
112 Computer

I n the Technology Quarterly that
The Economist bundled with its
22 September 2001 issue I found
an odd article called “A Lingua
Franca for the Internet” (pp.

12-16; http://www.economist.com/). I
found the article’s pedagogical lead-
in—a somewhat fanciful history of pro-
gram coding—peculiar. Likewise, the
contradiction between the article’s title
and its closing clause, “expect a whole
alphabet soup of languages within the
next decade,” seemed odd.

More peculiar still was the contrast
between the first-page highlighted
claim that “the business of writing
software is becoming steadily easier,”
and the author’s observation regarding
object orientation’s widespread adop-
tion that “The price to pay for objects
is ... making the language bulkier and
more cumbersome to use.”

An amusing appendix, “Program-
mer’s progress,” reflected this discord.
Attributed to one Joe Garrick, it
showed progress using different ver-
sions of the banal anthropomorphic
Hello World program. The first entry,
in Beginner’s All-Purpose Symbolic
Instruction Code, read as follows:

10 PRINT “HELLO WORLD”
20 END

Garrick showed programmers’ grow-
ing experience beyond this Basic sam-
ple by increasing the code’s length and

complexity. At the progression’s high
end—the Seasoned Professional and
Master Programmer categories—
Garrick depicted the entries as excerpts
torn from complete versions too large
to be shown whole.

COMPUTER ARCHITECTURE
The Economist article made a strong

impression on me because recent teach-
ing experience had brought me face-to-
face with similar contradictions. Last
semester, I acquired a second-semester,
first-year course called “Computer
Organisation and Architecture.” Be-
lieving that learning can best be done
by doing, I sought to build in a strong
practical component.

The textbook I selected had a fairly
detailed description of John von
Neumann’s IAS computer, complete
with several diagrams and a table of
operation codes. Therefore, I based two
major programming assignments on
direct use of simulated IAS machines,
simplified to one instruction per 20-bit
word. Students would write the first

program in hexadecimal machine code,
the second in symbolic code.

I was completely unprepared for the
difficulties many of the class experi-
enced with this assignment, including
some of the better students. For exam-
ple, despite detailed online instruction
and repeated demonstrations of the
process in class, many students could
not learn how to do bootstrapping.
They seemed unable to distinguish
between the commands used to oper-
ate the machine and its programs’
instructions. Although some students
gave thanks when I finally provided a
command specifically for loading and

starting programs in one step, my con-
tribution left others yet more per-
plexed.

Some students shunned certain kinds
of instructions, notably those with
address-modifying operations—the IAS
computer has no index registers—and
those with immediate operands. In
symbolic code, many students insisted
on putting data definitions up front
but still expected to start their pro-
grams at their load point.

Many students struggled to fix in
their minds a clear image of the machine
on which their programs would run.
Discussions confirmed the impression
that their prior and continuing instruc-
tion in Java programming now inter-
fered with their understanding of the IAS
machine’s sequentiality. Two possibili-
ties follow:

• there is no point to having pro-
fessionals understand the nature
of the machines they use and code
for, or

Computers,
Programming,
and People
Neville Holmes, University of Tasmania

T H E P R O F E S S I O N

Continued on page 110

The computer can be a
commercial artifact or a
household tool, but which
should it be?

110 Computer

ing machinery works to be utterly irrel-
evant. For them, the most important
skills are marketing, management, and
graphical expertise.

Under this regime, computer organi-
zation and architecture should be con-
fined to engineering schools. There, the
most talented of an increasingly innu-
merate and illiterate public can learn to
design and produce extraordinarily
complex computers powered by micro-
chips whose impressive clock speeds
and astronomical transistor numbers
make for such impressive ad copy.

COMPUTERS ARE RELEVANT
Although computers now play a

major role in the consumer market,
their potential noncommercial useful-
ness to society and the world remains
virtually untapped. Commercial com-
puters and software could be exploited
for purposes quite different than those
their makers intend.

Cheap and obsolete computers, par-
ticularly when networked, could do
much to help reduce poverty and
inequity by supporting educators in
poor and underprivileged sectors of
society. They could also assist organi-
zations that promote such poverty
reduction and education, such as PCs
for Kids (http://www.pcsforkids. org/).

Yet, if educators are to somehow
reverse society’s growing illiteracy and
innumeracy, they will not do so through
their use of commercial software. They

• there is some significant general
benefit to understanding these ma-
chines.

Sound arguments can be marshaled to
support either view.

COMPUTERS ARE IRRELEVANT
Now part of consumer society, and

marketed globally like hamburgers and
soft drinks, computers are designed to
be sold rather than used (Robert Glass,
“Of Model Changeovers, Style, and
Fatware,” Comm. ACM, Sept. 2001,
pp. 17-20; http://doi.acm.org/). Like-
wise, developers have designed the soft-
ware that runs on them to have built-in
obsolescence so that both commercial
and private sales will continue to grow.

The industry’s main software prod-
ucts are already so gigantic that sup-
porting their continuing growth, or
developing competitors for them, pre-
sents more of a management problem
than a technical one. Object-oriented
techniques and component technology
suit such an industry ideally. Accessing
the Internet—arguably computers’
most popular use—involves exploiting
user interaction and delivering stimu-
lating visual experiences. Elaborate
special-purpose software packages
provide the perfect tools for develop-
ing such applications.

Software marketers, e-businesses,
and their technicians consider having
an understanding of how the underly-

must use their own knowledge and con-
trol of a variety of programs, foreseeing
and prescribing the computer uses that
will meet their objectives.

