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Phylogenetic software must combine the best precepts of high-
performance algorithm engineering and a new level of algorithmic
sophistication if it is to handle very large data sets.

ow a group of genes or organisms evolved
is a fundamental question in biology. Sys-
tematists—biologists who study such evo-
lution—are now setting their sights on the
Tree of Life challenge: to reconstruct the
evolutionary history of all known living organisms.
To meet this challenge, they will need far more
powerful algorithms and software than are cur-
rently available.

A typical phylogenetic reconstruction starts with
biomolecular data, such as DNA sequences, for mod-
ern organisms and builds a tree, or phylogeny, for
these sequences, which represents a hypothesized
evolutionary history. Figure 1 shows two sample phy-
logenies in different graphical formats. The leaves
represent the given sequences, the internal nodes rep-
resent putative ancestral sequences (from which the
given sequences evolved), and the edges represent
lines of descent. The edges of the tree can be assigned
lengths, indicating the evolutionary distance—the
number of mutations that occur on the edge, which
can also be viewed as an indication of time whenever
evolution is thought to obey a clock-like model.

Finding the best tree for a data set can be a com-
putationally intensive problem. Most of the favored
approaches attempt to optimize an NP-hard opti-
mization problem; they typically use hill-climbing
heuristics to search through a very large space (the
number of possible unrooted trees on just z organ-
isms grows very quickly with 7: It is close to 14 bil-
lion for 7 = 13 and more than 2 x 10% for n = 20).

Many software packages have been developed
for these problems, of which PAUP*! is the most
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popular among biologists. Reconstructions using
these packages have typically been limited (mostly
because of running time) to sets of some dozens, or
at most some hundreds, of organisms. Yet current
applications may involve thousands of organisms,
while the grand challenge of inferring the Tree of
Life—the evolutionary history of all known living
organisms (see tolweb.org)—will require scaling
algorithms up (in terms of speed and accuracy) to
more than a million organisms.

Designing new techniques that can obtain more
accurate solutions to these hard optimization prob-
lems is thus a major focus of phylogenetics
research.” Phylogenetic software for the Tree of Life
and for the new era of whole-genome bioinformat-
ics will require entirely new approaches in four
main areas:

e Statistical models of evolution. Optimization
criteria for phylogenetic reconstruction must
be based on more realistic models of evolution
so that the solution of these optimization prob-
lems will lead to trees that more closely
approximate the true tree.

e Phylogeny reconstruction algorithms. New
algorithms are needed that can obtain optimal
(or nearly optimal) solutions and scale grace-
fully to large instance sizes.

e High-performance implementations. Imple-
mentations that take advantage of the entire
range of hardware platforms will significantly
boost the speed with which we can analyze
data sets.
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e Data analysis and visualization. Biologists
must be able to explore the space of optimal
and near-optimal solutions, to intervene in the
optimization process by adding fixed con-
straints, and to interact with very large data-
bases of previously computed trees.

We address the related problems of designing and
implementing better algorithms for phylogeny recon-
struction. (The other two problems—developing bet-
ter statistical models of evolution and data analysis
and visualization tools—involve research focused on
statistics, databases, data mining, and visualization.)

To illustrate the problems and techniques of algo-
rithm development, implementation, and testing in
phylogeny reconstruction, we use three examples
from our own research. The first example focuses
on new algorithm development, the second on how
performance can be improved through more
sophisticated use of statistical models, and the third
on high-performance implementation. All three
include experimental testing, a crucial component
in the assessment of an algorithm’s performance.

Our research addresses phylogeny reconstruc-
tion from biomolecular sequences, focusing on the
accuracy of reconstructions and the use of simula-
tions. We have developed some new polynomial-
time algorithmic techniques explicitly for this kind
of data, which our simulation studies show provide
greater accuracy in reconstructing the true tree than
standard polynomial-time methods. The studies
also show that the improvement in accuracy grows
with the number of sequences in the input.

