
A RESTRUCTURABLE INTEGRATED CIRCUIT
FOR IMPLEMENTING PROGRAMMABLE DIGITAL SYSTEMS

ROB BUDZINSKI
JOHN LINN

SATISH THATTE

TEXAS INSTRUMENTS INCORPORATED
DALLAS, TEXAS

Copyright -C- 1981 Texas Instruments Incorporated

4~1

This work is funded in part by the Defense Advanced Research Projects Agency
under contract No. MDA 903-79-C-0433.

CALTeCH CONFERENCE ON VLSI, Januapy 1981

482
Rob Bud z inski , John Linn a n d Sa tis h That t e

ABSTRACT

The Restructurable Integrated Circuit, a highly flexible and programmable
multimicrocomputer is presented. The goal of this integrated circuit is to
apply the large number of gates that are available on a custom designed VLSI
IC to the design of a highly flexible integrated circuit . The main
application of the Restructurable Integrated Circuit (RIC) will be the
implementation of digital system hardware through programmation of a RIC. The
flexibility provided within the RIC includes: user definable micro language,
user programmable assembly language, user programmable microcode, dynamic
coordination of multiple internal processors, coordination of processors on
multiple RICs, internal memory use as caches or as a member of a virtual
memory hierarchy, qeneral topology for interchip communication and external
data paths, and a user definable interrupt mechanism. By providing this high
degree of flexibility, the cost and reliability advantages of high volume
production can be accrued, while providing performance comparable to a custom
VLSI IC.

1. INTRODUCTION

The concept of a highly programmable, restructurable VLSI integrated circuit
i s an extremely important step towards achieving the maximum impact from VLSI.
Not only do programmability and flexibility provide new creative opportunities
for the system designer, but they help overcome two major obstacles to
pervasive use of VLSI, as well.

Design cost and design cycle time are critical barriers to implementing VLSI
systems . Typically a state-of-the-art LSI custom design consisting of 5K
gates and 5K bits of read-only memory costs approximately $500K and takes
about 18 months to design and layout. This works out to about $100 per gate
in the design. Even if, over the next five years, design costs are reduced by
an order of magnitude to $10 per gate, a typical state-of-the-art VLSI custom
des ign in this time frame, consisting of 50K gates and 50K bits of read-only
memory, will still cost $500K to design. A very flexible restructurable VLSI
chip that can be structured to provide a wide range of capabilities with
state-of-the-art performance presents a viable alternative to custom designs
in low volume appli cations.

Reliability, testing and maintenance considerations are extremely important in
complex VLSI systems. When reflected in the cost of service calls or returned
products, poor reliability can contribute more to system lifetime cost than
the initial manufacturing cost. Traditionally, reliability has improved with
each increase in the level of integration. However, reliability benefits from
accumulated learning, as shown in Figure 1. A generic programmable chip, in
thi s case the Texas Instruments TMS-1000 microcomputer, increases in

ARCHITECTURE SESSION

A Restructurable Integrated Circuit
for Implementing programmable Digital Systems

.........

"' L

:J
0

I

0
0
0

0.50

0.25

~ 0.10
0.

0.05

11)
u..

0'1
c:
......
11)
L.
Cll
0.

0

u 0.02
0

II\

""'

0.01

TMS 1000
Plastic Dip

1975 1976 1977
Year

·~ TMS 9900

"""- Hecmetic Dip

•

1978 1979

FIGURE 1. Microprocessor Failure Rate History

'HlJ

1980

CALTECH CONFERENCE ON VLSI , January 1981

484
Rob Budzinski, John Linn and Satish Thatte

reliability as more are manufactured. Although any specific programmation of
the chip may not he made in any significant volume, each proqrammation still
benef it s from the reliability improvements of the generic device . Custom
designs, even using an identical process , do not benefit significantly from
the h~~h volume reliability learning of other ch ips. A restructurable VLSI
circuit will provide a high degree of reliability learninq, even though the
volume of most proqrammation types may be smal l.

The RIC is a semi -cust om IC similar in purpose to gate arrays or
mast~r- slices . The g~te array approach allows a logic diagram to be
transl3ted into silicon through software. The software creates an
interconnect pattern between the qates so that the logic diagram is
implemented in silicon. The qate array approach is very flexible, but the
gate array approach does not provide any special structure for implementinq
proqrammahle digital systems. The RIC approach uses the large number of gates
on a VLSI IC to build a chip which is highly flexihle for implementinq
progr-ammab 1 e di gita 1 sys terns. The RIC approach di ~fers from qate arrays in
that the RIC has the vast majority of silicon committed to a specific design .
The flexibility of the RIC is achieved through the design of a programmab l e
mechanism for control lin~ the hardware resources on the chip. The block
diaqram of the Restructurable IC is shown in figure 2.

The RIC is a multimicrocomputer containinq four 16 hit processors called
Microprogrammable Slices (MPSs) . The MPS resources can be controlled at two
basic levels. One level is the coordination of MPSs. The four MPSs can be
dynamically confiqured at run time into any combination of three fundamental
structures . One structure is the lockstep in which two or more MPSs are
structured to form a wider word computer. This structure is formed by
rlirectinq the same microinstruction stream to all of the MPSs in the lockstep
an~ struct~ring the arithmetic status , carry chain, and shift/rotate linkage
to configure the MPSs into a wider v10rd computer. The second fundamental
s truct11re is independent MPSs. In this structure each MPS has its own
microinstruction stream. A set of array processors can he structured in the
independen t confiquration by directing the same microinstruction stream to the
MPSs without any coordination of arithmetic signals between MPSs. The third
fundamental structure is pipelined MPS s. Each MPS forms a stage in the
pipeline. The microinstruction streams are different for each stage . An
internal data bus within the RIC provides for simu ltaneous sending and
receiving of data between adjacent stages (MPSs) in the pipeline.

