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ABSTRACT 

The well known Sieve of Eratosthenes for finding prime numbers dates back to about 200 B.C. 
In recent years it has seen much use as a benchmark algorithm for serial computers while its intrinsi- 
cally parallel nature has gone largely unnoticed. 

We describe the implementation of a parallel version of this algorithm for a real parallel com- 
puter, the Fled32, and discuss its performance. It is shown that the algorithm is sensitive to several 
fundamental performance parameters of parallel machines, such as spawning time, signaling time, 
memory access, and overhead of process switching. Because of the nature of the algorithm, it is 
impossible to get any speedup beyond 4 or 5 processors unless some form of dynamic load balancing 
is employed. We describe ‘the performance of our algorithm with and without load balancing and com- 
pare it with theoretical lower bounds and simulated results. 

It is straightforward to understand this algorithm and to check the final results. However its 
efficient implementation on a real parallel machine requires thoughtful design, especially if dynamic 
load balancing is desired. The fundamental operations required by the algorithm are very simple: this 
means that the slightest overhead appears prominently in performance data. The Sieve thus serves not 
only as a very severe test of the capabilities of a parallel processor but is also an interesting challenge 
for the programmer. 

Research supported by NASA Contract No. NAS1-18107 while the author was in residence at the Institute 
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center. 
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1. Introduction . 
More than two thousand years ago, Eratosthenes of Cyrene described a procedure for finding all 

prime numbers in a given range. This straightforward algorithm, known as the Sieve of Eratosthenes, 

is to this day the only procedure for finding prime numbers [2]. In recent years it has been of interest 

to computer scientists and engineers because it serves as a convenient benchmark to measure some 

aspects of a computer’s performance. Specifically, the Sieve tests the power of a machine (or of a 

compiler) to rapidly and repeatedly access a very large array in memory. This is clearly influenced by 

memory access time, the speed at which indexing is done and the overhead of looping. Over the last 

decade we have seen numerous instances of its use as a benchmark in both professional journals and 

popular computer magazines [1],[7]. 

In this paper we describe the implementation of a parallel version of the Sieve on the Fled32 

shared memory multiprocessor and discuss its performance. We show that the algorithm is sensitive to 

several fundamental performance parameters of parallel machines, such as spawning time, signaling 

time, memory access, and overhead of process switching. Because of the nature of the algorithm, it is 

impossible to get any speedup beyond 4 or 5 processors unless dynamic load balancing is employed. 

We describe the performance of our algorithm with and without load balancing and compare the per- 

formance with theoretical lower bounds and simulated results. There is good agreement between simu- 

lated results and observed run times, indicating that the performance parameters used in our simulation 

are an accurate measure of the machine’s performance. 

We feel that the Sieve of Eratosthenes is very useful as a test of the capabilities of a parallel 

machine. It is straightforward to understand the parallel algorithm and to check the final results. How- 

ever the efficient implementation of the algorithm on a real parallel machine, especially in the dynamic 

load balancing case, requires thoughtful design. The basic operations required by this algorithm are 

very simple. This means that the slightest overhead shows up prominently in performance data. The 
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Sieve thus serves not only as a very severe test of the capabilities of a parallel processor but is also an 

interesting challenge for the programmer. 

2. The Sieve of Eratosthenes 

Suppose we wish to find all prime numbers between 2 and N. Eratosthenes’ algorithm proceeds 

as follows. The numbers 2 to N are first written down. We start with the first number (2) and step 

through the list crossing out all of its multiples (4, 6, 8, ...). Having exhausted the list, we return to the 

starting point, look at the next uncrossed number on the list (3), and cross out its multiples (6, 9, 

12, ...). Coming back again to the beginning of the list, the next uncrossed number we encounter will 

be 5 (4 having been crossed out during the first pass). We repeat the crossing out sweep through the 

list with 5 and so on. At the end of this process (illustrated in Fig. 1) the uncrossed numbers are the 

primes. 

Several issues need to be clarified. Firstly, we explicitly eliminate all multiples of 2 from out list 

despite the fact that we could have started with a list of odd numbers only and reduced our total work 

considerably. We prefer not to exclude even numbers because our purpose is not to generate prime 

numbers efficiently but rather to use the Sieve as a measure of a computer’s performance. 

Secondly, we need perform the crossing out sweeps only up to fi, because any number less than 

N cannot have all its factors greater than fi. For example, if N-100 we need only sweep through four 

times, removing the multiples of 2, 3, 5, and 7. There is no point in removing the multiples of 11 since 

22 will have been removed when sweeping with 2, 33 when sweeping with 3 etc. 

