
C
omputational scientists use computers to
simulate physical phenomena in situations
where experimentation would be prohibi-
tively expensive or impossible. Advancing
scientific research depends on these scien-

tists’ developing software productively. However, the
software development process in this domain differs
from other domains. For instance, scientific software
can be computationally demanding and require the
most powerful machines. These machines, referred to as
supercomputers or high-end computing systems, present
unique challenges to software development.

To learn more about developing software to run on
HEC systems, we studied five large software projects
that develop such computer programs—referred to as
codes in the HEC community. These projects are carried
out at the five Advanced Simulation and Computing-
Alliance research centers, with each project addressing
a different computational science problem and each cen-
ter having access to large-scale HEC systems at various
supercomputing centers.

We interviewed high-level ASC-Alliance project par-
ticipants involved in project management, software
architecture, or software integration. Our goals were to
identify challenges the scientists face and to characterize

product, project organization, and process in terms of
using and developing software.

ASC-Alliance Centers
The US Department of Energy’s National Nuclear

Security Administration formed the five ASC-Alliance
centers around 1997 to develop computational simula-
tion as a credible scientific-research method. The five
centers are

the University of Utah’s Center for Simulation of Acci-
dental Fires and Explosions, which simulates large
fires and embedded explosives, as Figure 1 shows;
the University of Illinois at Urbana-Champaign’s Cen-
ter for the Simulation of Advanced Rockets, which
simulates solid-propellant rockets, as Figure 2 shows;
the University of Chicago’s Center for Astrophysi-
cal Thermonuclear Flashes, which simulates stars’
thermonuclear burn, as Figure 3 shows;
Caltech’s Center for Simulating the Dynamic
Response of Materials, which simulates materials’
response to strong shocks, as Figure 4 shows; and
Stanford University’s Center for Integrated Tur-
bulence Simulations, which simulates full-scale jet
engines, as Figure 5 shows.

•

•

•

•

•

Computational scientists face many challenges when developing software that runs on large-

scale parallel machines. However, software-engineering researchers haven’t studied their

software development processes in much detail. To better understand the nature of software

development in this context, the authors examined five large-scale computational science

software projects operated at the five ASC-Alliance centers.

Lorin Hochstein, University of Nebraska-Lincoln

Victor R. Basili, University of Maryland and Fraunhofer Center for Experimental Software Engineering

C O V E R F E A T U R E

	 50	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00 © 2008 IEEE

The ASC-Alliance Projects:
A Case Study of Large-
Scale Parallel Scientific
Code Development

	 March 2008	 51

Figure 1. Image from the Center for Simulation of Accidental
Fires and Explosions, based at the University of Utah, shows a
simulation of a metal container rupturing after the contained
explosive ignited and pressurized the container when it
transitioned from a solid to gaseous state.

Figure 2. Images from the Center for the Simulation of
Advanced Rockets, based at the University of Illinois at
Urbana-Champaign. These images show a simulation of the
space shuttle’s reusable solid rocket motor as the propellant
burns back. The gas pressure (indicated by color) in the fluid
domain near the motor’s head end is shown at four different
times.

Figure 3. Image from the Center for Astrophysical
Thermonuclear Flashes, based at the University of
Chicago, shows a simulation of a Type Ia supernova
two seconds after the ignition of a nuclear flame
near the center of a white dwarf.

Figure 4. Image from the Center for Simulating the Dynamic
Response of Materials, based at Caltech, shows a simulation
of the response of materials to strong shocks. The figure
shows fluid density during turbulent mixing in a shock tube
experiment as high-speed waves, shocks, and rarefactions
travel between the walls of the tube.

	 52	 Computer

The major project at each center focuses on solving one
particular scientific problem by developing multiphys-
ics, coupled applications. This refers to the simulation of
different aspects of physical phenomena—for example,
solid mechanics, fluid mechanics, or combustion— that
are “coupled” to form a single simulation.

