stage in the 
pipeline. The microinstruction streams are different for each stage . An 
internal data bus within the RIC provides for simu ltaneous sending and 
receiving of data between adjacent stages (MPSs) in the pipeline. 

The other basic level for controlling MPSs is language interpretation. The 
language interpretation structure is programmable at two levels. One level is 
a definable vertical microcode and/or assembly code. The other level of 
programming is a PLA which interprets the vertical microcode through finite 
state machines . The vertical microcode and/or assembly code are defined 
through the contents of the PLA . Microcode can be contained in the on chip 
ROM or in RAM. MPSs become user microprogrammable by allowing microcode to be 
contained in the RAM. 
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The RIC also provides for coordination of MPSs contained across multiple RICs. 
The concept of external coordination of microprocessors has been developed in 
(1,2). The coordination of MPSs on multiple chips is accomplished with status 
ports. The status port contains four signals for ALU status, a carry chain, a 
shift/rotate linkage and a synchronization signal. The external status port 
interconnection to internal MPS structures is programmable. The use of the 
RIC status ports provide for implementing computers with word widths greater 
than 64 bits. Also the status ports provide for flexibility in implementing 
pipelines with multiple RICs. The external interface of the RIC provides the 
capability for coordinating independent processors implemented on multiple 
RICs. 

The RIC external interface is composed of three sections: a data port section, 
a status port section and an interrupt port section . There are two 16 bit 
wide data ports. The 16 lines are bidirectional and carry addresses and data. 
Each status port has a general purpose arbitration mechanism. One of three 
arbitration modes can be used: round robin, master-slave, or a general 
arbitration method implemented by external hardware. These arbitration 
methods allow a great amount of flexibility in the communication between RICs, 
memories, and I/0 devices. The interrupt port on the RIC uses the same 
arbitration methods as the data port. Thus the interrupt port has great 
flexibility in the topology of the interrupt network. The interrupt port has 
flexibility in determining the information protocol. The interrupt port can 
be used for a range of applications from conventional receive only vectored 
interrupts up to a user defined interrupt driven interchip communication. 

The internal memory system of the RIC supports the internal structures of 
MPSs. There are four memory modules. The memory modules can be accessed in 
parallel when each MPS accesses its own memory module. Also, the internal RAM 
bus allows the sharing of the memory modules among the MPSs. The internal RAM 
bus also can be structured to support pipelined MPSs. In the pipeline 
structure, each MPS can send and receive data simultaneously. The internal 
memory system has a capability for memory mapping. Memory mapping allows the 
internal RAM to be used as a cache or a member of a virtual memory hierarchy. 

In the following section, the restructuring capability for the internal 
coordination of the multiple processors contained in a RIC is discussed. This 
will be followed by a discussion of configurations of multiple RICs. Then the 
processing element in the RIC will be described followed by a description of 
the internal RAM system and the external interface. 

2. SINGLE-CHIP CONFIGURATIONS 

The MPSs of a single RIC can be configured into several modes. The three 
basic MPS structures are: independent processors, locksteped processors and 
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pipelined processors. The configuration used is detPrmined by directing the 
microinstruction stream. In the independent and pipelined configurations, 
each MPS receives its own microinstruction stream. In the lockstep 
configuration, all MPSs in the lockstep receive the same instruction stream. 
The various MPS structures are discussed below. 

In the independent mode there are up to four independent instruction streams 
on a RIC chip. They operate on four different data streams. The data streams 
can be completely independent, or they can communicate with one another by 
passing messages through memory (on-chi p or off-chip RAM). Figure 3 
illustrates this configuration. 

The internal lockstep mode uses a single mi cro instruction stream to control 
multiple MPSs. This mode of operation allows a wide word (as wide as 64 bits 
when all MPSs have the same instruction stream) machine to be designed. 
Operation in this mode is similar to today's bit-sliced microcomputers (3,4) 
and it is shown in Figure 4. 

The pipeline mode uses multiple instruction streams and multiple data streams. 
Each MPS implements one stage of the pipeline. The data normally flows 
unidirectionally between neighboring MPSs. For example, as shown in Figure 5, 
MPS 3 can be programmed to prefetch the machine instructions from the off-chip 
main memory, MPS 2 decodes the machine instruction, MPS 1 is programmed to 
perform address computation and fetches operands from the main memory, and MPS 
0 is programmed to do computation specified by machine instructions. 