It is interesting that the first of these issues (listing only the odd numbers) was known to Era- 

tosthenes and is mentioned in the ancient text “Introduction to Arithmetic” by Nicomachus [6], the 

oldest reference to the Sieve commonly available in translation. Eratosthenes does not, however, state 

the notion of restricting the sweeps to less than fi. This first appears explicitly in the works of 

Leonard0 of Pisa (Fibonacci) more than 1400 years later [5] .  

. 
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. 
3. A Parallel Version of the Sieve 

E. Shapiro [8] proposes a parallel version of the Sieve as follows. Eratosthenes starts off with a 

large number of slaves and instructs the first one to write down the integers 2,3,4, ... on the ground in a 

field. A second slave is dispatched with instructions to cross out all multiples of two. Eratosthenes 

now moves down the list of numbers and dispatches a new slave whenever an uncrossed number is 

encountered. Thus the third slave is sent off with instructions to cross out 3, 6, 9, etc., the fourth 

crosses out all multiples of 5 and so on. The uncrossed numbers that remain at the end of this process 

are the primes. 

It is amusing to speculate if this is actually how Eratosthenes sieved prime numbers, whether he 

had an unlimited supply of slaves and if not how many slaves he used to sieve what range of numbers 

and in how much time. If this really happened, it would probably represent one of the earliest 

instances of the implementation of a parallel algorithm. However, this ‘parallel’ version of the Sieve is 

not alluded to in any of the standard reference works on classical mathematics [5] , [9] .  

For our purposes it suffices to note that the Sieve is easily parallelized and that the scenario 

described above can be programmed on a real shared memory multiprocessor. There are, however, 

some subtle points that need to be brought out. 

Note first of all that synchronization is implicit in the above description. Eratosthenes politely 

waits until all slaves he has dispatched have moved at least one number away from him before moving 

forward himself and examining the next number. This ensures that he does not dispatch a slave use- 

lessly to cross out the multiples of a non prime. For example, when Eratosthenes looks at 6, the slaves 

crossing out multiples of 2 and 3 should already have passed over it. If neither of them have, then a 

new slave will needlessly be dispatched crossing out multiples of 6. This will not affect the correct- 

ness of the algorithm but will definitely reduce its efficiency. Furthermore, slaves who are moving 

rapidly through the field-either because they are fast runners or because they are striking out multi- 



4 

ples of large primes, or both-must not overrun the initializing slave, who is writing down the integers 

from 2 to N. 

The second point to appreciate is that the total amount of work done by any slave is inversely 

proportional to the size of the prime number whose multiples it is eliminating. When sieving a finite 

range of numbers, we expect that the slaves handling the last few primes will quickly finish their work 

and be idle for most of the time. This phenomenon has a major impact on the efficiency of the parallel 

algorithm as we will discuss below. 

4. The Fled32 multiprocessor 

The Fled32 currently being installed at NASA Langley Research Center is made up of twenty 

processors based on the National Semiconductor 32032 microprocessor[4]. Each processor has about 

one Megabyte of local memory and all processors can access about two Megabytes of shared memory 

through a global bus. 

Fig. 2 illustrates the current configuration of the machine. Pairs of processors reside on each of 

ten ‘local’ buses and all twenty machines must access the shared memory by going through the local 

and then the global bus. The processors are numbered 1 to 20; at Langley, Processors 1 and 2 operate 

under a Unix operating system and are used for program development and for loading and booting up 

the remaining processors when a parallel program is to be run. Thus, under normal circumstances, 18 

processors are available for parallel processing-these run the MMOS concurrent operating system. 

From amongst these 18, only processor 3 has a console attached to it. It has been our experience that 

the overhead of handling console I/O can significantly impact the running times of processes on this 

processor. We have therefore excluded this processor from our experiments, which report timings for 

only 17 processors. 

At the time the research reported in this paper was camed out, the machine was operating in an 

experimental mode, and not all of the ultimately envisaged facilities were available on it. Of greatest 
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importance is the fact that hardware locking of shared memory locations was not implemented-this 

was done in software with heavy overhead. 

