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same e-mail network and service infrastructure that they
exploit. Spammers send the same or similar messages to
thousands of users; we have developed a system that lets
users query all of their e-mail clients to determine if
another user in the system has already labeled a suspect
message as spam. Because the network is latent, the sys-
tem is message-based and distributed, enabling users to
query for information without flooding the network. 

SPAM FILTERS
During the past few years, Bayesian and collaborative

spam filters have emerged as the two most effective anti-
spam solutions. A Bayesian or rule-based filter uses the
entire context of an e-mail to look for words or phrases
that will identify it as spam based on the user’s sets of
legitimate e-mails and spam. One example of a widely
deployed Bayesian spam filter is SpamAssassin (http://
spamassassin.apache.org). 

Collaborative spam filters use the collective memory
of, and feedback from, users to reliably identify spam.1-3

That is, for every new spam sent out, some user must
first identify it as spam—for example, via locally gener-
ated blacklists or human inspection; any subsequent user
who receives a suspect e-mail can then query the user
community to determine whether the message is already
tagged as spam. Some collaborative spam filters, such
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W idespread Internet use has led to the emer-
gence of several kinds of large-scale social
networks in cyberspace, most notably 
e-mail networks. Unfortunately, the tre-
mendous convenience that e-mail affords

comes at a high price: Although the network’s underly-
ing connectivity is hidden, making it almost impossible
to build a comprehensive directory of every individual’s
contact lists, e-mail addresses themselves can be easily
obtained from publicly available documents. 

Spammers have exploited this vulnerability to inun-
date users with unsolicited bulk e-mail. Yet, despite pub-
lic outcry over spam, the problem continues to grow
and plague Internet users worldwide. In a recent study,
35 percent of e-mail users reported that more than 60
percent of their inbox messages were spam, and 28 per-
cent said they spend more than 15 minutes a day deal-
ing with junk e-mail (www.pewinternet.org/reports/
toc.asp? Report=102).

Researchers in both industry and academia generally
agree that there is no silver bullet and that researchers
must develop new filtering techniques and integrate
them with existing ones to build a layered system that,
as a whole, can manage and restrict spam. 

One promising approach is to beat spammers at their
own game—to identify and stop spam by harnessing the
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as SpamNet (www.cloudmark.com), deliver perfor-
mance comparable to that of Bayesian filters.

A major drawback of collaborative filtering schemes is
that they ignore the already present and pervasive social
communities in cyberspace and instead try to create new
ones of their own to facilitate information sharing. 

For collaborative systems to scale up and serve truly
large-scale communities, they must address three key
challenges:

• Performance. For a collaborative spam filter to be
effective, a large number of users—on the order of
millions—must participate. However, targeting and
interconnecting this many users is a difficult task
with unpredictable outcomes.

• Scalability. The power of a collaborative spam filter
lies in the ability to query spam
data from numerous users. To
avoid high server costs, spam
databases are typically stored
locally on users’ computers.
Efficiently searching a network of
distributed databases is difficult.

• Trust. Inevitably, hackers will try
to subvert the system by provid-
ing false information regarding
spam. Therefore, a trust scheme
must be devised to weigh the
opinions of provably trustworthy users more heav-
ily than those of unknown, potentially malicious,
users.

Different collaborative systems address these chal-
lenges with varying degrees of effectiveness. For exam-
ple, SpamNet uses a central server model: Users upload
spam information to a central database, which all users
wanting to check whether a suspect e-mail is tagged as
spam can query. Because this type of system has access
to every user’s data, it can also detect potential attack-
ers and build trust scores based on user feedback.
However, this approach is not scalable—for example, it
is doubtful that SpamNet, which has around a million
customers, can cost-effectively serve tens of millions of
users. In addition, the central server becomes a single
point of attack or failure. 

Proposed distributed spam filters employ a distributed
hash table and multiagent protocols1-3 to provide scal-
able query performance. However, these systems must
build new communities and effective algorithms for
determining meaningful user trust scores.