In addition to the structures discussed above, various combinations of these 
configurations are possible within a single RIC chip. For example, MPS 0 and 
1 form one internal lockstep, and MPSs 2 ard 3 form another lockstep. The 
lockstep of MPSs 2 and 3 can emulate the Central Processing Unit (CPU) of a 32 
bit machine, while the lockstep of MPSs 0 and 1 can be programmed as a 
graphics processor, making the system suitable for a high bandwidth graphics 
application. 

3. Multi-chip Structures 

Multi-chip configurations are used to achieve improved functionality and 
performance beyond that which is possible with a single-chip configuration. 
For example, a multi-chip structure may employ one or more RICs as the CPU of 
a machine, another RIC as an I/0 processor, and another RIC as a floating 
point processor. In this section various mu~ti -5 hip structures are described. 

An external lockstep connects two or more MPSs, each on a different RIC, to 
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form a lockstep. An external lockstep is illustrated in Figure 6. On each 
cycle, each MPS in the lockstep executes the same microinstruction, but 
operates on its own data stream. Since each MPS resides on a different chip 
each MPS has to fetch its own microinstructions . The status connection 
synchronizes externally locksteped MPSs so that they are executing 
instructions in unison. The status connection also contains ALU result 
status, a carry linkage, and a shift and rotate linkage. 

The hybrid lockstep structure is a lockstep in which MPSs are locksteped 
together within one RIC as well as locksteped externally to MPSs on one or 
more other RICs. An example of a hybrid lockstep is 9iven in Fi9ure 7. 

Two basic types of pipelines can be made with multichip structures. One type, 
the internal lockstep pipeline has each stage of the pipe formed with an 
internal lockstep of MPSs. This mode can be used for pipeline widths of up to 
64 bits . If the pipe is required to be more than 64 bits wide, each staqe of 
the pipe is formed with a hybrid lockstep. The second type of pipeline 
structure, the external lockstep pipeline, forms each stage of tre pipeline 
with an external lockstep of MPSs. 

In addition to the above structures, the RIC is designed so that combinations 
of the various internal and external configurations can be combined among 
various RICs. 

4. MicroProgrammable Slice Design 

The MPS is the 
blocks: the data 
instructions for 
interrupt manager, 

processing element of the RIC. Each MPS contains six major 
path (computation hardware), the PLA for interpreting 
controlling the data path, the ROM address sequencer, the 
the scheduler, and the programmable interconnect. 

The data path in aMPS is 16 bits wide. It contains a dual port register file 
of sixteen 16-bit wide registers. The data path contains a high performance 
ALU. Two registers in the register file can be accessed from two 16 bit wide 
buses simultaneously. The data path also has a hardware unit to Shift, 
Extract, and Rotate data called the SERU. In addition to the usual shift and 
rotate operations in the data path, the SERU can be used to extract fields of 
a machine instruction being emulated and pass the extracted fields as 
parameters to the PLA generating control signals for the data path. This PLA 
also generates signals to coordinate the ROM sequencer. The ROM sequencer is 
used to generate addresses for the ROM. The sequencer provides for loop 
control, subroutine calls, branches, and repeating the execution of an 
instruction. 
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The MPS is made restructurable to an architecture through four techniques: 

1 ROM programming 

2 PLA code stored in each MPS 

3 Interrupts at the microcode level 

4 Programmable interconnect 

The MPS is designed to interpret vertical microcode or machine code (assembly 
code) using the PLA. Microcode and low complexity machine code instructions 
are interpreted directly through the PLA. More complex machine code 
instructions are interpreted in terms of microinstructions or microroutines. 
The instructions that are interpreted by an MPS can be contained either in the 
on-chip ROM, in the on-chip RA~ or in an external RAM . This feature provides 
for user microproqrams to be contained in either ROM or RAM. The ROM can 
contain system microprograms for a variety of tasks: control programs for 
interrupts, internal memory manaqement, self testing, initiating internal MPS 
structures, and initiatinq external RIC structures. The ROM can also contain 
microprograms for interpreting machine languages. A RIC can interpret 
multiple microcode languages and/or multiple machine languages. A PLA within 
an MPS is proqrammed to interpret a particular language. This PLA can be 
programmed to interpret more than one language, depending upon the languages. 
Since there are four MPSs on a RIC, at least four different languages could be 
interpreted . It is expected that a RIC will interpret existing languages 
(emulation) as well as interpret lanquages created for a particular 
application. For example, a language could be created for: instruction 
prefetch, instruction decode, address calculation, self testing, memory 
management, or any other computation task. 