5. Basic Parallel Algorithm 

In our parallel implementation of the Sieve of Eratosthenes there is one master process that 

orchestrates all work. We use one slave process per processor and time-share the master process with 

one of the slaves. The reason for this is discussed below. We use an array of dimension N to sieve N 

numbers. This array is of type character and its elements are all initialized to '*'. Locations whose 

indices are multiples of primes are then set to ' ' (blank) as the algorithm proceeds. In the end, the 

indices of all locations that are still '*' are the prime numbers. The initialization is done in parallel by 

all available slaves. Thus if there are p processors each initializes a subrange of length approximately 

Nlp. This is in contrast with the scenario described in Section 3 above, where one slave does the ini- 

tialization. It ensures that the initialization is done with the full power available to us and eliminates 

the need to synchronize in order to prevent a fast moving slave from overrunning the initializing slave 

and writing into a location which has not yet been initialized. 

Once initialization is complete the master moves forward through the array, dispatching a slave 

whenever he encounters a location that is set to '*'. Slaves move through the array setting locations 

that are multiples of prime numbers to ' '. Should no idle slaves be available, the master waits until a 

currently working slave has finished his sweep and signaled his availability. 

Fig. 3 lists this basic algorithm and Fig. 4 illustrates its execution for N=lOO and p=3. 

5.1. Details of Implementation 

Examination of Fig. 3 will reveal that the bulk of the work in this algorithm is the setting to ' ' 

of locations in shared memory. This is perhaps the simplest memory operation that one can think of. 

It effectively precludes the use of any synchronization to ensure that the master processor does not 
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overshoot a slave-the overhead would be many times the amount of useful work being done. We 

have therefore not used any such synchronization. As discussed in Section 3 above, this does not 

invalidate the algorithm but does cause an overhead because some slaves are occasionally dispatched to 

suike out multiples of non-primes. This overhead is several orders of magnitude less than the overhead 

of synchronization and we are happy to live with it. 

To minimize the incidence of the abovementioned ‘false primes’, we time-share the master pro- 

cess with another slave. This reduces the rate of progress of the master and almost eliminates the 

incidence of overruns. If we were not to do this, there would be a large amount of extra work caused 

by ‘false primes’ as illustrated in Fig. 5. 

When running this algorithm with p processors, we spawn all p slaves at the beginning of the 

program. The slaves are given signals to proceed with a prime number as required by the master and to 

signal completion when they are done. A different approach would be to spawn a slave whenever 

required and to let it die upon completing its work. While this alternative results in a more elegant 

algorithm, the overhead of spawning a new process on most conventional multiprocessors is too high 

to permit this to be an efficient implementation. This issue is discussed by Jordan [3] for other applica- 

tions. 

The algorithm was implemented in C augmented with a few parallel processing primitives (Fig. 

3). The parallel programming primitives are as follows. 

when(condition) wait until the specified condition is me .  

process(procedure - name(parameters),processor - number) 

the specified procedure is started up on the specified processor. 

An attempt is made to lock a variable in shared memory. If that variable is 

currently not locked by any other process, the lock will be granted. Only the 

locking process will then be able to access this shared variable. If the variable 

lock(shared-variable) 
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e is found to be already locked by some other process, the locking process will 

wait until the lock is released. 

unlock(shared-variable) release a locked variable. 

We were able to take advantage of C’s access to machine registers and obtain very good array 

access times, as indicated by the timings that are discussed in the following sections. 

5.2. Observed Timings for Basic algorithm 

Fig. 7 shows our measured times for the basic algorithm when sieving 0.5, 1 and 2 Million 

numbers. Each set of curves comprises 15 different runs. Inspection of these curves yields several 

interesting facts. 

(1) There is no speedup beyond about 6 processors. This is because the slaves sieving the first few 

primes dominate the total computation time. This is illustrated in Fig. 6 for 7 processors. It can 

be seen that the slave sieving 2 goes on for the longest time while the others finish quickly. 

When there are fewer than 6 processors the total time to sieve primes other than 2 is greater than 

the time to sieve 2 and a speedup is in fact observed. 

(2) There is a well defined spread of run times from about 2 to 7 processors. This is because of the 

uncertainty inherent in parallel processing. To appreciate this, note that the ‘when(conditi0n)’ 

statement is implemented on a conventional machine as a call to an operating system primitive. 

The operating system checks for ‘condition’ to become true at periodic intervals. There is no 

guarantee that a process will get its ‘when’ signal at precisely the same instant every time the 

program is executed. Because of this, a slave may get a signal to proceed slightly later during 

one run than in another. The master may assign slightly heavier load on one slave than on 

another. This spread does not occur for runs with one processor because there is essentially no 

parallel processing in that case. Nor does it occur for runs with very large numbers of processors 
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since there is not enough parallelism in the problem-there is an idle slave waiting for a new 

prime whenever the master needs to dispatch one. 