HARNESSING SOCIAL E-MAIL NETWORKS
A recent study4 proposed an attractive algorithm for

using personal e-mail networks to filter spam but largely
ignored the question of whether entire social e-mail net-
works can be harnessed. Advances in complex networks

theory—an emerging field that uses statistical mechanics
to analyze network dynamics—now make it possible to
leverage such networks’ topological properties to create
a collaborative spam-filtering system that meets the chal-
lenges of performance, scalability, and trust.

A major advantage of using social e-mail networks to
filter spam is that it is not necessary to specifically design
a network for this purpose. Because all queries and com-
munications are exchanged via e-mail through personal
contacts, neither a server nor a traditional peer-to-peer
(P2P) system is needed. 

A 2002 analysis5 of an e-mail network comprising
nearly 57,000 nodes (e-mail addresses) revealed that
such networks possess a scale-free topology. More pre-
cisely, the node-degree distribution follows a power law
P(k) � k-1.81, where k is the node degree and P(k) denotes

the probability that a randomly cho-
sen node has a degree equal to k. One
of the consequences of this PL prop-
erty is a very low percolation thresh-
old, which makes the e-mail network
an ideal platform for the efficient per-
colation search algorithm.6 Thus, it
is possible to overlay a scalable
global-search system on this natu-
rally scale-free graph of social con-
tacts to enable peers to exchange
their spam signature data efficiently. 

In social e-mail networks, trust is embedded in the web
of e-mail contacts. By regarding contact links as local
measures of trust and using a distributed power itera-
tion algorithm, it is possible to obtain trust scores for all
participating users. In addition, such collaborative spam-
filtering mechanisms can be implemented as plug-ins to
popular e-mail programs such as Microsoft Outlook. 

COLLABORATIVE SPAM-FILTERING
MECHANISMS

Our spam-filtering system uses two key mechanisms
to exploit the topological properties of social e-mail net-
works: the novel percolation search algorithm, which
reliably retrieves content in an unstructured network by
looking through only a fraction of the network, and the
well-known digest-based indexing scheme.

Percolation search 
Finding a provably scalable method to search for

unique content on unstructured networks has remained
an open research problem for years. It originated in the
tremendous query traffic generated by the popular
Gnutella P2P file-sharing program. The initial Gnutella
search protocol used scoped broadcast mechanisms to
discover content, which scales as O(N). Since then,
researchers have proposed numerous solutions, such as
Ultrapeer and various random-walk methods, but most
of these reduce query traffic cost only by a constant fac-
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tor.  In contrast, the query traffic cost using percolation
search scales sublinearly as a function of the system size.6

Percolated networks. To understand how percola-
tion search works, consider a random PL network like
that shown in Figure 1a. Bond percolation removes each
edge in a graph with probability 1 – p (each edge is kept
with probability p), where p is the percolation proba-
bility. The surviving edges and nodes form the perco-
lated network. 

Figures 1b, 1c, and 1d show three realizations of a
percolation process on an identical underlying network.
If the percolation probability is less than the percola-
tion threshold pc, the percolated network consists of
small-size connected components and lacks a giant con-
nected component as in Figure 1b; if p � pc, a giant con-
nected component emerges in the percolated network
as in Figures 1c and 1d. Note that the percolation thresh-

old, pc, is extremely small for any PL network.  As a
result, the size of the percolated network core is
extremely small, since the size is proportional to pc.  

The percolation threshold is the lowest percolation
probability in which the expected size of the largest con-
nected component goes to infinity for an infinite-size
graph. When percolation occurs above pc, as in Figures
1c and 1d, high-degree nodes always survive the process
and become part of the giant connected component.
Thus, in an unstructured network search, if contents are
cached in random high-degree nodes and every query
starts from a random high-degree node, percolation can
reliably find all content with high probability. 

Starting from any node in a PL network with expo-
nent 2, a query is almost certain to encounter a high-
degree node with a random-walk path of O(logN)
hops.6 Thus, if every node implants its content on
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(a) (b)

(c) (d)

Figure 1. Percolation search. Percolated networks are obtained by keeping each edge in the underlying network with probability p.