Our research also addresses new data types
derived from whole-genome sequencing. Given the
growing availability of fully sequenced whole
genomes, the order in which genes appear along
chromosomes has become a potentially important
new source of information in phylogenetic recon-
structions.

We have developed two complementary ap-
proaches to using such data. Our first approach
uses statistically based estimation techniques to
improve the accuracy of distance-based phylogeny
reconstruction methods. Our second approach uses
algorithm-engineering techniques to obtain signif-
icantly shorter running times for reconstruction.
We were able to speed up earlier heuristics for the
NP-hard breakpoint phylogeny problem® more
than a millionfold.

RECONSTRUCTION DATA AND METHODS

Phylogenies are most commonly reconstructed
using biomolecular sequences (DNA, RNA, or pro-
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Figure 1. Two phylogenies in different graphical formats: (a) some plants of the
Campanulaceae (bluebell) family and (b) herpesviruses known to attack humans.
The phylogeny in (a) aligns species for easier reading of the groupings and indi-
cates edge lengths by associated values. The phylogeny in (b) uses proportional
edge lengths and visually represents the speciation (branching) events. The Cam-
panulaceae chloroplast gene-order data set consists of 12 taxa from the Campan-
ulaceae family, with tobacco as the outgroup; each taxon has 105 gene
segments. (The herpesvirus phylogeny is adapted from J.1. Cohen, “Medical
Progress: Epstein-Barr Virus Infection,” New England J. Medicine, vol. 343, no.

7, 2000, pp. 481-492.)

tein) for particular genes or noncoding regions of
DNA. More recently, gene-order data have been
used to infer deep evolutionary histories (very old
evolutionary events), as well as to clarify evolution-
ary relationships in difficult data sets. DNA and
RNA sequences can be considered simply as strings
over a four-letter alphabet, while protein sequences
can be considered as strings over a 20-letter alpha-
bet. These sequences evolve through events such as
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Biologists can use

substitutions of one nucleotide by another,
insertions and deletions of nucleotides or sub-
strings, and so on. Typical sources of biomol-

gene-order data to ecular sequence data are individual genes that
answer open are common to all organisms in the groups;
questions ahout the the exact sequence defining the gene differs

early origins of life

slightly from one organism to another.

Gene-order data indicates how the genes
are ordered within the given genomes, as well
as the strand on which they are located. We
can then represent a given genome by an ordering
of signed integers, where the sign indicates the
strand on which the gene is located. Whole
genomes evolve not only through molecular mech-
anisms that include those described earlier (local
changes to DNA), but also through larger scale
changes that modify the ordering and strandedness
of genes. These mechanisms correspond to trans-
formations of the orderings of signed integers, thus
allowing us to model the evolution of whole
genomes as a process that operates on signed per-
mutations.

Biologists are interested in using gene-order data
in phylogenetics because events that affect gene
orderings are relatively rare* compared to mecha-
nisms that modify DNA sequences. Consequently,
they hope to use gene-order data to answer open
questions about the early origins of life.

Gene-order and DNA sequence data are thus
complementary: gene-order phylogenetics has the
potential to enable discoveries about deep evolu-
tion, while DNA sequence phylogenetics allows us
to study evolution at smaller time scales.

Simulation studies

The goal of a phylogenetic reconstruction
method is the inference of the true tree—the rooted
tree whose branching structure is the correct rep-
resentation of the evolutionary history of the given
organisms. Because evolution is historical, it is not
possible in most cases to be completely certain
about the accuracy of any reconstruction. For this
reason, the accuracy of phylogenetic reconstruc-
tion methods is studied through simulation stud-
ies. In such studies, a model tree is created or chosen
and evolution is simulated along the tree, from its
root to its leaves.