The information in the ROM is accessible to all MPSs through a shared ROM bus. 
A centralized ROM is used because this method allows easy code sharing and 
maximum flexibility in the amount of code that can be dedicated to an MPS 
compared to a separate ROM for each MPS. The bus is arbitrated in a round 
robin scheduling discipline. When an MPS issues a ROM access, the ROM manager 
buffers the tag(s) associated with the sending MPS. The ROM manager also 
routes the microinstructions to the appropriate MPS(s) using the tag(s). 
Multiple tags are sent by an MPS when it is in an internal lockstep mode, and 
the same microinstruction is routed by the ROM manager to all MPSs involved in 
the lockstep. The ROM bus is also used to send interrupts. 

There are two basic cateqories of interrupts: internal and external 
interrupts. Internal interrupts are sent between MPSs within a single RIC. 
External interrupts are sent between an MPS on one RIC to one or more MPSs on 
one or more other RICs. Each MPS has an interrupt manager. The interrupt 
manager sends and receives both internal and external interrupts. The 
interrupt manager gains control of the ROM bus to send an interrupt. The 
interrupt manager sends the following information: identification of the 
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interrupt source MPS, the destination MPS(s), the priority of the interrupt 
and run time information. An internal interrupt is sent to multiple MPSs to 
initiate a lockstep process or a pipeline process. The receivers of an 
interrupt respond as to whether the interrupt is to be immediately acted upon 
or not. An external interrupt is sent to the external interrupt manager. The 
external interrupt manager uses the priority of the interrupt to access a 
message block which is sent to external RICs and or other interruptable 
devices. 

A process within the RIC is initiated by an interrupt. A process is defined 
as an instruction stream. An instruction stream is composed of 
microinstructions, macroinstructions or a combination of the two. Each 
process has a priority associated with it. Within a RIC there are 256 
priority levels. The priority of a process and the priority of the interrupt 
which initiates this process have the same value. When an MPS receives an 
interrupt, its interrupt manager compares the received interrupt priority with 
that of the currently executing process. If the interrupt manager determines 
that the interrupt priority exceeds the current process priority, the 
interrupt manager signals that this interrupt process will cause a context 
switch. Otherwise, the interrupt manager indicates that the interrupt process 
priority is of lower priority. This type of feedback from the interrupt 
receiver to the sender is needed in the case of multiple receivers. If only a 
subset of the receivers can perform a context switch, MPSs would be idled 
unnecessarily while waiting for other MPSs to finish their higher priority 
process. If only a subset of the multiple receivers of an interrupt can 
perform a context switch, the interrupt is withdrawn and sent again later. 
This scheme prevents deadlock and unnecessary idling of resources . 

If an interrupt is sent to a single receiver and the interrupt is of lower 
priority than the current process, the interrupt is buffered by the receiver 
MPSs scheduler. The scheduler buffers interrupts by priority in a 256 bit 
shift register. When a process is active, the scheduler scans through the 
shift register to find the process with the next highest priority. When the 
current process is finished or timed out, the scheduler uses the priority of 
the next highest priority process to access a table which contains a pointer 
to the process's context. 

Programmable interconnect is used for routing the carry chain, the 
shift/rotate linkage, and the ALU result status flags. The routing of these 
signals depends upon the single or multi-chip structure being used. In the 
following, only the programmable carry chain is discussed. The carry-chain is 
unidirectional in nature flowing from MPS 0 to MPS 3, and then looping back to 
MPS 0. The carry routing logic is also responsible for handling carry in and 
carry out signals in the external and hybrid lockstep modes. The routing 
logic is expected to be implemented with pass transistors and is set up in a 
particular mode at the beginning of a structure by appropriate signals from 
the PLA, and remains set up that way until the next restructuring. For 
example, in the independent mode where all four MPSs are working as four 
independent processors, the routing logic isolates the carry chain into four 
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independent segments. In the internal lockstep mode the routing logic 
establishes a separate carry chain for each lockstep on the chip. Figure Sa 
shows the carry chain when MPS 1 and 2 are working in a lockstep, and MPS 0 
and 3 are working as independent processors (one's complement arithmetic is 
used requiring the end around carry) . Figure 8b shows the carry chain when 
all four MPSs are involved in four different external locksteps. 
Programmation of the shift/ rotate linkage and the ALU result status signal s 
are similar. The ALU status signals differ slightly in that these signals 
from locksteped MPSs are individually connected to a bus using a wired-AND 
configuration. 