(a) Random power-law network with 153 nodes, 366 edges, and a PL coefficient of 1.81; the percolation threshold is

approximately 0.0359. (b) Bond percolation at p = 0.0144, which is below the threshold, results in small-size, disconnected 

components. (c) Bond percolation at p = 0.0898, which is 2.5 times the threshold, produces a giant connected component 

containing all high-degree nodes. (d) Sample search: Using random walks, one node implants a query request (blue path) while

another publishes its content (red path); the search returns a hit through bond percolation at p = 0.0898.
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Digest-based spam indexing
A collaborative spam-filtering system

needs an effective mechanism to index
known spam to correctly identify subse-
quent arrivals of the same spam. Although
our system does not depend on a specific
algorithm, we recommend one such digest-
based indexing mechanism developed by
Ernesto Damiani and colleagues7 to share
spam information among users. This algo-
rithm is highly resilient to automatic mod-
ification of spam, preserves privacy, and
produces zero false positives in which the
digest of a legitimate e-mail matches that
of an unrelated spam.

SYSTEM IMPLEMENTATION 
To implement our collaborative spam-

filtering system, the typical user must first
obtain a simple client that works as a plug-
in to an e-mail program such as MS
Outlook, Eudora, or Sendmail (large 
e-mail providers can also implement this

system on the e-mail server). This simple client must
include a digest-generating function, keep a personal
blacklist of spam for the user as well as cache blacklists
of spam implanted by other nodes, and have access to
the user’s inbound and outbound e-mail contacts. 

Initial processing. When the user receives an e-mail,
the client program first attempts to determine whether
it is DefinitelyNotSpam or DefinitelySpam. The client
program can use any traditional spam-filtering method—
such as whitelist, blacklist, or Bayesian filters—to perform
this function. For example, DefinitelyNotSpam can be 
a whitelist of addresses in the contact list and
DefinitelySpam can be Bayesian filter output indicating a
high probability that e-mail is spam. 

Digest publication.If the client program determines that
the e-mail is definitely spam, it calls the digest function to
generate a digest, De, for the message and caches the digest
on a short random walk of length l, which is the TTL. 
In Figure 2a, nodes S1 and S2 implant their blacklists 
of known spam through random walks with a TTL equal
to 2.

Query implantation. If the client program suspects
that the e-mail is spam, it can query the system to deter-
mine whether any other user in the network already has
De on its spam list. It implants each query message for
this digest via a random walk of length l. In Figure 2b,
node A receives a suspected message and implants a
query via a random walk with a TTL equal to 2.

Bond percolation. Nodes with an implanted query
request percolate the query message containing De

through the e-mail contact network. Each node that the
query visits declares a hit if the digest matches any mes-
sages cached on that node.7 In Figure 2c, nodes Q1 and

O(logN) nodes via a random walk, then all contents
will be cached in high-degree nodes. Similarly, queries
can be implanted on high-degree nodes via a random
walk of length O(logN). Thus, bond percolation start-
ing from high-degree nodes will find the contents, as in
Figure 1d. 

Search algorithm.Using the percolation search algo-
rithm can make unstructured searches in PL networks
highly scalable. This algorithm passes messages on direct
links only and includes three key steps:

• Cache or content implantation: Each node performs
a short random walk in the network and caches its
content list on each visited node. The length of this
short random walk is referred to as the time to live
(TTL).

• Query implantation: A node making a query executes
a short random walk of the same length as the TTL
used in the content implantation process and implants
its query requests on the nodes visited. 

• Bond percolation: The algorithm propagates all
implanted query requests through the network in a
probabilistic manner; upon receiving the query, a
node relays it to each neighboring node with perco-
lation probability p, which is a constant multiple of
the percolation threshold, pc, of the underlying 
network.

Note that query traffic is proportional to the size of
the percolated network. For PL networks, the percolated
network is small in size. Because social e-mail networks
have a PL degree distribution, this algorithm is ideally
suited for reaping the benefits of a percolation search.