The other basic level for controlling MPSs is language interpretation. The
language interpretation structure is programmable at two levels. One level is
a definable vertical microcode and/or assembly code. The other level of
programming is a PLA which interprets the vertical microcode through finite
state machines . The vertical microcode and/or assembly code are defined
through the contents of the PLA . Microcode can be contained in the on chip
ROM or in RAM. MPSs become user microprogrammable by allowing microcode to be
contained in the RAM.

ARCHITECTURE SESSION

A Restructurable Integ rated Ci r cuit
for Implementing programmable DipitaZ Systems

CONTROL STORE

I CONTROL STORE MANAGER

1 l EXTERNAL r--
INTERRUPT CONTROL BUS

r-- INTERFACE~ I MPS21 I MPStl J MPsol MPS3

INTERRUPT

MANAGER.

SCHEDULER

MICROCONTROL
SEQUENCER

REGISTER

ALU, DECODER

MEMORY

INTERFACE

u I I I l I l - EXTERNAL

MEMORY RAM BUS - INTERFACE ill I I I I I
RAM

FIGURE 2 . Res tructurable I C Block Diagram

CALTECH CO NFERENCE ON VLSI, January 1981

486
Rob Budzinski, John Linn and Satish Thatte

The RIC also provides for coordination of MPSs contained across multiple RICs.
The concept of external coordination of microprocessors has been developed in
(1,2). The coordination of MPSs on multiple chips is accomplished with status
ports. The status port contains four signals for ALU status, a carry chain, a
shift/rotate linkage and a synchronization signal. The external status port
interconnection to internal MPS structures is programmable. The use of the
RIC status ports provide for implementing computers with word widths greater
than 64 bits. Also the status ports provide for flexibility in implementing
pipelines with multiple RICs. The external interface of the RIC provides the
capability for coordinating independent processors implemented on multiple
RICs.

The RIC external interface is composed of three sections: a data port section,
a status port section and an interrupt port section . There are two 16 bit
wide data ports. The 16 lines are bidirectional and carry addresses and data.
Each status port has a general purpose arbitration mechanism. One of three
arbitration modes can be used: round robin, master-slave, or a general
arbitration method implemented by external hardware. These arbitration
methods allow a great amount of flexibility in the communication between RICs,
memories, and I/0 devices. The interrupt port on the RIC uses the same
arbitration methods as the data port. Thus the interrupt port has great
flexibility in the topology of the interrupt network. The interrupt port has
flexibility in determining the information protocol. The interrupt port can
be used for a range of applications from conventional receive only vectored
interrupts up to a user defined interrupt driven interchip communication.

The internal memory system of the RIC supports the internal structures of
MPSs. There are four memory modules. The memory modules can be accessed in
parallel when each MPS accesses its own memory module. Also, the internal RAM
bus allows the sharing of the memory modules among the MPSs. The internal RAM
bus also can be structured to support pipelined MPSs. In the pipeline
structure, each MPS can send and receive data simultaneously. The internal
memory system has a capability for memory mapping. Memory mapping allows the
internal RAM to be used as a cache or a member of a virtual memory hierarchy.

In the following section, the restructuring capability for the internal
coordination of the multiple processors contained in a RIC is discussed. This
will be followed by a discussion of configurations of multiple RICs. Then the
processing element in the RIC will be described followed by a description of
the internal RAM system and the external interface.

2. SINGLE-CHIP CONFIGURATIONS

The MPSs of a single RIC can be configured into several modes. The three
basic MPS structures are: independent processors, locksteped processors and

ARCHITECTURE SESSION

A Rest~uctu~abte Integ~ated Ci~cuit
fo~ Implementing p~og~ammabZe Digital Systems

pipelined processors. The configuration used is detPrmined by directing the
microinstruction stream. In the independent and pipelined configurations,
each MPS receives its own microinstruction stream. In the lockstep
configuration, all MPSs in the lockstep receive the same instruction stream.
The various MPS structures are discussed below.

In the independent mode there are up to four independent instruction streams
on a RIC chip. They operate on four different data streams. The data streams
can be completely independent, or they can communicate with one another by
passing messages through memory (on-chi p or off-chip RAM). Figure 3
illustrates this configuration.

The internal lockstep mode uses a single mi cro instruction stream to control
multiple MPSs. This mode of operation allows a wide word (as wide as 64 bits
when all MPSs have the same instruction stream) machine to be designed.
Operation in this mode is similar to today's bit-sliced microcomputers (3,4)
and it is shown in Figure 4.

The pipeline mode uses multiple instruction streams and multiple data streams.
Each MPS implements one stage of the pipeline. The data normally flows
unidirectionally between neighboring MPSs. For example, as shown in Figure 5,
MPS 3 can be programmed to prefetch the machine instructions from the off-chip
main memory, MPS 2 decodes the machine instruction, MPS 1 is programmed to
perform address computation and fetches operands from the main memory, and MPS
0 is programmed to do computation specified by machine instructions.

In addition to the structures discussed above, various combinations of these
configurations are possible within a single RIC chip. For example, MPS 0 and
1 form one internal lockstep, and MPSs 2 ard 3 form another lockstep. The
lockstep of MPSs 2 and 3 can emulate the Central Processing Unit (CPU) of a 32
bit machine, while the lockstep of MPSs 0 and 1 can be programmed as a
graphics processor, making the system suitable for a high bandwidth graphics
application.

3. Multi-chip Structures

Multi-chip configurations are used to achieve improved functionality and
performance beyond that which is possible with a single-chip configuration.
For example, a multi-chip structure may employ one or more RICs as the CPU of
a machine, another RIC as an I/0 processor, and another RIC as a floating
point processor. In this section various mu~ti -5 hip structures are described.