5. INTERNAL RAM 

The internal RAM of the RIC is organized as four independent memory modules 
that are byte addressable. An NMOS RIC with a minimum geometry feature of one 
micron (lambda equals .5 micron) could contain about 16-32K bytes of dynamic 
RAM. This RAM would occupy about one-third to one-half of the chip area. The 
internal RAM subsystem of the RIC includes four independent memory modules and 
a data bus interconnecting the RAM to the four MPSs. The data bus is designed 
to support the three basic internal structures of MPSs: independent, lockstep 
and pipeline. The memory subsystem also contains a memory mapper to 
automatically direct memory accesses to internal locations if the data is 
resident internally or to external locations otherwise. The memory subsystem 
is illustrated in Figure 9. 

The data bus supports four concurrent accesses to memory, provided there is no 
interference between processors and memory. This bus allows a direct path 
from each MPS to its own memory module. When each MPS accesses its own memory 
module, then four simultaneous memory accesses can occur. If MPSs access 
memory modules other than their own, these memory accesses may result in 
memory interference, since a shared bus is used and multiple MPSs may access 
the same module resulting in queued memory requests . As shown in Figure 9, 
each memory module has a Memory Scheduling Unit (MSU) and a Bus Control Unit 
(BCU). When an MPS accesses its own memory module, it is directly connected 
through its BCU to its MSU. The MSU indicates whether there are pending 
memory requests or not. If there are no pending memory requests, the access 
occurs immediately. If there are accesses pending, the MSU queues a tag 
indicating the MPS which requested memory service. An MSU queues an MPS 
request with a first come first served scheduling discipline. When the MPSs 
request reaches the head of the queue, the MSU signals this to the MPS. The 
MPS reissues its request and the memory access is performed immediately. When 
an MPS accesses a memory module other than its own, the BCUs are configured to 
make the connecting bus a shared bus, as shown in Figure lOa. The MPS first 
waits for access to the shared bus. The shared bus is scheduled by a round 
robin by demand discipline where the first MPS or memory module gets access to 
the bus in round robin order. After an MPS gains access to the bus, it sends 
the memory information and a destination tag indicating the destination memory 
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module. The destination module sends the memory requests queue position on a 
separate bus. If 00 is sent the memory request is being processed 
immediately. Otherwise the two bit number indicates the number of pending 
requests before this current one. Any memory module can have at most four 
memory requests pending since an MPS can only have one memory request pending 
at a time. Each MPS has circuitry to monitor the bus. When the memory module 
that has an MPSs memory access pending completes a memory access, that MPS 
decrements the number of pending request s by one. When an MPS decrements this 
number to be zero, it means that its request is at the head of ~he queue at 
the memory module where this MPSs memory request is pending. When this MPS 
gains control of the shared bus, it reissues its request and the request is 
processed immediately. The operations described above support the memory 
accesses made by independent MPSs, locksteped MPSs and pipelined MPSs. 

The RIC memory system supports locksteped and pipelined MPSs. Locksteped MPSs 
can make simultaneous requests to their own memory modules. It is possible 
that locksteped MPSs will not receive their request for memory service 
simultaneously because the queue length at one MPSs memory module could be 
different than the queue length at another locksteped MPSs queue. Locksteped 
MPSs are synchronized to avoid this problem. When locksteped MPSs make a 
memory request, a wired-AND line which connects all MPSs in the lockstep is 
pulled low by each MPS. After each MPS has had its memory request serviced , 
it discontinues pulling this line down. When the last MPS has its memory 
request finished the line will rise to a logic one, indicating that the 
lockstep process can continue. Also locksteped processors can access memory 
modules other than their own. In this case each locksteped MPS would issue 
its request when it got access to the bus. The locksteped memory access would 
be synchronized as above. 

In addition to accessing memory, pipelined modes also use the data bus to send 
data between other MPSs in the pipe. Figure lOb shows the BCU configuration 
for pipelined data transfers. For this BCU configuration, the data bus is 
segmented to allow all adjacent MPSs in the pipe to transfer data in parallel, 
including transfers to MPSs on different RICs. 