Model trees are often random tree topologies,
but a researcher may also select a topology for spe-
cific studies. A DNA sequence (or gene order) is
then assigned to the root of the tree (typically that
sequence or order is random) and then made to
evolve along the tree, using a stochastic process that
is based on a specific evolutionary model. In DNA
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sequence evolution, a typical stochastic process ran-
domly modifies randomly chosen positions within
the sequences, substituting one nucleotide with
another, all according to some probability model.
In gene-order evolution, a typical stochastic process
rearranges the gene orders.

This mechanism generates the two children of
the root independently and then repeats the process
on the newly generated children, until it has
assigned DNA sequences (or gene orders) to all
leaves. The resulting taxa (DNA sequences or gene
orders) at the leaves of the tree then become input
for the reconstruction methods under study and the
trees produced by these methods are compared to
the model tree.

Topological accuracy is measured by counting
the number of (non-zero-length) edges in the model
tree for which corresponding edges exist in the
reconstructed tree (where two edges correspond to
each other if they induce the same bipartition on
the leaves). The topological error rate is the pro-
portion of (non-zero-length) missing edges relative
to the number of (non-zero-length) internal edges
in the model tree.

Current methods

The biological community commonly uses three
basic phylogenetic reconstruction techniques.*

Distance-based methods use a matrix of estimated
leaf-to-leaf distances to construct a phylogenetic tree.
The most popular of these methods, neighbor-join-
ing (NJ), is an agglomerative clustering technique.
It operates by repeatedly joining pairs of leaves (or
subtrees) on the basis of a sophisticated numerical
optimization, each time updating the distance matrix
by replacing the rows and columns corresponding
to these two leaves by a single row and column cor-
responding to the root of the small subtree. It then
repeats this process on the new, smaller matrix.

NJ runs in low polynomial time (typically cubic)
and is one of the fastest reconstruction methods in
common use; moreover, simulation studies on small
to moderately large data sets have shown good per-
formance. Yet theoretical research and simulation
studies show that NJ and other distance-based
methods have poor accuracy when the distance
matrix contains large values (indicating that the
input contains taxa that appear nearly unrelated). In
other words, the evolutionary diameter of the data
set negatively affects the topological accuracy of
trees inferred using these distance-based methods.
This suggests that standard distance-based methods
may have poor accuracy on the kinds of data sets
needed to infer large portions of the Tree of Life.



Maximum parsimony (MP) methods seek the tree
that minimizes the total number of evolutionary
events (nucleotide substitutions or gene rearrange-
ments) on the edges of the tree. In the context of
DNA sequence evolution, MP seeks a tree whose
leaves are labeled by the input set of DNA sequences
and whose internal nodes are labeled by additional
sequences to minimize the sum of the Hamming dis-
tances on the edges. In the context of gene-order
phylogeny, MP seeks a tree whose leaves are labeled
by the input set of gene orders and whose internal
nodes are labeled by additional gene orders to min-
imize the sum of the edit-distances on the edges.

Maximum likelibood (ML) methods assume that
a specific stochastic process was responsible for the
evolutionary history and seek the parameter values
of that process (such as the number of random
events on each edge of the tree). With these para-
meters, the probability of generating the observed
data on a particular tree can be computed; an ML
algorithm then returns the tree for which this prob-
ability is maximized.

For many stochastic models of biomolecular
sequence evolution, both NJ and ML, but not MP,
are guaranteed to recover the true tree with high
probability, given long enough sequences. While
many distance-based methods run in low polyno-
mial time, both MP and ML are known to be com-
putationally hard (MP is provably NP-hard, and ML
is conjectured to be so). With MP, scoring a tree built
from biomolecular sequences can be done in linear
time, but the scoring is an NP-hard problem for
gene-order data. ML is far more computationally
expensive than even MP, although it appears to be
capable of returning better solutions.

Experimental evidence for biomolecular sequence
evolution suggests that exact solutions to ML or MP
will return trees with good topological accuracy. The
main limitation of ML and MP methods is running
time: Some data sets of just a few hundred organ-
isms remain unsolved, despite years of analysis.