Goals and methodology
Our goals were to characterize which scientific pro-

gramming activities are time-consuming and problem-
atic, identify common problems scientific programmers
face, and assess the impact of software technologies on
scientists’ development time. We conducted this study
within the context of DARPA’s High Productivity Com-
puting Systems (HPCS) project (www.highproductivity.
org), which is aimed at improving computational scien-
tists’ productivity by developing new machine architec-
tures, new parallel-programming languages, and other
technologies.

In our earlier work, we ran controlled experiments to
evaluate the effect of parallel-programming language on
programmer effort and program performance, using stu-
dents from graduate-level parallel-computing courses.1

However, without empirical data on how scientific codes
are developed, we had no larger context for interpret-
ing our results. In particular, we didn’t know whether
a new parallel-programming language would address
the major problems developers faced, or whether they’d
adopt a new language if given the opportunity.

To begin our most recent study, we sent a question-
naire requesting basic project information from each
center. Next, we conducted telephone interviews with
one or two technical leads on each project. From these
interviews, we generated summary documents that
we sent back to the technical leads for review and
corrections.

Software characteristics
While our main object of study was

the scientists’ software development
process, we first wanted to charac-
terize the product they were working
on to provide context for their soft-
ware environment. We asked about
the software’s attributes (code size,
organizational structure, and degree
of code reuse via libraries), and the
intended machine target (what kinds
of machines the codes are intended to
run on).

Attributes
The codes range from 100,000 to

500,000 lines. Most are written as a
mixture of C/C++ and Fortran, with
one code a pure Fortran implementa-
tion. One code uses a Python scripting

layer that provides an interface for running the applica-
tion. With one exception, core elements of these projects
evolved from preexisting codes. All codes use the mes-
sage-passing interface (MPI) library to achieve parallel-
ism. In addition, each code uses external libraries for
features such as

I/O (HDF, NetCDF, CGNS, or Panda);
mesh operations, including adaptive mesh refine-
ment (ParaMesh, Mesquite, Metis, MeshSim, or
SAMRAI);
computational geometry (CGAL);
linear algebra (BLAS, LAPACK), and
tools for solving sparse linear systems and systems
modeled by partial differential equations (PETSc,
Hypre, or Clawpack).

While these codes use parallel libraries that sit atop
MPI, developers still had to write raw MPI code to
achieve desired functionality. Therefore, they dealt with
the additional complexities of writing message-passing
applications. Some codes use a layered approach that
hides the details of message-passing, so a programmer
can add functionality without writing MPI code. How-
ever, programmers had to write these abstraction layers
from scratch.

Each code is organized into independent subsystems
that individuals or small groups maintain. All codes use
a component-based architecture to minimize coupling
between individual subsystems. In several cases, these
independent subsystems are almost like separate proj-
ects. They can run as stand-alone applications and might
incorporate new features independent of the larger,
coupled application. Since most codes involve multiple
programming languages, there are language interoper-
ability issues. The one exception, a pure Fortran applica-

•
•

•
•
•

Figure 5. Image from Stanford University’s Center for Integrated Turbulence
Simulations depicts a simulation of a Pratt & Whitney jet engine showing instantaneous
axial velocity at midspan.

	 March 2008	 53

tion, once used a Python framework to drive the appli-
cation but it was abandoned because of the difficulty in
porting a hybrid Python/Fortran application to multiple
platforms.

One project’s component framework was built around
the Common Component Architecture, a community
effort to simplify building such multilanguage, coupled
codes. In that case, the chief software architect was an
early adopter of this technology and is actively involved
with the larger CCA effort. The other projects developed
their own communication frameworks.

Machine target
The codes are designed to run on “flat” MPI-based

machines, where communication takes place through
message-passing, even if some
processes share physical memory.
While all the codes currently run on
clusters of symmetric multiproces-
sors, none has been explicitly opti-
mized to take advantage of the SMP
nodes. The developers assume that
the vendor MPI implementations
are efficient enough that optimizing
for SMP nodes won’t yield large performance improve-
ments. Tuning for a specific architecture is considered a
poor use of resources. The investment required to gain
expertise in a particular architecture is too great given
that new architectures appear every six months.

