
112 Computer

L ast July, for my first-anniver-
sary column, I urged comput-
ing professionals to temper
pride with humility (“Vanity
and Guilt, Humility and

Pride,” Computer, July 2001, pp. 104,
102-103). To justify the humility, I
wrote that “the computing industry’s
blunder rate is far higher than it should
be, and we must take professional
responsibility for it.” No one reacted
to this assertion, leaving me unsure if
the silence sprang from collegial agree-
ment or dismissive contempt.

But we must remember the blunders
so we can strike a proper balance
between pride and humility—assum-
ing there have indeed been blunders.
This column aims to confirm their exis-
tence by giving examples.

The seven blunders I offer here pro-
vide a mix that is ancient and modern,
retrievable and irretrievable, general
and particular, subtle and blatant, and
arguable and undeniable. I describe
some blunders only briefly because I
have already given their details in pre-
vious issues of Computer. Further, my
choice of examples reflects my back-
ground and experience. If any of you
care to offer a different selection for
The Profession next July, I would con-
sider such a contribution both educa-
tional and entertaining.

7. NUMERIC ENCODING
Many elementary blunders have

been made during development of our

system for representing numbers, such
as having 10 digits instead of 12, using
a minuscule symbol for the fraction
point, and conflating the operation of
subtraction and the property of nega-
tivity under the same symbol.

A less obvious blunder is that we
write our numbers the wrong way
around. The text I am now keying goes
in as it is read—from left to right—just
as the digits of any number go in as
they are written—most significant to
least significant. Also, we say nearly all
our numbers in the same digital
sequence. This is a mistake, because
the most recent item is easiest to recall,
but we read the least significant digit
last. The most significant digit, not the
least significant one, should be the eas-
iest to recall.

The blunder becomes more obvious
when we do pencil-and-paper arith-
metic. For example, when adding two
numbers together, we write the digits of
the sum from right to left. This becomes
counterproductive when we try to use
the computer to deliver arithmetic drill
to students: The entire answer must be

worked out and remembered before the
student can start keying the answer in.
Ridiculous—and hardly conducive to
promoting numeracy.

How did we come to get this wrong?
The Arabs, from whom we got our
place-value notation, also put the most
significant digit to the left. But to them,
left is last because they write and read
from right to left, so it’s interesting to
consider that maybe our original blun-
der stems from not knowing enough
about Arabic. Curiously, Arabic seems
to have imported the problem for num-
bers longer than two digits, with Arabic

readers keying in their telephone num-
bers from left to right.

6. TEXT ENCODING
The ASCII and EBCDIC character sets

caused problems that Unicode’s devel-
opers intended to put right with their
text encoding system. But Unicode
itself proved a bigger blunder by far.
The world has many different writing
systems for encoding text, and the
most popular systems work with many
languages. As I pointed out some time
ago (“Toward Decent Text Encoding,”
Computer, Aug. 1998, pp. 108-109),
Unicode’s blunder was in aiming to
encode every language rather than
every writing system.

5. SCIENTIFIC PROGRAMMING
Fortran and Algol were blunders

because their popular use locked sci-
entists and engineers into lexical rather
than symbolic thinking. Traditional
mathematical notation, although sadly
flawed in many details, supports a terse
and holistic thinking style that con-

Seven Great
Blunders of the
Computing World
Neville Holmes, University of Tasmania

T H E P R O F E S S I O N

Continued on page 110

The computing profession
has had many great
successes, but there have
been many great blunders.

110 Computer

T h e P r o f e s s i o n

When tackling a problem area, the
system programmers would write
macrodefinitions for the data fields and
records, and for the basic operations
on that data. The application develop-
ers used those definitions, effectively a
tailor-made coding scheme, to build
programs. This highly productive
approach made programs easy to
maintain and adapt. The assembler-
based programs that macroprogram-
ming produced were typically smaller
and faster than equivalent programs
written in Cobol.