All three approaches for inferring phylogenies
thus have limitations: ML and MP, even in heuris-
tic form, can take too long on large data sets, while
NJ and other polynomial-time distance-based
methods have poor topological accuracy on data
sets with large evolutionary diameter. Un-
fortunately, the data needed to reconstruct the Tree
of Life possesses both these attributes.

IMPROVING RECONSTRUCTION ALGORITHMS
FOR BIOMOLECULAR SEQUENCES

Because polynomial-time methods, such as NJ,
suffer from poor topological accuracy when the

model tree has a large diameter, one possible

improvement is to reduce the diameter of the The DCM is a
data sets on which these algorithms must run. meta-algorithm that
Our basic idea is to break the data set into ks with a b
subsets with diameters small enough that NJ il . fEase
will return highly accurate trees, but also with method to improve
sufficient overlap that, when taken together, its performance
the trees on these subsets will uniquely define in terms of
the tree on the whole data set. A second ben- accuracy or speed.

efit of such an approach is that it may enable
the use of expensive reconstruction methods
(such as ML), since they will only be called
on smaller data sets (the subsets of limited diame-
ter).

Disk-covering methods

We developed a class of methods, disk-covering
methods (DCMs),>® that are based on this idea.
Some DCMs have theoretical performance guar-
antees, but we focus here on DCMs that give the
best empirical performance.

A DCM works in two phases. In the first phase,
it computes a collection of trees one for each max-
imum subproblem diameter of interest. For a given
diameter g, the DCM divides the input data set into
overlapping subproblems, so that each subprob-
lem has an evolutionary diameter of at most q. It
then reconstructs a tree for each subproblem, using
a base method such as NJ. Finally it combines the
resulting trees (one for each subset) into a tree ,
for the whole data set. This first phase yields a col-
lection of trees, one for each choice of g.

In the second phase, the DCM selects the best
tree from the collection on the basis of some opti-
mization criterion. Our study has examined sev-
eral criteria for this second phase; some criteria (for
example, the SQS, or short quartet support, crite-
rion) have promising theoretical properties; others,
such as the MP or ML criterion, may demonstrate
an empirical performance advantage.

The DCM is thus a meta-algorithm, one that
works with a base method to improve its perfor-
mance, in terms of accuracy (by limiting the diam-
eter) or speed (by reducing the size of the data sets
on which the base methods are called). Because the
DCM needs both a base method and a selection
criterion, a complete phylogenetic reconstruction
method using DCM is denoted by a triple, such as
DCM-N]J+MP, which indicates that the base
method is NJ and the selection criterion is MP.

We studied methods based on DCM-N]J with
two different criteria for the second phase: MP and
SQS.>¢ These two methods (DCM-NJ+MP and
DCM-NJ+SQS) have an identical first phase and

July 2002




60 I I
—m— DCM-NJ+SQS
n G — Y
g DCM-NJ+MP )
S 40 [ ——e—— HGT+FP -
& v
é // f
= e
< 7
220 4
=)
o
o
0
50 100 200 400 800 1,600
Taxa

Figure 2. A comparison of two DCM-boosted methods (DCM-NJ+MP and
DCM-NJ+SQS), NJ, and HGT+FP on random trees under the K2P+Gamma model,
for sequence length of 1,000 and average branch length of 0.05.

thus select a tree from the same collection, but they
use different criteria.

Simulation study results

To illustrate the type of improvement seen with
DCM boosting, we present selected results from
one of our simulation studies.” These results
address the question, “How will topological errors
grow with increasing numbers of organisms if we
fix the average edge length in the tree and the total
sequence length available?” This question bears
directly on the feasibility of inferring the Tree of
Life, where both the evolutionary diameter and the
number of organisms will be very large, yet the
amount of data available on any given species will
remain limited.