Each memory module is addressed with a 16 bit address. This allows for 
eventual growth of up to 64K bytes of directly addressable space for each of 
four MPSs. However an MPS supports two types of addresses: 16 and 32 bits. 
Sixteen bit addresses are used to directly access an MPSs own memory module. 
Thirty-two bit addresses are used to access other memory modules or external 
memory. In the case of accessing other memory modules, the most significant 
14 bits are a tag indicating that the address is for an internal memory 
module. The next two significant bits select one of four memory modules. The 
remaining 16 bits point to an address in an internal memory module. If a 32 
bit address does not point to an internal memory module directly it can either 
be an external address, or it can be a mapped address . A 32 bit address is 
mapped or external depending upon MPS control. If the address is designated 
to be an external address, it is sent to the external memory interface for 
processing. Otherwise, it is sent to the memory mapper. The memory mapper 
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uses an associative search to determine if the address is internal or 
external. If it is internal the associ a ted internal address is sent to 
;nternal memory. If the address is external it is sent to the external memory 
interface. 

6. EXTERNAL INTERFACE 

The external interface for the RIC is designed to support multiple RIC 
configurations, interchip communication and data path communication between 
system memory and system I/0. Two versions of pin assignment are planned. An 
82 pin version has two 16-bit data/address ports. A 114 pin version is the 
same as the 82 pin version except that it has two 32 bit data/address ports. 
The 82 pin RIC is discussed below. 

In Figure 11 the RIC pin assignment is illustrated. There are five types of 
pin functions for the RIC: data/address, control, interrupt, status, and 
power/clock. The number of pins dedicated to each function group is listed in 
Tab 1 e I. 

Table I 

FUNCTION NUMBER OF PINS 

data/address (2 ports) 50 

control 2 

interrupt 8 

status ( 2 ports) 18 

power/clock 4 

"82 

Pin Assignment By Groups 

6 . 1. DATA PORT 

The 82 pin version of the RIC has two 16-bit data/address ports. Each port 
has 16 bidirectional lines for carrying data and addresses. Associated with 
each port is a pair of handshake signals for gaining control of a shared 
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resources. The arbitration method for the shared resources is either round 
robin by demand, master-slave, or determined by external circuitry. The round 
rob1n and master-slave arbitration methods support a shared bus, while the 
external arbitration circuitry supports a network with a general topology. 
Each port also has a pair of signals for synchronizing the sending and 
receiving of data and addresses on the bus. Also, each port has a 
bidirectional set of three signals to indicate bus status. Four types of 
read/write operations are indicated by these three signals. The four 
operations are: access a user specified RIC, access system RAM, access system 
I/0, and access the resource whose destination address is sent at the 
beginning of the access. Finally each port has a bidirectional pair of MPS 
tag identifiers. The MPS tag identifiers are used to indicate the source MPS 
at the sender and/or the destination MPS at the receiver. The two 
data/address ports are independent. However, these two ports can be combined 
into one port by internally performing the same operation to both ports 
concurrently, and externally treating the two ports as one port. 

6.2. STATUS PORT 

There are two identical status ports. The status port's main function is to 
provide the signals to lockstep two MPSs on different RICs. Status port 1 can 
be used to lockstep MPS 0, MPS 1 or a lockstep of MPSs 1 and 0 to external 
MPSs. Status port 2 can be used to lockstep MPS 2, MPS 3, or internal 
locksteps including MPS 2 and/or MPS 3 to external MPSs. The use of the 
status ports is illustrated in Figure 6. A 64 bit wide external lockstep i s 
formed with 4 MPSs on four RICs in figure 6. There are four pin functions in 
each status port: ALU result status , carry linkage, shift/rotate linkage, and 
MPS synchronization. 

There are four ALU result status pins. These are: the Negative result status, 
N; the Zero result status, Z; the Carry result status, C; and the oVerflow 
result s tatus, V. These four signals connect to a bus using a wired-AND 
configuration . This bus connects all externally locksteped status ports. 
These signal s are encoded to indi cate up to one of 16 ALU result outcomes. 
The carry linkage is a carry-in signal and a carry-out signal. The carry-out 
signal of one RIC is connected to the carry-in signal of the next most 
significant RIC. The shift/rotate linkage is used to perform shift operations 
between externally locksteped MPSs. The shift/rotate hi s ignal of a RIC is 
connected to the next most signi ficant RICs shift/rotate lo s ignal. The 
shift/rotate hi signal of the most significant RIC is connected to the 
shift/rotate lo signal of the least significant RIC to provide the 
shift/rotate linkage. The MPS synchronization pin ensures that externally 
locksteped MPSs are executing the same instruction in phase. Without 
synchronization, MPSs in an external lockstep can get out of phase because 
other MPSs on a RIC may be operating independently of the externally 
locksteped MPSs. Thus the time to fetch a microinstruction may vary among the 
RICs containing locksteped MPSs. The MPS synchronization pin serves as a flag 
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to indicate that each MPS has finished the previous instruction and has 
fetched the next microinstruction and is ready to execute it. The MPS 
synchronization pins are wired together in a wired AND configuration. When 
all externally locksteped MPSs are ready to execute the next instruction, the 
MPS synchronization line will be high. If one or more MPSs is not ready, the 
line will be pulled low. When the MPS synchronization line is high, execution 
begins on the next clock cycle. (All RICs with MPSs in a common external 
lockstep must use the same system clock.) Shortly after execution begins, the 
MPS synchronization line is pulled low and it stays low until all MPSs are 
ready to execute the next instruction. 