6. Load Balancing 

To improve the utilization of processors and thus reduce the running time, we developed a load 

balancing algorithm and measured its performance. The load balancing strategy is for each idle slave 

to take over half the load of the most heavily loaded slave. This load balancing phase is not started 

until the Master signals compIetion of its dispatching phase (i.e. when it has swept through the first fi 

numbers.) 

Fig. 8 shows just one instance of load balancing. At time 50 processor 1 takes over half the load 

of processor 2 thereby cutting off half the long ‘tail’ in Fig. 6. This load balancing step is executed by 

each processor as it becomes idle. (Fig. 8 shows just one load balancing step to avoid a congested 

diagram.) 

There is a stiff cost for load balancing. This arises because each processor’s limit and current 

location must be accessible to every other processor and thus must be stored in shared memory. This 

is in contrast with the basic algorithm (Fig. 3) where we can keep each processors location (‘place’) 

and limit (‘local-limit’) in registers and thus obtain very high rates of memory access. The penalty for 

load balancing shows up prominently in Fig. 9 which plots the observed run times for the basic and 

the load balancing algorithm. There are 15 runs for each of the two algorithms in this figure. It can be 

seen that the run time of the load balancing algorithm is initially higher than the basic algorithm but 

that the difference decreases as the number of processors increases. After about 10 processors, the 

benefit of load balancing exceeds the cost of using shared memory and the running time of the new 

algorithm drops below that of the old. 

It is also noteworthy that there is a significant ‘spread’ of run times for all numbers of processors 

greater than 1. This is because the load balancing algorithm has greater parallelism with attendant 
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uncertainty than the basic algorithm. This is shown in detail in Fig. 10 which shows portions of plots 

for 0.5, 1 and 2 Million numbers. 

7. Comparison of Observed and Predicted Timings 

In order to verify our understanding of the various factors that influence the performance of the 

basic algorithm, we first timed several fundamental performance parameters of the Flex and then ran a 

simulation of the parallel Sieve. We felt that the extent to which simulated results agreed with actual 

experiments would indicate to us how well we understood the performance of the Flex. 

Our timing experiments yielded the following numbers. Time to access a location in shared 

memory in a ‘for’ loop is 10 microseconds. The time for one process to signal another is 2 mil- 

liseconds (this is currently implemented in software.) The time to spawn a process is 13 milliseconds. 

This last number appears excessive but has minor impact on our Sieve experiments because we spawn 

each slave only once during the lifetime. of the program. 

These performance characteristics were used to develop a simulation of the basic algorithm. We 

also used the memory access times to obtain lower bounds on the time required to sieve. This was 

done by running a serial sieve algorithm, counting the number of times any memory location was 

referenced, and dividing by the number of processors. 

Fig. 11 compares the simulated timings and lower bounds with the averages of 15 runs each of 

the basic algorithm and of the load-balancing algorithm. These curves are for a problem of size 1 Mil- 

lion. The measured timings shown here are averages of the timings shown in Fig. 9. The following 

sub-sections summarize our results. 

7.1. Comparison with Simulated results 

It is seen that the simulated and observed run times of the basic algorithm agree completely for 

p>7. For l<p47 the simulation times are less than the observed times. This is due to the fact that the 
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simulation does not take into account the time-sharing of the master with one of the slaves. The over- 

head of process switching accounts for the gap between pairs of curves. This gap is maximum for p=l 

and decreases smoothly as the number of processors increases. This is because as the number of pro- 

cessors increases the disruption caused by process switching on one processor becomes a smaller and 

smaller fraction of the total work done by all processors. 

7.2. A lower bound on time to sieve 

The lowermost curve in Fig. 11 plots the lower bound on time to sieve 1 million numbers. This 

curve was obtained by counting the number of accesses to memory by a serial sieve algorithm and 

dividing by the number of processors. Clearly, no parallel algorithm can do better than this lower 

bound. It can be seen that this curve is very close to the simulation curve at p=l but that the two 

diverge as the number of processors increases. This is, of course, because the simulation takes signal- 

ing and spawning time into account while the lower bound only counts the number of memory 

accesses. Beyond p=6 the simulation curve flattens out because of the lack of parallelism. 