We examined four methods: NJ, two DCM-
boosted versions of NJ (heuristic DCM-NJ+SQS
and heuristic DCM-NJ+MP), and the Harmonic
Greedy Triplets plus Four Point (HGT+FP)
method.® We include HGT+FP because it runs in
polynomial time and is provably absolute fast-con-
verging’—it recovers the true tree with high prob-
ability from sequences of polynomial length. This
guarantee does not hold for the other three meth-
ods, although heuristic DCM-NJ+SQS is based on
a provably absolute fast-converging method
(which, however, can take exponential time). The
inclusion of these methods allowed us to study
these two questions, among others:
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¢ Does DCM-boosting improve the topological
accuracy of NJ?

¢ How well does HGT+FP perform, relative to
the other methods (does absolute fast conver-
gence confer any performance advantages)?

We generated random tree topologies (from the
uniform distribution) of between 50 and 1600 taxa,
with random branch lengths selected so that the
expected probability of a mutation on each edge
for each site is 0.05. For each tree topology, we then
generated sequences of length 1,000 under the
K2P+Gamma model of evolution® with standard
settings for its parameters. We generated 100 data
sets for each setting of the parameters.

Figure 2 shows the results of just one experiment
with high evolutionary rates. In all experiments, we
saw a rate-dependent decrease in accuracy as the
number of organisms increases for the tree inferred
with NJ, but saw no change for HGT+FP or for the
two variants of DCM-N]J. The DCM-boosted
methods are clearly superior to the others, with
DCM-N]J+MP best of all. In all experiments we
ran, DCM-NJ+MP was always the best, for all
parameter combinations—indicating that using
maximum parsimony (MP) for the second phase
selection criterion is very helpful.

Our experiments suggest that the relative advan-
tage obtained by using DCM-NJ+MP will increase
as the number of organisms increases, so truly large
phylogenetic analyses that might not be feasible
under NJ may be feasible using methods such as
DCM-NJ+MP. (We do not know if this claim holds
for HGT+FP or DCM-NJ+SQS, since these meth-
ods do not reliably outperform NJ.) Because
DCM-N]J+MP, although considerably slower than
simple NJ or HGT+FP, runs in polynomial time, it
can be used for sizable data sets.

Experimental studies are typical of the develop-
ment of any new algorithm: Although the algo-
rithm can often be analyzed from a theoretical
point of view to predict its running time, predicting
its accuracy is not possible except in abstract
asymptotic terms. Thus, new phylogenetic algo-
rithms must be assessed through detailed and com-
prehensive experimental studies.

WHOLE GENOMES: MODELS
AND ALGORITHM ENGINEERING

Whole genomes evolve through large-scale events
such as inversions, transpositions, and inverted
transpositions, which change the order and direc-
tion of genes within the genomes, as well as dele-
tions, insertions, and duplications of entire genes,



which change the gene content of the genome.
Figure 3 illustrates the first three types of events on
a circular genome of eight genes, the latter arbi-
trarily numbered 1 through 8. The same subse-
quence of three genes (2 3 4) is affected in all three
events depicted; when it is transposed, it is placed
between genes 6 and 7 in the original order.

In our work, we consider only genome rearrange-
ment events (those depicted in the figure). Because
these events affect gene order but not gene content
(the genome contains the same genes before and
after the event), they can be viewed as transform-
ing one signed permutation into another.

We use the Generalized Nadeau-Taylor (GNT)
model of evolution, in which events of the same
type have equal probability (for example, any two
inversions have the same probability of occurrence,
regardless of the range of indices affected), but the
proportions of the three types of events are dictated
by two parameters a and 8. Here, a is the proba-
bility that a rearrangement event is a transposition
and /8 that it is an inverted transposition—and thus
the probability that an event is an inversion is 1 —
(a + f8). The number of events on each edge e obeys
a Poisson distribution.

Distance-bhased methods

As in biomolecular sequence evolution, the first
step of a distance-based method is to estimate the
number of evolutionary events in the evolutionary
history between every pair of taxa (genomes) in the
data set.