An external lockstep connects two or more MPSs, each on a different RIC, to

CALTECH CONFERENCE ON VLSI, Janua~y 1981

488
Rob Budzinski , John Linn and Satish Thatte

z
0 -1-0
u
;:::, lit
a:: c LIJ
V) a::
z - V) 0

V)

a.
lit

LIJ
Q - 0

lit
lit

c 1-
LIJ z a:: LIJ Q
V) - z

LIJ
V) a.
a. LIJ
lit Q

z
a. --V)

N ::c u

~
;:::, u -lit ca

lit a::
0 c u a:: lit

LIJ -0 a:: a:: "" a::
LIJ V)

N a::
;:::,

V) ~ a. -lit u..

l'f"i

lit
c
LIJ
a::
V)

""
V)

a.
lit

ARCHITECTURE SESSION

A Restrueturab~e Integrated C~reu~t
for Implementing programmable Digital Systems

Cl)

z ...
0 Cl) - D.
1- E
u
:::::t ..J
ac: _,
1- c
Cl)

z 0 - 1- 0

z E Cl)

0 c D.
K U.l E U.l
K ac:
0 1-

Q

u Cl) - U.l 0

>- U.lc.D E
ac: 1-1-C
ac: 4-I.L.C~ D.
c -1-Z U.l

u :co- 1-
CI)OC:...I Cl)

~
u - 0 _,

Cl) D.
D. - _,
E :::c c

u z
ac: - U.l U.l

Cl) >- U.lc.D u 1-
~ ac: 1-1-C - z

::.: CICI ac: ~ LL..C~ ac: -0 c -1-Z
a.:: ::.: u :co- u

0 CI)DI::...I -a.:: ac:

N
.:::-

Cl)

D. U.l
K a.::

:::::t - U.l c.D

>- z U.lc.D -a:: - 1-1-C LL..
a:: ~ LL..C~ c -1-Z
u :co-

(1)0::...1

"""'
Cl)

D.
E

CALTECH CONFERENCE ON VLSI, January 1981

:t..
::u
(')
~
t-._,
"3
t>:1
(')
"3

~
t>:1

V}
t>:1
V}
V}
t-._,
C)

~

ROM

-u
ROM BUS

INSTRUCTION

STREAM 3 STREAM 2 STREAM I STREAM 0
r---~...;;...;...;.;.

SEGMENT 3 INTER SEGMENT 2 INTER SEfiMENT I INTER SEGMENT 0
DATA DATA DATA DATA
STREAM 3 STREAM 2 STREAM 1 STREAM 0
MPS 3 MPS 2 MPS ·1 MPS 0

SEGMENT
DATA
TRANSFER

SEGMENT
DATA
TRANSFER

RIC CHIP

SEGMENT
DATA
TRANSFER

FIGURE 5 RIC PIPELINE MODE

w::.
<0
0

::u
C)

Cl'

to
~
s:::l..
t.l
<"'·
~
0)

;>;:'
<"'·

lo

~
C)

~
;:$

t-;

<"'•
;:$
;:$

~
;:$
s:::l..

Cl)

~
<i-
<"'·
0)

~

~
~
~
<i­
<i­
(I)

A RestPuc tuPa bl e Integp~t ed CiP c uit
foP Impl ementing progPammab l e Digital Syst e ms

form a lockstep. An external lockstep is illustrated in Figure 6. On each
cycle, each MPS in the lockstep executes the same microinstruction, but
operates on its own data stream. Since each MPS resides on a different chip
each MPS has to fetch its own microinstructions . The status connection
synchronizes externally locksteped MPSs so that they are executing
instructions in unison. The status connection also contains ALU result
status, a carry linkage, and a shift and rotate linkage.

The hybrid lockstep structure is a lockstep in which MPSs are locksteped
together within one RIC as well as locksteped externally to MPSs on one or
more other RICs. An example of a hybrid lockstep is 9iven in Fi9ure 7.

Two basic types of pipelines can be made with multichip structures. One type,
the internal lockstep pipeline has each stage of the pipe formed with an
internal lockstep of MPSs. This mode can be used for pipeline widths of up to
64 bits . If the pipe is required to be more than 64 bits wide, each staqe of
the pipe is formed with a hybrid lockstep. The second type of pipeline
structure, the external lockstep pipeline, forms each stage of tre pipeline
with an external lockstep of MPSs.

In addition to the above structures, the RIC is designed so that combinations
of the various internal and external configurations can be combined among
various RICs.

4. MicroProgrammable Slice Design

The MPS is the
blocks: the data
instructions for
interrupt manager,

processing element of the RIC. Each MPS contains six major
path (computation hardware), the PLA for interpreting
controlling the data path, the ROM address sequencer, the
the scheduler, and the programmable interconnect.

The data path in aMPS is 16 bits wide. It contains a dual port register file
of sixteen 16-bit wide registers. The data path contains a high performance
ALU. Two registers in the register file can be accessed from two 16 bit wide
buses simultaneously. The data path also has a hardware unit to Shift,
Extract, and Rotate data called the SERU. In addition to the usual shift and
rotate operations in the data path, the SERU can be used to extract fields of
a machine instruction being emulated and pass the extracted fields as
parameters to the PLA generating control signals for the data path. This PLA
also generates signals to coordinate the ROM sequencer. The ROM sequencer is
used to generate addresses for the ROM. The sequencer provides for loop
control, subroutine calls, branches, and repeating the execution of an
instruction.

CALTECH CONFERENCE ON VL SI , J a nuap y 19 81

492
Rob Budzinski , John Linn and Satish Thatte

rr=MPS-3 ll
I I DATA FLOW -

I I
l'~

I I.;- STATUS, CARRY,
Ch ip 3

SHIFT/L
I I AND SYNCHRONIZATION

INK

I \1
I MPS 2

I I DATA FLOW -

I 1\ I
I ~~STATUS, LARRY,

Ch i p 2

SHIFT/
I I AND SYNCHRONIZATION

I '\)
I MPS 1

LINK

I I DATA FLOW -

I I
·~·

I I Chi p 1

SHIFT/
I

~STATUS, CARRY,

-\l
I AND SYNCHRONIZATION

I I MPS 0

LINK

I I DATA FLOW -

L:::_:::!J
Ch i p 0

FIGURE 6 . Ext erna l Locks t ep

ARCHITECTURE SESSION

A RestructurabLe Integ r ated Ci rcuit
for ImpLe me nt ing programmabLe DigitaL Systems