Two projects groups experimented in the past with
improving performance on clusters of SMPs by using
OpenMP to leverage parallelism within nodes and MPI
to leverage parallelism across nodes. Results were mixed.
One group found that a pure MPI implementation was
competitive with a hybrid MPI-OpenMP approach, and
the other observed increased performance when incor-
porating OpenMP but hasn’t followed up on this work
due to other priorities.

Project organization
The scientists must coordinate their efforts, since these

projects involve more than one person. We wanted to
understand the organizational structure, the staff, and
their configuration-management process. We were look-
ing for similarities and differences with software projects
in other domains, and we wanted to determine whether
the scientists encountered any domain-specific issues
from a project-management point of view.

Organizational structure
Each project is divided into groups that focus on dif-

ferent aspects of the problem. This division is reflected in
the code, where the software is partitioned into indepen-
dent subsystems, and one group owns each subsystem.
Each subsystem has one or two chief programmers who
understand the subsystem in depth and are responsible

for it. These chief programmers make the majority of
the code changes. Each project also has either a chief
software architect or a group responsible for the integra-
tion code.

Development is compartmentalized and the groups
are relatively independent. Integrated code-development
meetings are held once a week to let core developers dis-
cuss issues such as coordinating code changes that will
affect more than one module.

Staff
About 75 people are actively involved on a given

project. Ten to 25 are core developers who routinely
contribute code. The developers consist of profession-
als, professional staff members with MSs and PhDs,

postdocs, and graduate students.
Their backgrounds are in physics,
chemistry, applied math, engineer-
ing (mechanical, civil, aerospace, or
chemical), and computer science.
The programmers have from 5 to
25 years of sequential program-
ming experience, and 0 to 15 years
of parallel-programming experi-

ence. Graduate students also work on the code as part
of their research, though they aren’t core developers.

Configuration management
The projects use version-control systems such as CVS

and Subversion to coordinate changes to the code, and
all have integrated version control into their development
process. No projects have a formal process for approv-
ing code before it’s checked into the repository. Instead,
there’s agreement that test cases should pass before com-
mits are made to the repository. Developers are individu-
ally responsible for performing any necessary unit, stand-
alone, and integration testing. On one project, developers
are automatically notified by e-mail whenever code is
checked in to the repository so that they’re aware of recent
modifications that might affect them.

Since all codes are actively used for scientific research
and development, the projects must allow the developers
to modify the code while ensuring that a stable version is
always available. Therefore, all projects maintain both
stable and development versions of the code.

Only one project has a formal bug-tracking system
in active use. On the other projects, defect tracking is
accomplished through wikis and informal commu-
nication among project members. Some projects have
attempted to introduce defect-tracking systems, but
developers didn’t adopt them.

Software usage
Our study focused mainly on software development.

However, we also wanted to get a sense of how the soft-
ware was used, and who was using it. Since requirements

The software is partitioned
into independent subsystems,

and one group owns
each subsystem.

	 54	 Computer

are a major issue in other domains of software engineer-
ing, and user needs drive requirements, we wanted to
understand the user’s role in this domain. In addition, we
wanted to understand execution times. We didn’t know
how long these types of programs took to run, and we
believed that large execution times were a major obstacle
to programmer productivity. We wanted to understand
the entire process of how the software was used, from
setting up the input to examining the output.

The main users of the codes are research scientists
who are the active developers. Some students also use
the software for their own scientific research, and aren’t
active in the code development, but these efforts aren’t
the centers’ primary concern. Some codes have external
users who might modify the programs to suit their own
needs.

Characterizing execution times
is difficult because they vary enor-
mously depending upon the size of
the problem. Typical runs are on the
order of 10 to 100 hours.