Our simulation studies have shown that standard
distance measures—the inversion distance (the min-
imum number of inversions needed to transform
one genome into another) and the breakpoint dis-
tance (the number of positions in one genome in
which the ordering changes relative to the other
genome)—significantly underestimate the true evo-
lutionary distances.

Our studies also show that NJ used with either
measure infers poor trees except for the special case
where the data set has a very small evolutionary
diameter.> One reason for this poor performance is
that, given some initial gene order A and some final
gene order B, many possible sequences of inver-
sions, transpositions, and inverted transpositions
can produce B from A, sequences that may involve
significantly different numbers of events. The so-
called edit distances are minimum distances—yet
natural evolution rarely uses the shortest path from
A to B. Thus the true evolutionary distance—the
number of events that actually occurred during nat-
ural evolution—is typically greater than the edit
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Figure 3: The three types of genome rearrangement.
Genes with minus signs are at the opposite DNA strand
(with respect to the unrearranged genome)

distance. Reconstruction algorithms based on dis-
tances are thus misled when they use edit distances.

We have developed three polynomial-time esti-
mators of true evolutionary distance for genome
rearrangements:

¢ Exact-IEBP (inverting the expected breakpoint
distance), which is based on an ML estimate of
the breakpoint distance after k rearrangements;

e Approx-IEBP, which approximates Exact-
IEBP but is faster; and

¢ EDE (empirically derived estimator), which is
based on an empirical estimate of the inver-
sion distance after k rearrangements.’

We use EDE to describe the idea behind all three
estimators. Given a collection of genomes repre-
sented as signed permutations, we computed all
pairwise inversion distances, and then, for each
pair, we estimated the most likely number of inver-
sion events required to produce the computed
inversion distance. To obtain this estimate, we col-
lected simulated data and produced a nonlinear
regression formula that computes the expected
inversion distance given that k random inversion
events occurred; the EDE distance is the inverse of
this regression. Figure 4° shows that the estimators
of true evolutionary distance considerably improve
the accuracy of NJ reconstructions, even when the
model assumptions are a poor match for the situ-
ation (as in Figure 4b).
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Figure 4: Performance of the neighbor-joining (NJ) algorithm. We used 10, 20, 40,
80, and 160 genomes, all of 120 genes. The evolutionary model is (a) only inver-
sions, and (b) equiprobable inversions, transpositions, and inverted
transpositions. The distance estimators used are breakpoint for NJ(BP), inversion
for NJ(INV), and EDE (empirically derived estimator) for NJ(EDE).

Maximum parsimony on rearranged genomes
As in biomolecular sequence evolution, we can
pose maximum parsimony problems, in which we
label internal tree nodes by ancestral gene orders
and seek the tree of minimum total length. One
such problem, popularized by David Sankoff, is the
breakpoint phylogeny, which seeks to minimize the
total number of breakpoints across all edges.
Breakpoint phylogeny. Reconstructing the most par-
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simonious tree for this problem involves both iden-
tifying the best tree structure and reconstructing
ancestral gene orders, the latter required to score
each tree. Matthieu Blanchette and David Sankoff
developed BPAnalysis' to solve this problem when
the distance measure is the breakpoint distance.
Within a framework that enumerates all trees, this
algorithm uses an iterative heuristic to label the
internal nodes with signed gene orders. After each
internal genome is assigned some initial signed
gene order, the tree is traversed repeatedly, and
each internal node is assigned a new gene order by
calculating the breakpoint median of its three
neighbors in the tree until convergence.

Computing the breakpoint median of three
genomes is solved by a reduction to the well-stud-
ied traveling salesperson problem (TSP). This pro-
cedure is computationally very intensive. The outer
loop enumerates all (272 — 5)!! leaf-labeled trees on
n leaves, while the inner loop runs an unknown
number of iterations (until convergence), with each
iteration solving an instance of the TSP (with a num-
ber of cities equal to twice the number of genes) at
each internal node. The computational complexity
of the entire algorithm is thus exponential in each of
the number of genomes and the number of genes,
with significant coefficients. The procedure never-
theless remains a heuristic: Even though all trees are
examined and each median problem solved exactly,
the tree-labeling phase does not ensure optimality
unless the tree has only three leaves.