These potential uses can best be
discovered by people who can program
novel applications such as drill and
practice for skills fundamental to liter-
acy and numeracy. This trend, once
started, could become self-perpetuat-
ing: Any increase in numeracy or liter-
acy would likely increase the number
of people able to create innovative soft-
ware.

This approach requires many people
to develop uses for computers that
extend beyond strictly commercial and
profitmaking ones. Such applications
may well be for personal or private use,
but they present technical challenges
rather than organizational ones.
Solving these challenges will require a
wider understanding of what comput-
ers can do and how they do it.

PROGRAMMING AND PEOPLE
We put computers to novel use by

programming them for such tasks. For
professionals, the coding of programs
has long been indirect, using coding
schemes that make a virtue of their dis-
tance from the reality of the machines
on which they will run. Compare the
Java Hello World applet in Figure 1—
described by its source as “minimal-
ist”—with the Basic example I cited
earlier.

Coding schemes like this one are
unsuited to popular programming.
Quite opaque to the inexpert, they fall
prey to the whims and fancies of pro-
fessional fashion because program-
ming techniques and tools undergo
continual development and frequent
reinvention.

Some coding schemes such as Basic
were originally intended for popular
use, while others such as Cobol were
intended for use by ordinary business
people. These languages, however,
have been oriented to objects rather
than to the processes that make a
sequential machine what it is. An ex-
colleague with very long experience in

T h e P r o f e s s i o n
Continued from page 112

public class HelloWorld extends javax.swing.
JComponent {
public static void main (String[] args) {

javax.swing.JFrame f = new
javax.swing.JFrame(“HelloWorld”);

f.setSize(300, 300);
f.getContentPane().add(new HelloWorld());
f.setVisible(true);
}

public void paintComponent(java.awt.Graphics g) {
g.drawString (“Hello, World!”, 125, 95);
}

}

Figure 1. Java Hello World applet.

the computing industry recently
described Visual Basic to me as “truly
appalling.” Certainly, it’s quite un-
suited to popular use given that,
according to Bruce McKinney, “Visual
Basic designers have chosen to pile
more and more doodads on a weak
foundation, knowing that doodads,
not foundations, sell boxes” (http://
www.vb-zone.com/upload/free/features/
vbpj/1999/mckinney/mckinney1.asp).

As the Java example suggests, object
orientation is valuable in the develop-
ment of complex programs because it
brings discipline to the exploitation of
the increasingly complex services
offered by operating systems and
servers. This observation implies that
machine-independent coding schemes
are unsuitable for popular use—or
quickly become so.

COMPUTERS AND PEOPLE
To exploit computers for the popu-

lar good, we must provide machine-
oriented program coding in a stable
and simple context. This requirement
rules out using the object-oriented Java
virtual machine, the hypercomplex
Itanium with its 13-bit operation code,
or similarly complicated approaches.
Popular computing could be based
instead on international standards for

• a simple, stable computer organi-
zation and architecture to be pro-
vided by simulation or emulation
within commercial systems;

• a symbolic programming system
supporting the coding, develop-
ment, and testing of programs for
that architecture;

• an operating system providing ser-
vices according to the standard
organization; and

• a macrocoding system to simplify
interfacing with the operating sys-
tem and to support exchange and
reuse of code fragments.

Standards for these four components
would need professional consideration
and international negotiation. The fol-
lowing rudimentary ideas are an illus-

tration of possibilities, not a final
design.

The computer architecture should be
as simple as possible to program with,
but versatile. For this task, a single
two-operand instruction format would
be suitable, without registers but with
provision for indirect addressing.
Operand tagging would greatly reduce
the number of operation codes. Storing
instructions and operands separately
might be wise as well.

The symbolic programming system
should be completely straightforward,
but adaptable to different writing sys-
tems. Any complexity should be sub-
sumed by the operating system or
concealable within the macrocoding
system.

The operating system should be
completely in the background, and it
could be an existing standard such as
Posix. The OS should support pro-
gram testing and tracing, and it should
allow other programs to invoke tested
programs as though they form part of
the OS. Programmers should be able
to ignore the host operating system’s
complexities while still having access
to stored files of all kinds.

The macrocoding system should
make the organization of the notional
computer, and the services of the
notional operating system, available to
the programmer in simple format.
Finally, the macrosystem should let
skilled programmers code macrodefin-
ition sets to provide toolboxes for sim-
plifying application coding in specialist
areas.

F uture possibilities for the com-
puting industry and profession
fall into a spectrum. At one end,

the computer and its software primar-
ily function as commercial artifacts,
with users mainly filling the role of
consumer. At this end, the computer is
irrelevant to most computing profes-
sionals, and professional education
focuses on developing and managing
complex program suites for the ever
more complex stimulation of, interac-
tion with, and control of users and cus-
tomers.

At the spectrum’s other end, the
computer serves as a household tool
and the user controls its uses. Here, the
profession strives to make it as easy as
possible for everyone to exploit the
computer on their own terms and in
their own culture, and it may even
champion teaching the computer’s
direct use in elementary schools.

As things stand, the industry seems
to be going in the first direction. From
any ethical and moral standpoint, the
profession should be pushing to move
in the opposite one. �

Neville Holmes is an honorary research
associate at the University of Tasma-
nia’s School of Computing. Contact
him at neville.holmes@utas.edu.au.

March 2002 111

The profession should
strive to make it easy

for people to exploit the
computer on their own

terms in their own culture.

The
IEEE

Computer
Society

publishes over 150
conference proceedings

a year.

For a preview
of the latest

papers in
your field, visit

The
IEEE

Computer
Society

publishes over 150
conference proceedings

a year.

For a preview
of the latest

papers in
your field, visit

computer.org/proceedings/