Most projects use configuration
files for specifying program parame-
ters, with two exceptions: One proj-
ect uses an interactive Python-based scripting interface,
and another provides a programmatic Fortran interface
for specifying the simulation’s initial conditions. Some
projects have expressed interest in developing a graphi-
cal interface to simplify the task of setting up the input
for a run.

For some projects, generating inputs is time-consum-
ing. Some codes simulate systems with intricate geom-
etries (for example, the space shuttle), which are mod-
eled as unstructured meshes. Generating the mesh for an
input can take an experienced user from half an hour to
weeks or months. In one case, a user spent a year generat-
ing a mesh for input. Determining whether a given mesh
is of sufficient quality is an active area of research.

Users apply visualization tools to examine the simula-
tions’ output. The projects use a mix of visualization
tools developed in-house (Flashview, Rocketeer, and
SCIRun) or by third parties (IDL, TecPlot, EnSight,
ParaView, OpenDX, Matlab, Iris Explorer, and VisIt).

Development activities
The developers engage in different activities during

the course of development. We asked for details about
adding new features and testing, tuning, debugging, and
porting the code.

Adding new features
Each center plans to run a major set of simulations

each year. These simulations drive an implementation
plan that determines needed new features. Scientists can
explore research avenues, but the implementation plan
sets the overall direction. Demand from large outside

user bases can also drive new features.
New features can be classified into two categories:

those localized within an individual subsystem (low-
level change), or
those involving changes across subsystems (high-
level change).

Low-level changes are administered solely by owners of
the subsystem being modified and require no communi-
cation across groups. High-level changes require some
degree of coordination.

Since the projects have been in operation for almost a
decade, the code bases are all mature and researchers are
applying them to do real science. While enhancements

to existing subsystems continue, few
new subsystems are planned. Most
modules have satisfactory parallel
performance, with the exception
of very new modules and modules
where efficient parallelization is still
an open research problem (for exam-
ple, adaptive mesh refinement).

In some projects, the developers
don’t have to write code explicitly in parallel but instead
build atop a parallel infrastructure that abstracts away
the parallelization details. Other projects require the
developers to program directly to the MPI library.

Testing
All projects use a suite of regression tests to catch

any errors programmers introduce while modifying the
code. Some projects have an automated system for run-
ning regression tests, and others run the regression tests
manually. One project requires new students to run the
regression tests as part of their learning process.

Testing new algorithms. Testing a new algorithm
is challenging in this environment. It’s not sufficient to
define simple test cases where modules are fed known
inputs and checked against expected outputs. Rather,
the researchers evaluate the algorithms in terms of stabil-
ity, accuracy, speed, and linear scalability. A module is
considered to be functioning correctly if, for the class of
inputs, the quality of the module’s output is sufficient to
let it be coupled with other modules and produce coupled
applications. Since the inputs of interest change as scien-
tists try more complex simulations, an algorithm that is
acceptable today might not be acceptable tomorrow.

Therefore, the testing process is different from other
software domains because the focus is on identifying
algorithmic defects (evaluating the algorithm’s quality)
rather than on coding defects (errors in implementing
the algorithm in the source code). Finding and fixing
algorithmic defects is much more challenging than find-
ing and fixing coding defects.

Testing algorithm quality. Testing the quality of algo-

•

•

All projects use a suite of
regression tests to catch any

errors programmers introduce
while modifying the code.

	 March 2008	 55

rithms involves qualitative analysis to determine how
the algorithm behaves. There are different strategies for
testing an algorithm, depending on the nature of the
problem—for example, checking if certain quantities are
exactly or approximately conserved, if symmetry proper-
ties hold, and against known analytical solutions. Some
projects work with numerical analysts who can provide
mathematical guarantees about certain aspects of the
code such as stability or that certain positive quantities
such as energy can’t diverge.

In general, the developers don’t know whether an algo-
rithm solves an equation correctly until certain require-
ments are passed. For example, a module might seem to
be performing correctly in isolation, but when used in a
coupled application, it might behave in unexpected ways.