High-performance algorithm engineering. Algorithm
engineering refers to the process required to trans-
form a pencil-and-paper algorithm into a robust,
efficient, well tested, and easily usable implemen-
tation; its main focus is experimentation.'!

High-performance algorithm engineering targets
one particular program attribute: speed. The high-
performance aspect does not immediately imply
parallelism; in fact, in any highly parallel task,
most of the impact of high-performance algorithm
engineering tends to come from refining the serial
part of the code.

In our GRAPPA (genome rearrangement analy-
sis using parsimony and other phylogenetic algo-
rithms; http://www.cs.unm.edu/~moret/GRAPPA)
package, we achieved a speedup of nearly seven
orders of magnitude in the serial execution of the
code, while practical sizes of parallel machines
limit us to a speedup of two to three orders of mag-
nitude from parallelism. Although the asymptotic
behavior of the program is identical to that of the
original implementation, the enormous speedup
makes a huge difference in practice.



On the Campanulaceae data set in Figure 1a, the
original code would have taken several centuries
to complete. Our latest version runs in less than
one hour on a desktop and in a few minutes on a
cluster. Thus, high-performance algorithm engi-
neering complements algorithmic developments:
The latter enables scaling to truly large problems,
while the former ensures that the theoretically
pleasing asymptotic behavior is realized at a
human scale of time.

In producing the GRAPPA software suite, we
began by reimplementing the approach pioneered
by Sankoff and Blanchette in BPAnalysis.® The orig-
inal BPAnalysis is written in C++ and has a signifi-
cant memory footprint (more than 60 Mbytes when
running on the Campanulaceae data set) and poor
locality (a working set size of about 12 Mbytes).
Our C implementation has a tiny memory footprint
(1.8 Mbytes on the Campanulaceae data set) and
good locality, which enables it to run almost com-
pletely in cache (the working set size is 600 Kbytes).

We achieved good cache locality by returning to
a Fortran programming style. In this style, storage
is static, all our storage is in arrays preallocated in
the main routine and retained and reused through-
out the computation, records (structures/classes)
are avoided in favor of separate arrays, simple iter-
ative loops that traverse an array linearly are pre-
ferred over pointer dereferencing, code is replicated
to process each array separately, and so on. Indeed,
combining efficiency and object-oriented pro-
gramming is quite difficult because most object-ori-
ented approaches interpose opaque layers of code
between the programmer and the computer and
because the compiler may not always optimize data
layout and access.

Of course, unless the original implementation is
poor (not the case with BPAnalysis), profiling and
cache-aware programming will rarely provide more
than two orders of magnitude in speedup. Low-
level improvements in the algorithmic details often
yield further gains. In our phylogenetic software,
we made three such improvements.

Our TSP solver is at heart the same basic
include/exclude search as in BPAnalysis, but we
took advantage of the nature of the instances cre-
ated by the reduction to make the solver more effi-
cient, resulting in a speedup by a factor of 5 to 10.
The principal change takes advantage of the
bounded nature of certain quantities—a general
principle of fundamental importance in algorithm
engineering. For example, our TSP solver need con-
sider only two possible edge costs, rather than arbi-
trary integers; taking advantage of this restriction

led to a speedup by one to two orders of mag-

nitude. New software
The basic algorithm scores every single tree, packages must take

which is clearly very wasteful. We used a sim-

el bound o : advantage of hoth
ple lower bound, computable in linear time
from the available data, to enable us to elim- shared-memory and
inate a tree without scoring it. On the message-passing
Campanulaceae data set, this bounding elim- modes of
inates 99.9 percent of the trees without scor- computation.

ing them, for a speedup by two orders of
magnitude.