Comparing the lower bound with the load balancing curve shows that the two have roughly the 

same shape. At p=l the load balancing algorithm is about 1.65 times the lower bound. This factor 

increases smoothly to 2.4 for p17. The initial difference at p=l arises because the lower bound 

assumes register indexed memory access while the load balancing algorithm uses indirection through a 

shared memory location to access the shared array. The overhead of task switching also contributes to 

this factor, as it does in the non load balancing algorithm. This factor increases because of the increas- 

ing overhead of load balancing as the number of processors increases. 

It may be possible to implement a more sophisticated load balancing algorithm which uses regis- 

ters for the initial computation and shared memory locations during a second phase. Such an algorithm 

would be able to approach the lower bound more closely. 
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8. Conclusions 

We have described an implementation of the Sieve of Eratosthenes on the Fled32 Multiprocessor 

and discussed its performance as a function of the number of processors. Our basic algorithm does not 

show any speedup beyond 6 processors. The more complex load balancing algorithm is initially slower 

but beats the basic algorithm after about 10 processors. We have also compared the performance of 

the basic algorithm with a simulation. There is good agreement between the two, indicating that we 

understand the machine’s performance well enough to predict running times with fair accuracy. 

We also compared the performance plots with a plot of the theoretical lower bound to sieve a 

range of numbers. The proximity of the experimental run times and the theoretical bound is a measure 

of the machine’s efficiency. 

We expect that this parallel algorithm for the‘ Sieve is a useful test of some aspects of multipro- 

cessors performance. Its implementation on other commercially available processors will provide 

interesting comparisons. 
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List of Figure Captions 
Sieving the First 50 numbers. The original list (first column) contains all integers from 2 to 50. 
The first sweep removes all multiples of 2; the second sweep removes all multiples of 3 and so 
on. It is not necessary to continue the sweeping process beyond 4 100 as explained in the text. 
The numbers that remain in the last column are the primes. 
Architecture of the Fled32 Multiprocessor. 
Basic parallel algorithm for the Sieve. Variables in shared memory have been given all upper- 
case names for convenience. Access to these variables is via LOCWUNLOCK commands 
whenever the possibility of synchronization problems exists. This is not shown in the above 
listing for clarity. Synchronization is not, however, required when accessing LIST, since all 
slaves are writing the same value (* ’). 

Execution of the Parallel Sieve algorithm for N-100, p-3. Time advances from top to bottom. 
Entries that begin with ‘M’ represent the Master. 
‘M[l,i]’ represents the master signaling processor 1 to start its initialization phase. 
‘M[1,5]’ is the master signaling processor 1 to start sweeping with 5. 
‘M[-,8]’ represents the master finding the number 8 already crossed out. 
All other entries are of the form ‘number being swept:location examined’. 
All memory and signaling operations are assumed to take one unit of time. Spawning time is 
not shown in this figure. ‘-’ represents an idle processor. Some sequences of entries (indi- 
cated ‘- - -’) have been omitted for brevity. 
When master proceeds very rapidly compared with slaves, there is the possibility of “false 
primes”. In the figure some slaves are needlessly striking off multiples of 4, 6 and 8. This 
arises because the signaling time in this example is 5 times the memory access time. In gen- 
eral, this can occur whenever the master progresses faster than a slave. We minimize these 
“false primes” by always time-sharing the master with one of the slaves. 
Execution of parallel Sieve for N-200, p-7, illustrating poor utilization of processors. After 
time=104 only one processor is active. ‘ - ’ represents an idle processor. Some sequences of 
entries have been omitted for brevity. 
Observed timings for the Basic algorithm, N=0.5, 1, and 2 Million. 
Illustration of load balancing in the modified algorithm. At time 50, Processor 1 takes over half 
of the work on the most heavily loaded Processor, 2. To avoid a congested diagram only one 
load balancing step is shown; in the actual algorithm each idle processor would take over half 
the heaviest processor’s load. For example, Processor 7 would take over half of Processor 3’s 
load at time 63. 
Comparison of observed timings of Basic and Load balancing algorithm for N-1M. 
Detail of plots of observed timings of Basic and Load Balancing algorithms for N-=OSM, lM, 
2M. 
Averages of observed timings of the two algorithms for N-1M compared with simulation and 
lower bound. 
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remain in the last column are the primes. 
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shared char LlST[lirmt]; 
shared int ACllVElmaxpmcsl; 
shared int PRIME[maxprocsl; 
shared int DONE; 