This interactive testing process
requires a substantial amount of
effort and expertise. Since many
of the developers are postdocs and
graduate students without exten-
sive experience, the testing process
involves much guidance from senior
people who understand the broader
scope of the physics and software.

Tuning
Tuning activity occurs when the developers dis-

cover that the software is executing much slower than
expected. The software might need tuning when it’s
being ported to a new platform, if major changes to the
software architecture have caused performance penal-
ties, or simply because changes made to a particular
subsystem create a bottleneck. At least one project uses
tuning specialists—developers skilled at identifying and
fixing performance bottlenecks. One particular tuner
comes from a local computer science group that develops
performance-analysis tools.

Platform range. Since one of the project goals is to
develop algorithms that will last across many machine
lifetimes, it’s not seen as productive to try to maximize
the performance on any particular platform. Instead,
code changes are made that will improve performance
on a wide range of platforms. In addition, on at least
one project, the codes are constantly in flux as new algo-
rithms are continually evaluated, changing the core com-
ponents of the code. If there were many machine-specific
optimizations in the code, understanding the code would
be much more difficult, which would increase mainte-
nance effort.

For a given application, a considerable amount of tun-
ing is needed to achieve reasonable performance on a
new platform. This tuning process is mostly about deter-
mining data-set size, number of processors, and which
processors should be assigned which tasks. While indi-
vidual projects don’t focus on maximizing performance
on any one system, they occasionally can take advantage

of a team of third-party experts who can achieve a large
speedup on a particular system.

External tools. Developers do use externally developed
profiling tools such as Jumpshot, SpeedShop, or Shark.
However, on some of the codes, external profiling tools
couldn’t deal with an application written in multiple lan-
guages. In addition, some codes contain their own pro-
filing routines. Some developers find these tools useful,
but others say they’re familiar enough with the code that
these profiling tools don’t reveal new information.

There are ongoing efforts to improve performance
through development of new algorithms, such as new
adaptive mesh refinement algorithms. However, the
developers view these efforts as new functionality rather
than tuning.

Debugging
All the projects use TotalView, a

popular parallel debugger. Sequen-
tial debugging tools such as Purify
and Ensure are also used, but they
are useful only if the failure can be
reproduced when running the pro-
gram on a single processor. Trace
statements for debugging are com-

mon, although they’re difficult to interpret when the
program is running on many processors. The developers
also examine the simulation outputs with visualization
tools to help identify defects.

Usage patterns. Developers described several usage
patterns for applying the tools to localize defects. One com-
mon pattern is to use a debugger to produce a stack trace,
which is then used to determine where to insert print state-
ments into the code. Another common debugging pattern is
to try to reproduce a defect when running the program on a
smaller simulation, as tools such as TotalView and gdb can
be used effectively on a moderate number of CPUs.

Existing tools don’t provide any extra assistance for
some types of defects. Typical debugging tools aren’t
appropriate for algorithmic debugging, which takes up
most of the debugging time.

Batching. Large machines are generally batch-sched-
uled, which makes debugging more difficult. Since the
debugging process typically involves frequent rerunning
of the code, running under a batch queue can take a week,
rather than hours, with a dedicated machine running jobs
interactively. The national laboratories give ASC-Alli-
ance centers partial or full interactive use of a particular
machine for a few weekends each year. The 60 hours of
total compute time lets the centers run very large jobs and
do large-scale debugging. Debugging runs that involve
smaller numbers of processors are done internally.

Porting
Porting commonly occurs when the Department of

Energy buys a new machine that becomes available for

On at least one project, the
codes are constantly in flux as

new algorithms are continually
evaluated, changing the core

components of the code.

	 56	 Computer

project use. Porting might be necessary due to a software
upgrade on a system in use. It might take from a day to sev-
eral weeks to port to a new system, depending on the code
and maturity of the new platform’s development tools.