MPS 7

MPS 3

CARRY, STATUS
LINK/SHIFT

MPS 6 MPS 5 MPS 4

CARRY, LINK/SHIFT, STATUS
/SYNCHRONIZATION

MPS 2 MPS 1

DATA FLOW

Chip 1

MPS 0

Chip 0

FIGURE 7. Hybrid Lockstep Forming a 128 Bit Lockstep

CALTECH CONFERENCE ON VLSI, January 1981

494
Rob Budzinsk i , J o hn Linn and Satish Th a tt e

The MPS is made restructurable to an architecture through four techniques:

1 ROM programming

2 PLA code stored in each MPS

3 Interrupts at the microcode level

4 Programmable interconnect

The MPS is designed to interpret vertical microcode or machine code (assembly
code) using the PLA. Microcode and low complexity machine code instructions
are interpreted directly through the PLA. More complex machine code
instructions are interpreted in terms of microinstructions or microroutines.
The instructions that are interpreted by an MPS can be contained either in the
on-chip ROM, in the on-chip RA~ or in an external RAM . This feature provides
for user microproqrams to be contained in either ROM or RAM. The ROM can
contain system microprograms for a variety of tasks: control programs for
interrupts, internal memory manaqement, self testing, initiating internal MPS
structures, and initiatinq external RIC structures. The ROM can also contain
microprograms for interpreting machine languages. A RIC can interpret
multiple microcode languages and/or multiple machine languages. A PLA within
an MPS is proqrammed to interpret a particular language. This PLA can be
programmed to interpret more than one language, depending upon the languages.
Since there are four MPSs on a RIC, at least four different languages could be
interpreted . It is expected that a RIC will interpret existing languages
(emulation) as well as interpret lanquages created for a particular
application. For example, a language could be created for: instruction
prefetch, instruction decode, address calculation, self testing, memory
management, or any other computation task.

The information in the ROM is accessible to all MPSs through a shared ROM bus.
A centralized ROM is used because this method allows easy code sharing and
maximum flexibility in the amount of code that can be dedicated to an MPS
compared to a separate ROM for each MPS. The bus is arbitrated in a round
robin scheduling discipline. When an MPS issues a ROM access, the ROM manager
buffers the tag(s) associated with the sending MPS. The ROM manager also
routes the microinstructions to the appropriate MPS(s) using the tag(s).
Multiple tags are sent by an MPS when it is in an internal lockstep mode, and
the same microinstruction is routed by the ROM manager to all MPSs involved in
the lockstep. The ROM bus is also used to send interrupts.

There are two basic cateqories of interrupts: internal and external
interrupts. Internal interrupts are sent between MPSs within a single RIC.
External interrupts are sent between an MPS on one RIC to one or more MPSs on
one or more other RICs. Each MPS has an interrupt manager. The interrupt
manager sends and receives both internal and external interrupts. The
interrupt manager gains control of the ROM bus to send an interrupt. The
interrupt manager sends the following information: identification of the

ARCHITECTURE SESSION

A RestPuctuPabZe Integpated CiPcuit
foP ImpZementing pPOgPammabZe DigitaZ Systems

interrupt source MPS, the destination MPS(s), the priority of the interrupt
and run time information. An internal interrupt is sent to multiple MPSs to
initiate a lockstep process or a pipeline process. The receivers of an
interrupt respond as to whether the interrupt is to be immediately acted upon
or not. An external interrupt is sent to the external interrupt manager. The
external interrupt manager uses the priority of the interrupt to access a
message block which is sent to external RICs and or other interruptable
devices.

A process within the RIC is initiated by an interrupt. A process is defined
as an instruction stream. An instruction stream is composed of
microinstructions, macroinstructions or a combination of the two. Each
process has a priority associated with it. Within a RIC there are 256
priority levels. The priority of a process and the priority of the interrupt
which initiates this process have the same value. When an MPS receives an
interrupt, its interrupt manager compares the received interrupt priority with
that of the currently executing process. If the interrupt manager determines
that the interrupt priority exceeds the current process priority, the
interrupt manager signals that this interrupt process will cause a context
switch. Otherwise, the interrupt manager indicates that the interrupt process
priority is of lower priority. This type of feedback from the interrupt
receiver to the sender is needed in the case of multiple receivers. If only a
subset of the receivers can perform a context switch, MPSs would be idled
unnecessarily while waiting for other MPSs to finish their higher priority
process. If only a subset of the multiple receivers of an interrupt can
perform a context switch, the interrupt is withdrawn and sent again later.
This scheme prevents deadlock and unnecessary idling of resources .

If an interrupt is sent to a single receiver and the interrupt is of lower
priority than the current process, the interrupt is buffered by the receiver
MPSs scheduler. The scheduler buffers interrupts by priority in a 256 bit
shift register. When a process is active, the scheduler scans through the
shift register to find the process with the next highest priority. When the
current process is finished or timed out, the scheduler uses the priority of
the next highest priority process to access a table which contains a pointer
to the process's context.

Programmable interconnect is used for routing the carry chain, the
shift/rotate linkage, and the ALU result status flags. The routing of these
signals depends upon the single or multi-chip structure being used. In the
following, only the programmable carry chain is discussed. The carry-chain is
unidirectional in nature flowing from MPS 0 to MPS 3, and then looping back to
MPS 0. The carry routing logic is also responsible for handling carry in and
carry out signals in the external and hybrid lockstep modes. The routing
logic is expected to be implemented with pass transistors and is set up in a
particular mode at the beginning of a structure by appropriate signals from
the PLA, and remains set up that way until the next restructuring. For
example, in the independent mode where all four MPSs are working as four
independent processors, the routing logic isolates the carry chain into four

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

496
Rob Budzinski ~ John Linn and Satish Thatte

independent segments. In the internal lockstep mode the routing logic
establishes a separate carry chain for each lockstep on the chip. Figure Sa
shows the carry chain when MPS 1 and 2 are working in a lockstep, and MPS 0
and 3 are working as independent processors (one's complement arithmetic is
used requiring the end around carry) . Figure 8b shows the carry chain when
all four MPSs are involved in four different external locksteps.
Programmation of the shift/ rotate linkage and the ALU result status signal s
are similar. The ALU status signals differ slightly in that these signals
from locksteped MPSs are individually connected to a bus using a wired-AND
configuration.