I’ These variables am in shared meml’ry *I 
I* Limit is the range of numbers to be sieved +I 
/* maxprocs is the numba of processors to be used +/ 

d 0  1’ the master procalm +I 

{ 
DONE-filte; 
for { 

procm(slave@rocessor.limit),processor); 
A-J-fPIse; 

I+ starts up routine ‘slave’ on specified processor 9 
1 
rootlimitcsq~imit); 
rmirtplncbl; 
when(all processors have finished initialization); 

do 
/+ causes processor to wait until condition satisfied *I 

do mainplacec+; 
while ((LIsr[mainplace)=-’ ’) && (mainplaceooottimit)); 
if (mainp1aCultootlimit)mt) 

DoNLaue; 
{ 
when(a processor is idle); 
PRIME[processorl =mainplace; 
ACrrvElprocesS~fJ-tn~~; 

1 
1 
while @ONE--false); 
when(all processon have finished their ongoing sweeps); 

I 

slave@rocessor,limi t) 
int pocessor,limif 
{ register int sups& place, local-limit; 

I+ a copy of this procedure runs on each processor +I 

initialization: compute SM and stop points; 
for @lace-startglace<-stop;placet+) 

signal completion of initialization to mas=, 
do 

when (ACTIVE[processorJ--true); 

LIsT[plact]=’*’; I+ initialization +I 

stepsize=PRIME[processor] ; 
place-stepsiE+supsi; 
local limit=limic /*limit is copied into a rcgistcr for speed */ 
whilc @lace<-local-limit) { 

LIsTlplaCel-’ ’; /+ sieving +/ 
pbplace+s teps i ;  

1 
signal completion of sweep to master; 

1 
while @ONE--false); 

1 
Fig.3 Basic parallel algorithm for the Sieve. Variables in shared memory have been given all upper-case names 
for convenience. Access to these variables is via commands whenever the possibility of syn- 
chmnization problems exists. n i s  is not shown m the above listing far clarity. Synchronization is not, however, 
required when acctssing LIST, since all slaves arc writing the same value (’ ’). 
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2: 62 
2: 64 
2: 66 
2: 68 
2: 70 
2: 72 

2: 98 
2: 90 
2: 92 
2: 94 
2: 96 
2: 98 
2:lOO 

- - - -  

- - - -  

- 
- 

3.35 
3: 36 
3: 37 
3: 38 

3: 66 
3: 67 
3: 68 

- - I  I 

- - - 
3: 6 
3: 9 
3: 12 
3: 15 
3: 18 
3: 21 

3: 69 
3: 72 
3: 75 
3: 78 

3: a4 

3: 90 
3: 93 
3: 96 
3: 99 

- - -  - 

3: ai 

3: a7 

- - 
- - - -  
- 
- 
- 
- 
- 
- 
- 
- 

.- -~ - --- - 
Masta signals P2 
Master signals P3. P2 starts 
Master sgnals P1: P3 starts 
Master idle; P1 starts 

Init. finished; master informed 

Master signals P2 to sweep 2; 
Master signals P3 to sweep 3; p2 Starts 
Master finds 4 crossed out ; P3 Starts 
Master signals P1 to sweep 5; 
Master now time-shared with sweep 5; 
Master finds 6 crossed out ; 
P1 starts sweep 5; 
Master blocked:no processor idle 

Pf  finishes sweep 5 and signals master 

Master signals P1 to sweep 7 

Master now time-shared with sweep 7 
P1 starts sweep 7 
Master finds 9 crossed out 

Master finishes, having reached J 100 
P3 finishes sweep 3 

P1 finishes sweep 7 

P2 finishes sweep 2 
Program terminates 

Fig.4 Execution of the Parallel Sieve algorithm for N-100, p=3. Time advances from top to bottom. En- 
tries that begin with 'M' represent the Master. 
'M[1 ,i]' represents the master signalling processor 1 to start its initialization phase. 
'M[1,5]' is the master signalling processor 1 to start sweeping with 5. 
'M[-,8]' represents the master finding the number 8 already crossed out. 
All other entries are of the form 'number being swept:location examined'. 
All memory and signalling operations are assumed to take one unit of time. Spawning time is not shown 
in this figure. '-' represents an idle processor. Some sequences of entries (indicated I- - -') have been 
omitted for brevity. 