Porting requires a nontrivial amount of effort because
when a new platform is released, the code can’t simply be
recompiled and run. Much of the porting effort is spent on
a large number of small details. For example, developers
need to modify the build scripts (makefiles) to accommo-
date differences in the new system’s development tools.
Immature compilers on new systems are another source
of porting effort. For example, one project spent a year
getting the code to run on one machine because of C++
issues. While workarounds solved
some problems, others required wait-
ing for the vendor to fix the compiler.
One project abandoned Python to
reduce porting effort.

Although porting is only a small
part of the total effort, it can involve
a great deal of work in a very
focused time—for example, several
people working for a month. Participants perceive port-
ing as requiring an unwarranted amount of effort. Some
projects have broken compilers and MPI codes on every
platform. Two projects didn’t port their code to ASCI
Red because the Fortran compiler didn’t properly sup-
port needed features, and it wasn’t worth the effort to
work around these problems to get the code to run.

Effort distribution and bottlenecks
Developers report spending 75-95 percent of their devel-

opment time on new features and testing. Tuning and
porting take 1-10 percent of the total development time.
However, the distribution of effort varies depending on
the project’s development phase. Earlier in the projects,
developers use a different effort distribution to design
new data structures to handle a particular class of physics
problems than they do later, when they’re trying to modify
data structures for new areas. The projects occasionally
undergo large-scale rearchitecting to better incorporate
new features, and this also changes the effort distribution.

Verification and validation is a common bottleneck, in
particular, debugging parallel algorithms. Defects that
are only manifest in more complex execution environ-
ments where observation is more difficult for the pro-
grammer make debugging a challenge. For example, a
code might run perfectly on 32 processors but fail on
64 processors. Or a subsystem might work well when
executing independently, but doesn’t behave as expected
when interacting with another subsystem.

Other bottlenecks include generating input (CAD
modeling, mesh generation), expressing algorithms in
parallel, performing production runs (obtaining time
to run on large machines), and understanding old code
(when rearchitecting).

General observations
Based on our interviews, we made some general obser-

vations about software engineering in this domain. It
surprised us how challenging it is to validate this type of
software. We’re also interested in the role MPI played,
because of the HPCS project’s goals to develop alter-
native parallel-programming languages. In particular,
we’re interested in understanding an alternative to MPI,
either in the form of a library or framework that encap-
sulates MPI, or another parallel-programming language.
Finally, we’re interested in the scientists’ opinions on pro-
ductivity, since one of our ultimate goals is to improve
programmer productivity.

Validation
Validating the codes is a formi-

dable challenge. A validation study
is typically a research project or the-
sis. A student will choose a problem
with an interesting set of associated
experimental data and then identify
how to simulate it. Because of the

effort involved in such studies, it’s not feasible to validate
every new algorithm with an experiment.

MPI
All projects make extensive use of MPI to achieve

parallelism. MPI is a standard library that’s efficiently
implemented on all types of platforms: It’s the only tech-
nology that can run 10,000 processor jobs and allow
the program to be run on a workstation or world-class
machine without tweaking the code in significant ways.
In addition, the algorithms the projects employ lend
themselves to domain decomposition.

Despite MPI’s being the most appropriate technology
for the job, there’s widespread dissatisfaction with it.
One project member referred to it as “nothing more than
high-level assembly language,” where the programmer is
responsible for all memory management and process sig-
naling. The additional work MPI requires was identified
as a large barrier to productivity for a project starting
from scratch. However, one project member mentioned
that exposing these low-level details to the programmer
is an advantage of MPI, because it gives the program-
mers more control over what happens in the code.

One advantage is that it’s possible to write MPI code
knowing very few functions, so it’s easy to teach. While
teaching people to use MPI isn’t hard, teaching people
to write MPI effectively is extremely difficult. This fact
distinguishes first-year graduate students from develop-
ers who’ve been at a center for four or five years.

Libraries and frameworks
All the projects used libraries built atop MPI. How-

ever, while such libraries can abstract away some low-
level details of message-passing code, none of the project

Despite MPI’s being the most
appropriate technology for
the job, there’s widespread

dissatisfaction with it.