Assembly coding’s critics argued that
it produced lengthy and cryptic source
code. This argument did not apply to
macrocoding, however, as the applica-
tion-specific macrodefinitions could
greatly reduce the lines of source code
and could exploit the application area’s
technical terms to make the code easy
to understand.

The blunder came about partly
because of the rather short-sighted but
enthusiastic promotion of Cobol, and
partly because the macroassemblers of
the mid to late 1960s were rather prim-
itive compared to some of the earlier
ones, such as the MAP for the IBM
7080. Although developers used
macrodefinitions in what assembly pro-
gramming there was in the later 1960s,
these definitions were usually restricted
to providing standard operating system
interfaces. Indeed, IBM’s own software
development shops banned other
macrodefinition uses.

This blunder has two important con-
sequences. First, macrocoding in many
ways anticipated object-oriented cod-
ing techniques by, for example, allow-
ing data names to be protected. This
approach could have provided an early
basis for commercial off-the-shelf com-
ponents, given that macrodefinitions
essentially are components.

trasts with the verbose and sequential
style of thinking that traditional pro-
gram coding schemes force on us.

IBM’s Ken Iverson and colleagues
adapted his reformed mathematical
notation, developed at Harvard, to use
on computers. They called their system
APL, after Iverson’s original book, A
Programming Language (John Wiley &
Sons, New York, 1962). The approach’s
advantages, as Iverson described in his
Turing Award paper, “Notation as a
Tool of Thought” (Comm. ACM, Aug.
1980, pp.444-465), were profound and
clear to users. But, perhaps because of
continued opposition to APL from both
inside and outside IBM, or perhaps
because of its symbolically rich charac-
ter set, few people adopted the system,
and those who did came to be regarded
as fringe dwellers.

After he retired from IBM, Iverson
returned to Canada where, with new
colleagues, he revisited the notational
approach. With the advantage of hind-
sight, they developed a notation and
system called J, based on the ASCII
character set. Added to J more recently,
tacit programming arguably provides
the purest form of functional pro-
gramming yet to appear.

The continued neglect of APL and J by
scientists, engineers, mathematicians,
and actuaries delays recovery from the
original blunder. Although commer-
cially successful, the various program
suites that accept the highly complex
traditional mathematical notation are
themselves blunders because they per-
petuate the worst features of that nota-
tion, thus making it harder to teach
young people mathematical skills.

4. COMMERCIAL PROGRAMMING
Cobol—which certainly made it easy

to write program code that could be
easily understood by others—was nev-
ertheless a blunder. Its widespread
adoption, often as a matter of fashion,
stopped the development of macroco-
ding, a more effective approach to cod-
ing based on the division of labor
between system programmers and
application developers.

Second, developing the distinction
between system programmers and
application developers would have
ensured better programs through sep-
aration of responsibilities and skills,
and it would have given a natural
structure to the computing profession
that it sadly lacks today.

3. THE PROCESSOR
Arithmetic is an essential central-

processor function. Computer archi-
tects blundered, however, when they
persisted in keeping integer arithmetic
and floating-point arithmetic separate.
This decision complicated instruction
sets and subprogram libraries, court-
ing otherwise avoidable arithmetic
errors and imposing on programmers
the need to make a choice between
arithmetics and representations.

It would have been relatively easy to
compose integer and floating-point
arithmetics by tagging represented
numbers to signify their kind, leaving
it to the hardware to convert between
the kinds if and when the need arose.
This approach would also have
allowed including other kinds of arith-
metic and numbers, such as rational,
to improve results, as I noted previ-
ously (“Composite Arithmetic,” Com-
puter, Mar. 1997, pp. 65-73).

2. THE COMPUTER
The keyboard has been the main

device by which users put data directly
into the computer. Back when we used
typewriters and similar devices as ter-
minals, adopting the customary type-
writer keyboard made sense. When
terminals with display screens came
into use, extra keys were needed to
send nontextual signals to the com-
puter. We blundered by adding those
keys variously and variably to the out-
skirts of the typewriter keyboard much
as leeches attach themselves to the
exposed surfaces of rainforest tourists.