17 



- -  
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 - -  

e - - -  - - - - - 
2: 4 
2: 6 
2: 8 
2: 10 
2: 12 
2: 14 
2: 16 
2: 18 
2: 20 
2: 22 
2: 24 - - - -  

. . - .  
- - 
- - - - 

3: 6 
3: 9 
3: 12 
3: 15 
3: 18 
3: 21 
3: 24 
3: 27 
3: 30 
3: 33 - - - -  

- e - -  - - - - - - - 
4: 8 
4: 12 
4: 16 
4: 20 
4: 24 
4: 28 
4: 32 
4: 36 
4: 40 - - - -  

--_ -_ - - - -  
e - - - - - - - 

5: 10 
5: 15 
5: 20 
5: 25 
5: 30 
5: 35 
5: 40 
5: 45 - - - -  

--- 
- - - e  

- 
- - - - - - - - 

6: 12 
6: 18 
6: 24 
6: 30 
6: 36 
6: 42 
6: 48 - - - -  

- -  - 
P7 --- 

- - * e  - - 
- - - 
- - - 

7: 14 
7: 21 
7: 28 
7: 35 
7: 42 
7: 49 - - - -  

Fig. 5 men master proceeds very rapidly compared with slaves, there is the possibility of "false 
primes'. In the figure some slaves are needlessly striking off multiples of 4, 6 and 8. This arises be- 
cause the signalling time in this example is 5 times the memory access time. lt general, this can occur 
whenever the master progresses faster than a slave. We minimize these "false primes" by always time- 
sharing the master with one of the slaves. 
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. .  -- , I ;..> 

- -  
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

79 
80 

102 
103 
104 
1 05 

129 
130 
131 
132 
133 
134 
135 
136 
137 

- -  

- -  

- -  

- -  

I i-"l I T.2 
- _ . _  
2: 6 
2: 8 
2: 10 
2: 12 
2: 14 
2: 16 
2: 18 
2: 20 
2: 22 
2: 24 
2: 26 
2: 28 
2: 30 

2: 48 
2: 50 
2: 52 
2: 54 
2: 56 
2: 58 
2: 60 
2: 62 
2: 64 
2: 66 
2: 68 
2: 70 

2: 86 
2: 88 

2:132 
2:134 
2:136 
2:138 

2:186 
2:188 
2:190 
2:192 
2:194 
2:196 
2:198 
2:200 

- - - -  

- - - -  

- - - -  

- - - -  

- 

. -- 

I - - - -  - - - _  
3: 6 
3: 9 
3: 12 
3: 15 
3: 18 
3: 21 
3: 24 
3: 27 
3: 30 
3: 33 
3: 36 
3: 39 
3: 42 

3: 69 
3: 72 
3: 75 
3: 78 
3: 81 
3: 84 
3: 87 
3: 90 
3: 93 
3: 96 
3: 99 
3:102 

3:126 
3:129 

3:195 
3:198 

- - - -  

- - - -  

- - - -  

- - 
- - - -  
- - 
- 
- - - - - 
- 

- 
- 

5: 10 
5: 15 
5: 20 
5: 25 
5: 30 
5: 35 
5: 40 
5: 45 
5: 50 
5: 55 
5: 60 

5:105 
5:110 
5:l 15 
5:120 
5125 
5130 
5135 
5:140 
5145 
5:150 
5:155 
5:160 

5:200 

- - - e  

- - - -  
- 

- - - -  - - - 
- 

- - - -  - - 
- 
- - 
- 
- 
- 
- 

. - _ _  
- 
- 
- - 

7: 14 
7: 21 
7: 28 
7: 35 
7: 42 
7: 49 
7: 56 
7: 63 
7: 70 

7:133 
7:140 
7:147 
7:154 
7361 
7:168 
7:175 
7:182 
7:189 
7:196 

- - - -  

- 
- - - -  - - 
- - - -  - 
- - 

- - - -  - - 
- - - - 
- - 
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Fig. 6 Execution of parallel Sieve for N=200, p=7, illustrating poor utilization of processors. Alter 
time=104 only one processor is active. ' - ' represents an idle processor. Some sequences of entries 
have been omitted for brevity. 
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Fig. 7 Observed timings for the Basic algorithm, N=0.5, 1, and 2 Million. 
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39 
40 
41 
42 
43 
44 
45 
46 
47 
40 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
M 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 

90 
91 
92 
93 
94 
95 

- -  

- -  

hi[- , 41 
M[4. 51 
MI- . 61 
M[5*7l w- * 81 
w- ,101 
M[6,11] 
M[- ,121 
M[7,13] 
MI- ,141 