	 March 2008	 57

teams adopted such libraries and they avoid writing MPI
code. Even the libraries used can be problematic: On one
project, the most troublesome code is the parallel HDF5
I/O library that sits atop MPI.

Other projects outside the ASC-Alliance have
attempted to reuse existing class libraries to completely
abstract away the low-level MPI details, but this has led
to problems. For example, on one such project, some
C++ code from a parallel framework wasn’t portable
across platforms because of differences in compiler
implementations. Another obstacle to reuse is that these
frameworks make assumptions about how the work will
be done, and violating these assumptions requires the
programmer to become involved in
framework details. The effort to use
the framework is roughly the same
as the effort involved in writing the
code using MPI, which eliminates
the benefit. Because of this, each
project team chose to develop a cus-
tom framework.

Other languages
Developers weren’t aware of any alternative to MPI

that could better meet their needs. Some project teams
previously looked at high-performance Fortran and
hybrid MPI-OpenMP as alternatives, but none felt com-
pelled to switch.

Developers mentioned the following desirable features
in an alternative parallel-programming language:

hides memory operations from the programmer,
provides the programmer with a single memory
space,
supports remote puts and gets,
is easy to use,
is efficiently implemented on all types of platforms,
and
can do everything MPI can do plus provide addi-
tional useful capabilities.

Even if a new language meets these criteria, projects
wouldn’t guarantee its adoption. The existing codes
are already highly scalable and portable and have taken
years to develop and verify. All the developers would
have to be convinced that the new language would make
their programs much better.

Obstacles to adoption. Both technical and socio-
logical issues create obstacles for the adoption of a new
language. Technical issues include expressiveness, per-
formance, support for large projects, and portability.
A new language would need to be expressive enough
to support all of the needed algorithmic features—for
example, grid- and particle-based data structures.

A parallel version of C or Fortran wouldn’t be expres-
sive enough, as the code probably wouldn’t be any

•
•

•
•
•

•

cleaner. The performance would have to be competitive
with C. C++ is an appealing language because develop-
ers can make C++ code look like C to achieve better
performance. To support large projects, the language
must support separation of concerns so that develop-
ers can work on isolated pieces (some languages assume
programmers have a global view of the system).

Portability. Finally, the language must be portable.
The developers would have to be convinced that it could
be ported to anything else in the future. If the developers
have to redesign the parallelism when a new platform
comes out, then the new language wouldn’t even be con-
sidered. Even C++ is deemed risky because of its varying

levels of support for C++ features
across vendor compilers.

The main sociological issue is
market share. Developers would
have to be confident the new lan-
guage would last well into the
future. Unfortunately, this creates
a chicken-and-egg problem for new
languages. Some current codes are

so complex that migrating to something else would be
strenuous.

Even if an ideal solution were found, developers
wouldn’t adopt it immediately. They would have to
experiment with the technology. They would also like to
see several large workhorse applications converted and
benchmarked. Being able to use the existing code base in
some fashion would make the transition easier, although
developers would still consider a new language that didn’t
allow this if it satisfied their other requirements.

Measures of productivity
Developers suggested several useful measures of pro-

ductivity. One was scientifically useful results—suffi-
cient simulated time and resolution, plus sufficient accu-
racy of physical models and algorithms—over calendar
time. Another measure was problem size over calendar
time, where the goal is to run a larger simulation over
shorter calendar time. One developer gave the example
of running a particular simulation in a calendar week
instead of a calendar quarter. This is related both to code
speed and machine availability.

Implementation. Other suggested measures had to
do with time to implementation: Minimize the time
between an algorithm’s conception and its implementa-
tion on a parallel architecture or the time to perform
minor or substantial code modifications. For users to
be productive, they must move quickly from equations
to mapping equations to a parallel model, and then to
getting an implementation and running it on a machine.
Even a petascale machine would be too small for some
of the problems being addressed.

Developers spend most of their time trying to map the
solution to what’s achievable given today’s computing

 Both technical and sociological
issues create obstacles

for the adoption
of a new language.