Instead of exploring tree space in the order
dictated by tree generation (which must be particu-
larly efficient when dealing with trillions of trees),
we implemented a two-phase exploration. In the first
phase, all trees are generated, their lower bounds
calculated, and the results stored in a bucketed hash
table, with each bucket storing all trees with the
same lower bound. In the second phase, trees are
examined by processing each bucket in turn, start-
ing with those associated with the smallest bounds.
Because the lower bound of a tree is strongly corre-
lated with its actual score, this approach typically
produces the optimal tree much sooner than the
search in generation order. On the Campanulaceae
data set, our two-phase method examines less than
0.004 percent of the trees, boosting the speedup by
another two orders of magnitude.

All these improvements spring from a careful
examination of exactly what information is read-
ily available or easily computable at each stage and
from a deliberate effort to use all such information.
However, the speedup with these improvements is
variable—from close to none on particularly hard
instances to more than five orders of magnitude on
less demanding instances—whereas the coding
improvements discussed earlier yield consistent
speedups on all instances.

Scalability. Scientists today have access to a large
variety of computing platforms, from laptops to
supercomputers at one of the National Science
Foundation’s centers. However, few software
packages are written to scale gracefully from a lap-
top to a massively parallel machine, thus few sci-
entists can take advantage of the variety of
platforms available to them. New software pack-
ages must take advantage of both shared-memory
and message-passing modes of computation; the
first is well suited to complex combinatorial opti-
mization tasks, and the second is best applied to
decomposable problems.

Phylogeny reconstruction involves both kinds of
problems. For example, many trees must be scored
more or less independently, and processors can
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Our current
research version
of the software
focuses more on
shared-memory
parallelism and

carry out these tasks in parallel without tax-
ing the message-passing system. Scoring a sin-
gle tree for certain criteria—such as parsi-
mony on gene-order data, as in the GRAPPA
package—requires the solution of NP-hard
discrete optimization problems.

In GRAPPA, the extremely large number of
trees is divided evenly among the processors;
each processor then begins bounding and scor-

less on dlstl-'lbllted ing its trees and communicates any newly dis-
computing covered improved upper bounds to the others.
approaches. The communication overhead is nearly

nonexistent, so we obtained a perfect linear

speedup with the number of processors.

Because the number of trees is so large com-
pared to the number of processors, there was no
need to exploit parallelism for other tasks (such as
solving the TSP subproblems). In contrast, our cur-
rent research version of the software uses branch-
and-bound to search tree space and thus needs to
focus more on shared-memory parallelism and less
on distributed computing approaches.

needs to be founded on more sophisticated
models of evolution, to incorporate better and
faster optimization algorithms, to be implemented
according to the best principles of high-perfor-
mance algorithm engineering, and to provide more
powerful modes of user interaction. We have illus-
trated the potential benefits of algorithm design and
high-performance algorithm engineering with three
examples drawn from our own research. Com-
bining the large speedups obtained through algo-
rithm engineering with the asymptotic gains derived
from new algorithms will enable us to move closer
to solving the grand challenge of evolutionary biol-
ogy, the reconstruction of the Tree of Life.
Because the two main optimization criteria give
rise to NP-hard problems, exact algorithms for
these criteria must exhibit exponential growth in
their running time for at least some instances
(unless we have P = NP). Any such behavior forms
an absolute barrier to scaling: Even enormous
speedups pale in comparison with such growth.
(The billionfold speedup on the large cluster has
allowed us to increase the instance size by only
seven organisms—from 10 to 17.) Thus, algorith-
mic approaches that reduce the running time to a
polynomial are needed; even if these approaches
are not exact—or even very good—for all possible
instances, they can take advantage of the natural
structure present in typical real instances.

T he new generation of phylogenetic software

Computer

Our DCM strategy provides one such algorith-
mic approach, but it is still in its infancy; tackling
these hard optimization problems will require other
novel approaches as well.
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