6.3. INTERRUPT PORT 

The interrupt port serves two purposes. The first purpose is to receive and 
process interrupts in a manner similar to conventional microcomputers and 
microprocessors. The second is to provide for interchip communication. The 
interrupt concept has been generalized to include the capability to send 
interrupts to other receivers, providing for interchip communication. The 
purpose of interchip communication is to coordinate R!Cs to a task, to 
initiate a task, and to transfer information. The interchip communication 
system is used to transmit commands and/or small amounts of data. The bulk 
data part of an information transfer is communicated between memories. For 
example, a disc read operation is initiated by using the interrupt port of a 
RIC to send commands to a disc controller. The data transfer is accomplished 
on a separate data path between the disc system and the memory system. The 
interrupt port contains pins for arbitration, information and data transfer 
synchronization. 

The interrupt port of the RIC has 8 pins. Two of the pins are used for 
arbitration of shared resources used during the sendi ng of an interrupt. The 
same three arbitration modes used for the data ports are also used for the 
interrupt port: round robin, master-slave, or a general arbitration method. 

Four pins of the interrupt port are dedicated to data transfer. The data 
protocol has minimal specification with maximal user definition. In the 
interchip communication mode, the first information sent on these pins is an 
address. The length of the address is designated by the user. When an 
interrupt is sent, all chips on a common interrupt bus receive the address and 
store it. The status signals indicate whether the information lines carry 
address or data. The receiver buffers the address portion as long as the 
status indicates address bits are being sent. After the destination address 
has been sent, each receiver uses the address to access a bit in the chips RAM 
to determine if this chip is an intended receiver of the interrupt. In the 
conventional interrupt scheme, the first information sent is the interrupt 
level. The remaining two pins of the communication port are used for 
interrupt bus status. The four status values are: sending address, sending 
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data, data/address nibble received, and interrupt information transfer 
completed. 

An interrupt is sent by first ga1n1ng control of the interrupt bus. After 
ga1n1ng control of the bus, the interrupt data is sent. The amount of data 
that is sent is determined by the user. The hooks have been provided to send 
an optional destination address of variable length, a variable length data 
portion, and an optional source address of varying length as the components of 
the information sent during an interrupt . The interrupt information is 
buffered at the destination by the RICs external interrupt manager. The 
external interrupt manager interrupts the destination MPS and passes it the 
length of the message and a pointer to the interrupt message block. 

6.4. CONTROL LINES 

There are two control lines, the Reset In (RI) and Reset Out (RO). The RI and 
RO signals from all RICs are connected together. RI signal is active high. 
When the ~I signal is raised to a 1, the RICs begin to initialize themselves 
for operation. The RO signals are wired together in a wi r ed AND 
configuration. When a RIC has completed the initialization operation, the RO 
signal which had been pulled low is allowed to float. When all RICs have 
completed initialization, the RO signal will b~ high indicating that the 
system has finished initialization. 

6.5. POWER/CLOCK 

The RIC will use two power pins: +3 volts and ground. The RIC will use an 
on-chip clock generator. This will allow a crystal to be placed acr oss the 
two clock inputs, or an external clock can replace the crystal. 

7. CONCLUSION 

The RIC has been described at a high level and many details have not been 
included. The major goal of the RIC is the achievement of a highly flexible 
part that can be used to achieve a wide variety of specific hardware designs 
through programmation. The designed-in flexibility of the RIC provides for 
this programmation. The flexibility within the RIC includes: user definable 
micro language and assembly language, user programmable microcode, dynamic 
coordination of multiple internal processors, coordination of processors on 
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multiple RICs, internal memory that can be used either as a caches or as an 
element of a virtual memory hierarchy, general topology for interchip 
communi cation and external data paths and a user definable interrupt mechanism. 
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