	 58	 Computer

resources, so that the problem is solvable in a reason-
able period. Therefore, they focus on developing more
efficient algorithms, and they’re more concerned with
how long it will take to develop a solution than how long
a particular run takes. They have a much longer-term
view on performance issues than high-end computing
system vendors.

For a professor overseeing students, one suggested
metric was the time between a grad student complet-
ing second-year coursework and becoming a productive
researcher. This involves acquiring skills as a developer
and designer of parallel algorithms, and understanding
the physics and how parallelism applies to it.

Infrastructure. It would have been more productive
if each project team didn’t have to build its software
infrastructure largely from the ground up. One devel-
oper related how, after a computational scientist at Law-
rence Livermore National Laboratory designed and pro-
grammed an algorithm, the program was handed off to
an applications programmer who would rewrite it to run
quickly on the system: A good test of a productive envi-
ronment is when the applications programmer doesn’t
need to rewrite the computational scientists’ programs.

Some productivity issues were only tangentially related
to expressing parallelism in the code. One developer
brought up the importance of verifying and validating to
a project’s productivity, especially given the substantial
learning curve involved in adopting a formal verification
and validation process, which the national laboratories
pushed several years ago. The ability to estimate the effort
required to implement features and the resulting perfor-
mance of the code outside users’ code reuse, and external
users, easily modifying the code to suit their own needs
were among other productivity issues mentioned.

T hese projects face unique challenges both because
of the nature of the problem and the difficulties
associated with programming the environment.

Because the projects we examined are based in academic
environments, it’s unclear how much they would gen-
eralize to computational science projects in industry or
government. ■

Acknowledgments
We acknowledge Chuck Wight, Steve Parker, Anshu

Dubey, Edwin van der Wedie, Frank Ham, Gianluca
Iaccarino, Dan Meiron, Michael Aivazis, Mark Bran-
dyberry, and Robert Fiedler for providing us with the
information presented in this article. We also thank
Robert Voigt for creating the opportunity to conduct
these interviews. This research was supported in part
by Department of Energy grant awards DE-FG02-
04ER25633 and DE-CFC02-01ER25489, Air Force
Rome Labs grant award FA8750-05-1-0100, and NASA
Ames Research Center grant NNA04CD05G.

Reference
	 1.	L. Hochstein et al., “Parallel Programmer Productivity: A

Case Study of Novice Parallel Programmers,” Proc. 2005
ACM/IEEE Conf. Supercomputing (SC 2005), ACM Press,
2005, p. 35.

Lorin Hochstein is an assistant professor in the Depart-
ment of Computer Science and Engineering and a mem-
ber of the Laboratory for Empirically Based Software
Quality Research and Development at the University
of Nebraska-Lincoln. His research interests are experi-
mentation in software engineering, software technology
evaluation, and software engineering for computational
science. Hochstein received a PhD in computer science
from the University of Maryland. He is a member of the
IEEE Computer Society and the ACM. Contact him at
lorin@cse.unl.edu.

Victor R. Basili is a professor in the Department of Com-
puter Science and Institute for Advanced Computer Stud-
ies at the University of Maryland, and chief scientist and
executive director of the Fraunhofer Center for Experi-
mental Software Engineering. His research interests are
measuring, evaluating, and improving the software pro-
cess and product. Basili received a PhD in computer sci-
ence from the University of Texas at Austin. He is a Fellow
of the IEEE and the ACM. Contact him at basili@cs.umd.
edu.

w w w . c o m p u t e r . o r g / j o i n / g r a d e s . h t m

G IVE YOUR CAREER A BOOST ■ UPGRADE YOUR MEMBERSH IP

Advancing in the IEEE Computer Society can elevate your standing in the profession.

✔ Application to Senior-grade membership recognizes ten years or more of professional expertise

✔ Nomination to Fellow-grade membership recognizes exemplary accomplishments in computer engineering

REACH HIGHER