5. INTERNAL RAM

The internal RAM of the RIC is organized as four independent memory modules
that are byte addressable. An NMOS RIC with a minimum geometry feature of one
micron (lambda equals .5 micron) could contain about 16-32K bytes of dynamic
RAM. This RAM would occupy about one-third to one-half of the chip area. The
internal RAM subsystem of the RIC includes four independent memory modules and
a data bus interconnecting the RAM to the four MPSs. The data bus is designed
to support the three basic internal structures of MPSs: independent, lockstep
and pipeline. The memory subsystem also contains a memory mapper to
automatically direct memory accesses to internal locations if the data is
resident internally or to external locations otherwise. The memory subsystem
is illustrated in Figure 9.

The data bus supports four concurrent accesses to memory, provided there is no
interference between processors and memory. This bus allows a direct path
from each MPS to its own memory module. When each MPS accesses its own memory
module, then four simultaneous memory accesses can occur. If MPSs access
memory modules other than their own, these memory accesses may result in
memory interference, since a shared bus is used and multiple MPSs may access
the same module resulting in queued memory requests . As shown in Figure 9,
each memory module has a Memory Scheduling Unit (MSU) and a Bus Control Unit
(BCU). When an MPS accesses its own memory module, it is directly connected
through its BCU to its MSU. The MSU indicates whether there are pending
memory requests or not. If there are no pending memory requests, the access
occurs immediately. If there are accesses pending, the MSU queues a tag
indicating the MPS which requested memory service. An MSU queues an MPS
request with a first come first served scheduling discipline. When the MPSs
request reaches the head of the queue, the MSU signals this to the MPS. The
MPS reissues its request and the memory access is performed immediately. When
an MPS accesses a memory module other than its own, the BCUs are configured to
make the connecting bus a shared bus, as shown in Figure lOa. The MPS first
waits for access to the shared bus. The shared bus is scheduled by a round
robin by demand discipline where the first MPS or memory module gets access to
the bus in round robin order. After an MPS gains access to the bus, it sends
the memory information and a destination tag indicating the destination memory

ARCHITECTURE SESSIO N

'J
:t..
t-o
~
l:>j

<J
:::r::

<J
a
:c::
'>j
l:>j
::0
l:>j

:c::
<J
~

a
:c::
...;::
t-o
C/)

'"'-i ..
<:...
~
;3
);:::

~
'"'$
~

......
~
c:c
......

CARRY
ROUTING
LOGIC 4

CARRY
ou

...
HPS

3

CARRY
ROUTING
LOGIC 3

CARRY CARRY
IN OU I

-

END AROUND CARRY
RIC

HPS
2

..

CARRY
ROUTING
LOGIC 2

CARRY CARRY
H! OUT

HPS
1

om AROUND CARRY

CARRY
ROUT I Nf~
LOGIC 1

CARRY CARRY
TN OUT

HPS
0

,

CARRY

CARRY
ROUTING
LOGIC 0

IN -

~
F~D AROU~n CARRY

FIGURE 8A . Carry chain configuration when MPS 1 and MPS 2 are working in an internal
lockstep and MPS 0 and MPS 3 are worki ng as i ndependent processors .

.._.,:l::
C'l
'"'$ ~

~

~0:
3 ~

"'::l ~
t--'l:;
«l Q
3
«l !:::
;:$ ~
~~
.... . '=
;3 to

tt::l ~

"'::l I­

'$ ~
C'l to

tt::l ~
'itt::
~ ~
3 ~
3 to

~ ~
C)" S::

t--'
«l (""

"" 1;::) "'t

"" · ~ Q!:::
..... ""
~to

~
{/)
~
Q)

~
«l
3
Q)

:1>.
:::0
CJ
::t::
'"'-1
'""l
tlJ
CJ
'""l
c:::
:::0
tlJ

Ci}
tlJ
Ci}
Ci}
'"'-1
C)

:c::

CARRY-OUT (External Lockstcn)

~ ~

CARRY CARFY CARRY CARRY CARRY
ROUTING ROUT I NG ROUTING ROUTING ROUTI~G

LOGIC 4 LOGIC 3 LQ~ IC \ LOG I C 1 LOGIC 0
~ - CARRY CARRY \ CARRY CARRY CARRY CARRY \ CARRY CARRY \

OUT IN OUT IN OUT IN OUT IN

- -
HPS HPS HPS ~-1PS

3 2 1 0

u

RIC
- - ----

CARRY-IN (External Lockstep)

FIGURE 88. Carry chain configuration when a l l 4 MPS ' s are working as i ndependent processors.

:::0
C)

" (J

0

0"

ttl
);:::

14.
Zll
~.
;::$
(7)

""' ~.

"
<:...
C)

;:s"
;::$

t-.
~.

;::$
;::$

s:l
;::$
14.