2: 116 
2: 118 
2: 120 
2: 122 
2: 124 
2: 126 
2: 128 
2: 130 
2: 132 
2: 134 
2: 136 
2: 138 
2: 140 
2: 144 
2: 146 
2: 148 
2: 150 
2: 152 
2: 154 
2: 156 
2: 158 
2: 160 
2: 162 
2: 164 
2: 166 
2: 168 
2: 170 
2: 172 
2: 174 
2: 176 
2: 178 

2: 196 
2: 198 
2: 200 

w- 91 

- 

- - - -  

- 
- 
- 

- - - -  

. - -  
2. 6 
2: 8 
2: 10 
2: 12 
2: 14 
2: 16 
2: 18 
2: 20 
2: 22 
2: 24 
2: 26 
2: 28 
2: 30 
2: 32 
2: 34 
2: 36 
2: 38 
2: 40 
2: 42 
2: 44 
2: 46 
2: 48 
2: 50 
2: 52 
2: 54 
2: 56 
2: 58 
2: 60 
2: 62 
2: 64 
2: 66 
2: 68 
2: 70 
2: 72 
2: 74 
2: 76 
2: 78 
2: 80 
2: 82 
2: 84 
2: 86 
2: 88 
2: 90 

2: 108 
2: 110 
2: 112 
2: 114 

- - - -  

- 
- 

- - - -  

r J  

- _ .  
3. 6 
3: 9 
3: 12 
3: 15 
3: 18 
3: 21 
3: 24 
3: 27 
3: 30 
3: 33 
3: 36 
3: 39 
3: 42 
3: 45 
3: 48 
3: 51 
3: 54 
3: 57 
3: 60 
3: 63 
3: 66 
3: 69 
3: 72 
3: 75 
3: 78 
3: 81 
3: 84 
3: 87 
3: 90 
3: 93 
3: 96 
3: 99 
3:102 
3:105 
3:108 
3:lll 
3:114 
3:117 
3:120 
3:123 
3:126 
3:129 
3:132 

3:159 
3:162 
3 : l S  
3:168 
3:171 
3:174 

- - - I  

- - - -  

14 
. - - _  
- 
- 

5: 10 .  
5: 15 
5: 20 
5: 25 
5: 30 
5: 35 
5: 40 
5: 45 
5: 50 
5: 55 
5: 60 
5: 65 
5: 70 
5: 75 
5: 80 
5: 85 
5: 90 
5: 95 
5:lOO 
5:105 
5:llO 
5:115 
5120 
5:125 
5:130 
5:135 
5:140 
5:145 
5:150 
5:155 
5:160 
5:165 
5:170 
9175 
5:180 
5:185 
5:190 
5:195 
5200 - - 
- - - -  
- - 
- - - 
- 

- - - -  

- - - 
7: 14 
7: 21 
7: 28 
7: 35 
7: 42 
7: 49 
7: 56 
7: 63 
7: 70 
7: 77 
7: 84 
7: 91 
7: 98 
7:105 
7:112 
7:119 
7:126 
7:133 
7:140 
7:147 
7:154 
7:161 
7:168 
7:175 
7:182 
7:189 
7:196 - 
- 
- 
- - - - - - - - - 
- - - - 
- 
- 

- - - -  

.- 

- - 
- 
- - - 

11: 22 
11: 33 
11: 44 
11: 55 
11: 66 
11: n 
11: 88 
11: 99 
11:llO 
11:121 
11:132 
11:143 
11:154 
11:165 
11:176 
11:187 
11:198 - - 
- - - - - 
- - - 
- 
- - - 
- - - 
- 

- - - -  
- 
- 
- - 
- 
- 

- - - -  
Fig. 8 Illustration of bad balancing in the modified algorithm. At time 50, Processor 1 takes over half of 
the work on the most heavily loaded Processor, 2. To avoid a congested diagram only one load balanc- 
ing step is shown; in the actual algorithm each idle processor would take over half the heaviest 
processor's bad. For example, Processor 7 would take over half of Processor 3's load at time 63. 
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Fig. 9 Comparison of observed timings of Basic and Load balancing algorithm for N = l M .  
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Fig. 10 Detail of plots of observed timings of Basic and Load Balancing algorithms for 
N=0.5M, lM, 2M. 
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Fig. 11 Averages of observed timings of the two algorithms for N=l M compared with simu- 
lation and lower bound. 
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