(a) (b)

(c) (d)

Suspected message
received

Q2
Q1

A

S2

S1

C4

C1

A

Node A receives
two hits

Hit node

Hit node

Hit!

Hit!

Figure 2. Key steps in spam-filtering system protocol. (a) Digest publication. (b)

Query implantation. (c) Bond percolation. (d) Hit routeback.



Q2 initiate the bond percolation process; the query mes-
sages find hits at nodes C1 and C4. 

Hit routeback.The client program routes all hits back
to the node that originated the query through the same
path by which the query message arrived at the hit node.
In Figure 2d, the system routes the hits at nodes C1 and
C2 back to node A through the same path.

Hit processing. After routing all hits back, the client
program calculates the number of hits received. If this
HitScore exceeds a constant threshold value, the pro-
gram declares the message in question as spam; other-
wise, it determines the message not to be spam.

The client program places all e-mail messages declared
as spam in the user’s spam folder. It then calls the func-
tion that generates the digest of the spam message, De,
and caches this on a short random walk, taking the
process back to the digest publication step.  

SIMULATION AND SYSTEM PERFORMANCE
We simulated our spam-filtering system on a real-

world e-mail network5 consisting of 56,969 nodes and
84,190 edges. It has a power-law node degree distribu-
tion with a PL exponent of approximately 1.8, a mean
node degree of 2.96, a node degree second moment of
174.937, and an approximate percolation threshold of
0.0169 (note that the percolation threshold of a network
is approximately equal to the ratio of the first and sec-
ond moment of the degree distribution).  

We modeled spam detection performance as a func-
tion of the number of copies of similar spam messages
that arrive at the system. Assuming that every unique
spam is sent uniformly at random to approximately 
5 million Internet users among about 600 million users
worldwide (www.itu.int/ITU-D/ict/statistics/at_glance/
Internet02.pdf), the probability that any individual
would receive a copy of a given spam is 0.8 percent.
Thus, about 500 replicas of a unique spam arrive uni-
formly at random to the network.

Percolation probabilities
Because the underlying network’s percolation thresh-

old might not be known, our scheme adaptively
searches for spam using an increasing sequence of per-
colation probabilities, thereby ensuring a high hit rate
for queries and a low communication cost for the 
system. 

We start the first query with very low percolation
probability. If not enough hits are returned, we send out
a second query with a percolation probability twice that
of the first one. If still not enough hits are routed back,
we repeat the searches by increasing the percolation
probability in this twofold fashion until the probability
value reaches a maximum value, pmax. Once this maxi-
mum is reached, we repeat the query with the maximum
percolation probability for a constant number of trials,
nmax_stop.

Simulation execution and results
We conducted five simulation sessions, with each ses-

sion consisting of 30 runs and a different nmax_stop value
ranging from 1 to 5. We ran the simulation with TTL =
50, percolation probability starting at 0.00625, and pmax

= 0.05.  As Table 1 shows, the system achieves superior
spam detection rates while incurring minimal traffic
cost.8

The required traffic for each query is about 0.1 percent
of the number of edges, which corresponds to roughly 84
background e-mails. Bandwidth cost per query is thus
approximately 84 + 50 (the TTL) = 134 e-mail exchanges.
Moreover, every background e-mail containing a mes-
sage digest is about 1 Kbyte, and every e-mail incurs band-
width cost—a multiplicative constant of 2—on both the
sender and receiver. Thus, bandwidth cost per query is
134 � 1 � 2 = 268 Kbytes. Assuming that each user
receives one spam per hour, the average bandwidth cost
per user is a modest 268 Kbytes/hour, which will mini-
mally impact other network applications.  

Note that the query traffic that our system generates
will scale sublinearly as a function of the number of
spam arrivals.  As more copies of the same spam arrive,
more nodes cache this information—thus, fewer mes-
sage exchanges are needed to identify the spam. In addi-
tion, as Figure 3 on the next page shows, the high-
degree nodes handle more queries. Such processing
demands are inherently fair, as it is natural to ask a user
who sends e-mails to twice as many contacts to resolve
twice as many queries.