Cl)

s:l
~
~.
(7)

;::s-'

'""l
;:s"

s:l
~
~
(I)

A Rest~uctu~able Integ~ated Ci~cuit
fo~ Implementing p~og~ammable Digital Systems

~ a:
Cl) ~ 1¥,
a.. 0 0 a..
:E :E a.. 0

~ w c
E E

I>- a:::
Cl) ~ 1¥ w

0 a.. a.. - a: a..-:E 1- w c
ci .:11:

I :ll- cz;

Cl) 1-- Q:: w
a.. N 0 a..
a: a: a.. N

I-, c
I lit lit

:ll- cz;

~ Q:: w
Cl) 0 a..
a.. ""' a: a.. ""' :E ~, c

E a:

c
.... -c
Ql-

1¥
oo , I
~

u 0
CQ

Cl)

~
CQ

~

u -CQ

Cl)

Cl)

w
1¥
Q
Q
c

~

u N
CQ

........
c
1-
c
Q

~

u ""' 11:1

lc I

~
CI)Q

a:

~
Cl) -a:

~
Cl) N
a:

~
Cl) ""' a:

>- w
1¥ ..J
0 ~

a: Q 0
w 0
a: a:

>- w
Q:: ..J
0 ~

a: Q -w 0
a: a:

u -
>- w
a::: ..J
0 ~

:E Q N, 0
a: a:

>- 1.1.1
Q:: ..J
0 ~

11: Q ""', 0
a: a:

CALTECH CONFERENCE ON VLSI, Janua~y 1981

h
:::0
<J
::z:
'--!
~
tt']
<J
~
c::
:::0
tt']

V)
tt']
Cl)
Cl)

'"'"1
C)

<:

n I RI"C f P :\Til
RI l\'.IT'\ 'II'S
\:-;n ITS 01\'J
'II ·'tO!~Y ~tonu 1 I

OAT\
ADDRESS
BUS

32 BIT
BIDIRECTIONA
BUS

16 BIT
BIOIRECTIO:-;A
BUS

DATA

.............

L

L

~

L.
r-

Tn/ rlw~. t \)fl<;

I j

,

1·\ BIDIRLCTI O~AI.
SII' ITCII

I L~ J l - ... "s .. --- .. - c:;
E --- r-- :c

~\ "! ~ BIDIRECTIO~AI. SWITCII

!.
I

I
PATH TO / FRO~!

MH10RY SCHEDULI:-JG UNIT (HSU)

FiaJru: lOA. ROI Configuration For Shared Data/Addres~ ~bdc

*

*

J'IIIS SWITCH M\KIS
\0'.:--<I·CT IONS AS SI!OWN
l OR THf ~PSs BCU IIHICH
1!,\S CO~TIWL OF Till
D\TA/ ADDRFSS BUS. AI. I.
OTIILR CORRESPONDING
SI\'ITCHfS l ~ OTIIER BCUs
BLOCK SIGt-;i\LS

DATA/ADDRESS
BUS

* THIS DASHfD
CONNECTIO~ IS MADE
WHFN AN MPS ACCIS5FS
ITS OWN MfMORY MODULE

(Jl

0
0

:::0
C)
(:}'

tl;j
10::
A.
til
t"'·
;:s
0)

(';:"

t>.
'"
~
C)

;::s-'
;:s

1:"'1
t>.
;:s
;:s

~
;:s
A.

{I)
~
~

t"' ·
0)

;::s-'

~
;::s-'

~
~
~
\1)

A RestPuctuPabLe IntegPated CiPcuit 501

foP ImpLementing pPogPammabLe DigitaL Systems

module. The destination module sends the memory requests queue position on a
separate bus. If 00 is sent the memory request is being processed
immediately. Otherwise the two bit number indicates the number of pending
requests before this current one. Any memory module can have at most four
memory requests pending since an MPS can only have one memory request pending
at a time. Each MPS has circuitry to monitor the bus. When the memory module
that has an MPSs memory access pending completes a memory access, that MPS
decrements the number of pending request s by one. When an MPS decrements this
number to be zero, it means that its request is at the head of ~he queue at
the memory module where this MPSs memory request is pending. When this MPS
gains control of the shared bus, it reissues its request and the request is
processed immediately. The operations described above support the memory
accesses made by independent MPSs, locksteped MPSs and pipelined MPSs.

The RIC memory system supports locksteped and pipelined MPSs. Locksteped MPSs
can make simultaneous requests to their own memory modules. It is possible
that locksteped MPSs will not receive their request for memory service
simultaneously because the queue length at one MPSs memory module could be
different than the queue length at another locksteped MPSs queue. Locksteped
MPSs are synchronized to avoid this problem. When locksteped MPSs make a
memory request, a wired-AND line which connects all MPSs in the lockstep is
pulled low by each MPS. After each MPS has had its memory request serviced ,
it discontinues pulling this line down. When the last MPS has its memory
request finished the line will rise to a logic one, indicating that the
lockstep process can continue. Also locksteped processors can access memory
modules other than their own. In this case each locksteped MPS would issue
its request when it got access to the bus. The locksteped memory access would
be synchronized as above.

In addition to accessing memory, pipelined modes also use the data bus to send
data between other MPSs in the pipe. Figure lOb shows the BCU configuration
for pipelined data transfers. For this BCU configuration, the data bus is
segmented to allow all adjacent MPSs in the pipe to transfer data in parallel,
including transfers to MPSs on different RICs.

Each memory module is addressed with a 16 bit address. This allows for
eventual growth of up to 64K bytes of directly addressable space for each of
four MPSs. However an MPS supports two types of addresses: 16 and 32 bits.
Sixteen bit addresses are used to directly access an MPSs own memory module.
Thirty-two bit addresses are used to access other memory modules or external
memory. In the case of accessing other memory modules, the most significant
14 bits are a tag indicating that the address is for an internal memory
module. The next two significant bits select one of four memory modules. The
remaining 16 bits point to an address in an internal memory module. If a 32
bit address does not point to an internal memory module directly it can either
be an external address, or it can be a mapped address . A 32 bit address is
mapped or external depending upon MPS control. If the address is designated
to be an external address, it is sent to the external memory interface for
processing. Otherwise, it is sent to the memory mapper. The memory mapper

CALTECH CONFERENCE ON VLSI, JanuaPy 1981

:b.
:::0
\)
::t:
~
"3
t'>J
\)
"3
<:::::
:::0
t'>J

C!)
t'>J
C!)
C!)
~
()

:c::

DIRECT PATH
BETWEEN MPS AND
ITS OWN MEMORY MODULE

TO/fROt-1 ~1PS

---.--

~· BIDIRECTIONAL
SWITCH

}
}

•

r
DATA
ADDRESS
BUS

32 BIT
BIDIRECTIONAL
BUS
16 BIT
BIDIRECTIONAL
BUS
DATA
PATH

---r---__.1

--· Jl
, 16

I I I I ~ BIDIRECTIONAL
I SWITCH

BLOCKS

T

TO/FROt-1

BUS CONTROL
UNIT (BaJ)

MEMORY SCHEDULING UNIT (MSU)

FIGURE lOB. BCU configuration for the pipeline data transfer mode.