Although designers have given much
attention to the computer keyboard’s
physical layout, they have given little
attention to its logical design, apart
from trivial aspects like the relative

Continued from page 112

Macrocoding could have
provided an early basis
for COTS components.

positioning of letters. A complete sep-
aration of text keys from control keys
would allow a structured pattern of
controls for navigation of the display
screen and its logical components. For
example, keys for the left hand could
specify vertical navigation, while those
for the right hand could control hori-
zontal movements. Such a pattern
would make controlling the computer
much easier for neophytes to learn and
for designers to extend.

The role of the mouse is important
here. Ideally suited to graphical inter-
action, it performs logical navigation
less well, as indicated by operating sys-
tem designers’ perceived need to pro-
vide keyboard shortcuts. But keyboard
shortcuts are distinguished by their ad
hockery. A separate and standard set
of control keys would make it easy to
establish a consistent and clear style of
operation as an alternative to the
mouse. Such control keys would make
chording the text keyboard attractive.
This option would make touch typists
of us all, like it or not. After all, our
hands are wonderfully suited to keying
in eight-bit bytes by chording.

1. TERMINOLOGY
Our profession’s greatest blunder so

far stems from the way it ignores its
own standard definitions of data and
information (“The Great Term
Robbery,” Computer, May 2001, pp.
96, 94-95). Briefly, the standard defines
data as conventional representations
of facts or ideas, and information as
the meaning that people give to data.

These definitions make a clear and
significant distinction between people
and machines: Only people can process
information, while machines can only
process data.

However, the computing profession,
and consequently the media and the
public at large, treats data and infor-
mation as synonymous terms. If
machines cannot easily be distin-
guished from people, then businessmen
can blithely replace employees with
machines, bureaucrats can readily use
computers as scapegoats, and people

can naively believe that computers
embody genuine intelligence.

T he seven blunders I’ve described
have two important implications.
First, although computing profes-

sionals have many admirable achieve-
ments to their credit, they could have
done better, and they should strive to
do better in the future. Second, and
more specifically, some of these blun-
ders directly affect the profession itself.

The adoption of Cobol has obscured
and delayed the much needed structur-
ing of the profession into professional
designers and skilled programmers.
The conflating of data and information
has prevented making a distinction
between data technology and informa-
tion technology, a distinction that
would beneficially separate those pro-
fessionals who focus on digital machin-
ery systems from those who focus on
the use of such systems by people.

Blunders arise from a failure of imag-
ination, from an inability to see beyond
the immediate problem to its full social
or professional context. If profession-
als acquire an education in and remain
sensitive to social and ethical issues,
they will commit fewer blunders and
recover more swiftly from them. �

Neville Holmes is an honorary research
associate at the University of Tasmania’s
School of Computing. Contact him at
neville.holmes@utas.edu.au. Details of
citations in this essay, and links to fur-
ther material, can be found at http://
www.comp.utas.edu.au/users/nholmes/
prfsn.

July 2002 111

Blunders arise from
an inability to see

beyond the immediate
problem to its full social
or professional context.

MOBILE AND UBIQUITOUS SYSTEMS

NEW FOR 2002,
the IEEE Computer and
Communications Soci-
eties present

IEEE
Pervasive
Computing
This new quarterly magazine aims

to advance pervasive computing by

bringing together its various

disciplines, including

• hardware technology

• software infrastructure

• real-world sensing and

interaction

• human-computer interaction

• systems considerations such as

scalability, security, and privacy.

Led by Editor in Chief

M. Satyanarayanan, the founding

editorial board features leading

experts from UC Berkeley,

Stanford, Sun Microsystems,

and Intel.

Don’t miss the

premier issue —

subscribe now!

http://computer.org/pervasive