INFILTRATION AND COUNTERMEASURES 
By nature, spammers will attempt to defeat all spam-

filtering techniques. One common strategy is to join the
system and blacklist well-known legitimate e-mails such
as those sent from popular mailing lists. To combat
spammer infiltration, our system uses an EigenTrust
scheme. Such schemes have proven to be effective in
ranking documents on the Web and in assigning trust to
peers in P2P systems.9,10 A recently proposed algorithm
similarly uses the EigenTrust method to assign trust to
mail senders.11

Just as Google’s PageRank captures the importance of
particular Web pages based on their hyperlink struc-
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Table 1. Spam-filtering simulation results.

Percentage of links Spam detection 
nmax_stop crossed per query rate   

1 0.086 99.3 �0.3  
2 0.099 99.5 �0.2  
3 0.104 99.5 �0.1  
4 0.109 99.5 �0.1  
5 0.117 99.6 �0.1  
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ture, our proposed system can use the topological struc-
ture of social e-mail networks to assign trust to indi-
vidual users. In our scheme, each e-mail contact places
a unit of trust on the recipient. For a node that contacts
kout other nodes, the fraction of trust, ti, that this node
places on each out-neighbor i is equal to the number 
of e-mails sent to i divided by the total number of 
e-mails sent. 

The collection of tis forms a personal trust vector, t
�

.
We next model the entire e-mail network as a discrete-
time Markov chain, where entries of the personal trust
vectors define the state-transition probabilities. As
Figure 4 shows, the EigenTrust scheme then computes
the steady-state probability vector using the same power

iteration algorithm PageRank employs to
score Web documents.9 To ensure that the
Markov chain is ergodic, nodes with zero
out-degree assign uniform trust to a set of
carefully chosen pretrusted nodes.

B ecause our proposed antispam system
is social-network-based, it is important
to protect users’ privacy by preventing

anybody from using the network to map out
social links. To address this problem, nodes
must forward all messages exchanged in the
system anonymously. The basic idea is that
when a node forwards a message, any infor-
mation pertaining to the nodes that the mes-
sage has visited must be deleted before
forwarding. This keeps all system communi-
cations to an acquaintance-acquaintance
level. 

In addition to privacy concerns, users
might be worried that our system provides
an additional channel for spreading com-
puter viruses. Recall, however, that the sys-
tem exchanges all messages via background
e-mails. Users are not required to click and
open any system message or file. Moreover,
the system can program clients to reject all
messages that do not match a predefined for-
mat and thus are potentially malicious.
Finally, we recommend adding a personal-
ization feature that lets the user blacklist only
spam addressed to the public, such as drug
ads, while keeping a separate filter for per-
sonal spam—messages targeted specifically
to the user and unlikely to have been mass
mailed.

Our simulation results show that global
social e-mail networks possess several prop-
erties that researchers can exploit using
recent advances in complex networks theory,
such as the percolation search algorithm, to

provide an efficient collaborative spam filter. Clearly,
our proof-of-concept system can be vastly improved and
augmented with other spam-filtering schemes proven
successful at various levels. 

In addition, a collaborative spam-filtering system such
as ours can be overlaid on top of any PL network, not
just social e-mail networks. For example, the contact
network of SMTP servers can be modeled after the
Internet router network, which is a natural PL net-
work.12 Consequently, developers can implement our
distributed system on SMTP relay servers for earlier
spam detection and filtering. Blocking spam during the
early stages of spam injection can save significant
Internet bandwidth.
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Finally, there is nothing special about searching for
and caching spam digests, and administrators can use
our pervasive message-passing system to manage a gen-
eral distributed information system. The primary
requirement is to be able to provide enough benefits to
users to encourage their participation, which is relatively
easy when it comes to spam management. If users
become accustomed to a spam-filtering system, queries
for other information will follow. ■
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