•
" DATI\

ADDRESS
BUS

:::0
()

C)'

tx:l
$;::

~
~
~.
;;:$
0)

""' ~ . ..
<!.,.
()

;3"
;;:$

t-t
~.

;;:$
;;:$

~
;;:$
~

C!)
~
~
~.
0)

;3"

"3
;3"
~
~

~
~

CJ
c
t..:

A RestPuctuPable IntegPated CiPcuit
503

foP Implementing pPogPammable Digital Systems

uses an associative search to determine if the address is internal or
external. If it is internal the associ a ted internal address is sent to
;nternal memory. If the address is external it is sent to the external memory
interface.

6. EXTERNAL INTERFACE

The external interface for the RIC is designed to support multiple RIC
configurations, interchip communication and data path communication between
system memory and system I/0. Two versions of pin assignment are planned. An
82 pin version has two 16-bit data/address ports. A 114 pin version is the
same as the 82 pin version except that it has two 32 bit data/address ports.
The 82 pin RIC is discussed below.

In Figure 11 the RIC pin assignment is illustrated. There are five types of
pin functions for the RIC: data/address, control, interrupt, status, and
power/clock. The number of pins dedicated to each function group is listed in
Tab 1 e I.

Table I

FUNCTION NUMBER OF PINS

data/address (2 ports) 50

control 2

interrupt 8

status (2 ports) 18

power/clock 4

"82

Pin Assignment By Groups

6 . 1. DATA PORT

The 82 pin version of the RIC has two 16-bit data/address ports. Each port
has 16 bidirectional lines for carrying data and addresses. Associated with
each port is a pair of handshake signals for gaining control of a shared

CALTECH CO NFERENCE ON VLSI, JanuaPy 1981

504
Rob BudzinRki ~ John Linn and Satish Thatte

a2 VDD
81 GND

tio
} Cl ock

7':l

7o Reset Ou t \ Contro l

7? Reset In

76 lnte rch i p
S y nc h r on i za t i on

Data/Address Restructurah l e 75 Shi ft Rota t e Lo
Line• I C 74 Shift Rotate HI

10 73 Carry Out

II 12 Carry In
Port

12 71 Overf l ow

13 70 (a r ry

14 o9 Zero

15 68 Negatove

16 b7 lnte rchi p
Synchroni zation

Data Path 17 bb Sh ift/Ro t a te Lo
Art, otrat ion 18 bS Sh1ft/Rota te H

Data Path 19 64 Carry Out
Status Port Status 20 63 Carry In I

2 I 62 Overf l ow
Data Toansrer (22 6 1 Ca 1 ry Sync h ronization

23 Zero

MPS Ta g 24 Negative

25 } I n terrupt

rran~fer 26 ync ron i za t ion

27

} 28 Interrupt
lr forl'lat ion Interrupt

29 Port

30

3 I } Interrupt Bus
Da t a Address 32 51 A r b i t r a t i on

Port Lines
33 } MPS '2
34 Tags

35 } Da ta

3b Trans fer
Synchronozation

37 Data

38 } Do<o Po<h
Port

2
39 Sta tus

42
} Da t a Path

Ar bitratiOn

FIGURE 11 . A Rcstruct abl c IC Pin Ass ignment

ARCHITECTURE SESSION

A Re stPuctuPabt e Inte gPa t ed Ci Pc u~t

foP ImpL eme nt i ng pP ogPammab Le Di g ita l S y s t ems

resources. The arbitration method for the shared resources is either round
robin by demand, master-slave, or determined by external circuitry. The round
rob1n and master-slave arbitration methods support a shared bus, while the
external arbitration circuitry supports a network with a general topology.
Each port also has a pair of signals for synchronizing the sending and
receiving of data and addresses on the bus. Also, each port has a
bidirectional set of three signals to indicate bus status. Four types of
read/write operations are indicated by these three signals. The four
operations are: access a user specified RIC, access system RAM, access system
I/0, and access the resource whose destination address is sent at the
beginning of the access. Finally each port has a bidirectional pair of MPS
tag identifiers. The MPS tag identifiers are used to indicate the source MPS
at the sender and/or the destination MPS at the receiver. The two
data/address ports are independent. However, these two ports can be combined
into one port by internally performing the same operation to both ports
concurrently, and externally treating the two ports as one port.

6.2. STATUS PORT

There are two identical status ports. The status port's main function is to
provide the signals to lockstep two MPSs on different RICs. Status port 1 can
be used to lockstep MPS 0, MPS 1 or a lockstep of MPSs 1 and 0 to external
MPSs. Status port 2 can be used to lockstep MPS 2, MPS 3, or internal
locksteps including MPS 2 and/or MPS 3 to external MPSs. The use of the
status ports is illustrated in Figure 6. A 64 bit wide external lockstep i s
formed with 4 MPSs on four RICs in figure 6. There are four pin functions in
each status port: ALU result status , carry linkage, shift/rotate linkage, and
MPS synchronization.

There are four ALU result status pins. These are: the Negative result status,
N; the Zero result status, Z; the Carry result status, C; and the oVerflow
result s tatus, V. These four signals connect to a bus using a wired-AND
configuration . This bus connects all externally locksteped status ports.
These signal s are encoded to indi cate up to one of 16 ALU result outcomes.
The carry linkage is a carry-in signal and a carry-out signal. The carry-out
signal of one RIC is connected to the carry-in signal of the next most
significant RIC. The shift/rotate linkage is used to perform shift operations
between externally locksteped MPSs. The shift/rotate hi s ignal of a RIC is
connected to the next most signi ficant RICs shift/rotate lo s ignal. The
shift/rotate hi signal of the most significant RIC is connected to the
shift/rotate lo signal of the least significant RIC to provide the
shift/rotate linkage. The MPS synchronization pin ensures that externally
locksteped MPSs are executing the same instruction in phase. Without
synchronization, MPSs in an external lockstep can get out of phase because
other MPSs on a RIC may be operating independently of the externally
locksteped MPSs. Thus the time to fetch a microinstruction may vary among the
RICs containing locksteped MPSs. The MPS synchronization pin serves as a flag

CALTECH CO NFERENCE ON VLSI , Ja nua py 198 1

~Ub Rob Budzinski, John Linn and Satish Thatte

to indicate that each MPS has finished the previous instruction and has
fetched the next microinstruction and is ready to execute it. The MPS
synchronization pins are wired together in a wired AND configuration. When
all externally locksteped MPSs are ready to execute the next instruction, the
MPS synchronization line will be high. If one or more MPSs is not ready, the
line will be pulled low. When the MPS synchronization line is high, execution
begins on the next clock cycle. (All RICs with MPSs in a common external
lockstep must use the same system clock.) Shortly after execution begins, the
MPS synchronization line is pulled low and it stays low until all MPSs are
ready to execute the next instruction.

6.3. INTERRUPT PORT

The interrupt port serves two purposes. The first purpose is to receive and
process interrupts in a manner similar to conventional microcomputers and
microprocessors. The second is to provide for interchip communication. The
interrupt concept has been generalized to include the capability to send
interrupts to other receivers, providing for interchip communication. The
purpose of interchip communication is to coordinate R!Cs to a task, to
initiate a task, and to transfer information. The interchip communication
system is used to transmit commands and/or small amounts of data. The bulk
data part of an information transfer is communicated between memories. For
example, a disc read operation is initiated by using the interrupt port of a
RIC to send commands to a disc controller. The data transfer is accomplished
on a separate data path between the disc system and the memory system. The
interrupt port contains pins for arbitration, information and data transfer
synchronization.

The interrupt port of the RIC has 8 pins. Two of the pins are used for
arbitration of shared resources used during the sendi ng of an interrupt. The
same three arbitration modes used for the data ports are also used for the
interrupt port: round robin, master-slave, or a general arbitration method.

Four pins of the interrupt port are dedicated to data transfer. The data
protocol has minimal specification with maximal user definition. In the
interchip communication mode, the first information sent on these pins is an
address. The length of the address is designated by the user. When an
interrupt is sent, all chips on a common interrupt bus receive the address and
store it. The status signals indicate whether the information lines carry
address or data. The receiver buffers the address portion as long as the
status indicates address bits are being sent. After the destination address
has been sent, each receiver uses the address to access a bit in the chips RAM
to determine if this chip is an intended receiver of the interrupt. In the
conventional interrupt scheme, the first information sent is the interrupt
level. The remaining two pins of the communication port are used for
interrupt bus status. The four status values are: sending address, sending

ARCHITECTURE SESSION

N Jl 10' 0 <- I" U (.; (, U I " U. U t,. 1::< .l ft v 1::< !j f" U l,. 1::< (I (.. 'l,. (' (; U '/.- /.-

fop Imp leme nting pPogPammab le Digi t al Sy s tem s

data, data/address nibble received, and interrupt information transfer
completed.

An interrupt is sent by first ga1n1ng control of the interrupt bus. After
ga1n1ng control of the bus, the interrupt data is sent. The amount of data
that is sent is determined by the user. The hooks have been provided to send
an optional destination address of variable length, a variable length data
portion, and an optional source address of varying length as the components of
the information sent during an interrupt . The interrupt information is
buffered at the destination by the RICs external interrupt manager. The
external interrupt manager interrupts the destination MPS and passes it the
length of the message and a pointer to the interrupt message block.

6.4. CONTROL LINES

There are two control lines, the Reset In (RI) and Reset Out (RO). The RI and
RO signals from all RICs are connected together. RI signal is active high.
When the ~I signal is raised to a 1, the RICs begin to initialize themselves
for operation. The RO signals are wired together in a wi r ed AND
configuration. When a RIC has completed the initialization operation, the RO
signal which had been pulled low is allowed to float. When all RICs have
completed initialization, the RO signal will b~ high indicating that the
system has finished initialization.

6.5. POWER/CLOCK

The RIC will use two power pins: +3 volts and ground. The RIC will use an
on-chip clock generator. This will allow a crystal to be placed acr oss the
two clock inputs, or an external clock can replace the crystal.

7. CONCLUSION

The RIC has been described at a high level and many details have not been
included. The major goal of the RIC is the achievement of a highly flexible
part that can be used to achieve a wide variety of specific hardware designs
through programmation. The designed-in flexibility of the RIC provides for
this programmation. The flexibility within the RIC includes: user definable
micro language and assembly language, user programmable microcode, dynamic
coordination of multiple internal processors, coordination of processors on

CALTEC H CO NF ERENCE ON VLSI , Ja n ua Py 1981

~vo

Rob Budzinski ~ Joh n Li nn and Satish Thatte

multiple RICs, internal memory that can be used either as a caches or as an
element of a virtual memory hierarchy, general topology for interchip
communi cation and external data paths and a user definable interrupt mechanism.

REFERENCES

1 R. G. Arnold, and E. W. Page, A hierarchical, restructurable
multi-microprocessor architecture, 3rd Annual Symposium of Computer
Architecture, pp 40-45. 1976

2 S. I. Kartashev and S. P. Kartashev, A multicomputer system with
dynamic architecture, IEEE Trans. Comput., vol . C-28, pp. 704-720,
October, 1979 .

3 Bipolar Microcomputer Components Data Book, Texas Instruments Inc.

4 The Am2900 Family Data Book, Advanced Micro Devices Inc.

ARCHITECTURE SESSIO N

