
C
omputational scientists use computers to 
simulate physical phenomena in situations 
where experimentation would be prohibi-
tively expensive or impossible. Advancing 
scientific research depends on these scien-

tists’ developing software productively. However, the 
software development process in this domain differs 
from other domains. For instance, scientific software 
can be computationally demanding and require the 
most powerful machines. These machines, referred to as 
supercomputers or high-end computing systems, present 
unique challenges to software development.

To learn more about developing software to run on 
HEC systems, we studied five large software projects 
that develop such computer programs—referred to as 
codes in the HEC community. These projects are carried 
out at the five Advanced Simulation and Computing-
Alliance research centers, with each project addressing 
a different computational science problem and each cen-
ter having access to large-scale HEC systems at various 
supercomputing centers.

We interviewed high-level ASC-Alliance project par-
ticipants involved in project management, software 
architecture, or software integration. Our goals were to 
identify challenges the scientists face and to characterize 

product, project organization, and process in terms of 
using and developing software.

ASC-Alliance Centers
The US Department of Energy’s National Nuclear 

Security Administration formed the five ASC-Alliance 
centers around 1997 to develop computational simula-
tion as a credible scientific-research method. The five 
centers are

the University of Utah’s Center for Simulation of Acci-
dental Fires and Explosions, which simulates large 
fires and embedded explosives, as Figure 1 shows;
the University of Illinois at Urbana-Champaign’s Cen-
ter for the Simulation of Advanced Rockets, which 
simulates solid-propellant rockets, as Figure 2 shows;
the University of Chicago’s Center for Astrophysi-
cal Thermonuclear Flashes, which simulates stars’ 
thermonuclear burn, as Figure 3 shows;
Caltech’s Center for Simulating the Dynamic 
Response of Materials, which simulates materials’ 
response to strong shocks, as Figure 4 shows; and
Stanford University’s Center for Integrated Tur-
bulence Simulations, which simulates full-scale jet 
engines, as Figure 5 shows.
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Computational scientists face many challenges when developing software that runs on large-

scale parallel machines. However, software-engineering researchers haven’t studied their 

software development processes in much detail. To better understand the nature of software 

development in this context, the authors examined five large-scale computational science 

software projects operated at the five ASC-Alliance centers.
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Figure 1. Image from the Center for Simulation of Accidental 
Fires and Explosions, based at the University of Utah, shows a 
simulation of a metal container rupturing after the contained 
explosive ignited and pressurized the container when it 
transitioned from a solid to gaseous state.

Figure 2. Images from the Center for the Simulation of 
Advanced Rockets, based at the University of Illinois at 
Urbana-Champaign. These images show a simulation of the 
space shuttle’s reusable solid rocket motor as the propellant 
burns back. The gas pressure (indicated by color) in the fluid 
domain near the motor’s head end is shown at four different 
times.

Figure 3. Image from the Center for Astrophysical 
Thermonuclear Flashes, based at the University of 
Chicago, shows a simulation of a Type Ia supernova 
two seconds after the ignition of a nuclear flame 
near the center of a white dwarf.

Figure 4. Image from the Center for Simulating the Dynamic 
Response of Materials, based at Caltech, shows a simulation 
of the response of materials to strong shocks. The figure 
shows fluid density during turbulent mixing in a shock tube 
experiment as high-speed waves, shocks, and rarefactions 
travel between the walls of the tube. 
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The major project at each center focuses on solving one 
particular scientific problem by developing multiphys-
ics, coupled applications. This refers to the simulation of 
different aspects of physical phenomena—for example, 
solid mechanics, fluid mechanics, or combustion— that 
are “coupled” to form a single simulation.

Goals and methodology
Our goals were to characterize which scientific pro-

gramming activities are time-consuming and problem-
atic, identify common problems scientific programmers 
face, and assess the impact of software technologies on 
scientists’ development time. We conducted this study 
within the context of DARPA’s High Productivity Com-
puting Systems (HPCS) project (www.highproductivity. 
org), which is aimed at improving computational scien-
tists’ productivity by developing new machine architec-
tures, new parallel-programming languages, and other 
technologies.

In our earlier work, we ran controlled experiments to 
evaluate the effect of parallel-programming language on 
programmer effort and program performance, using stu-
dents from graduate-level parallel-computing courses.1 

However, without empirical data on how scientific codes 
are developed, we had no larger context for interpret-
ing our results. In particular, we didn’t know whether 
a new parallel-programming language would address 
the major problems developers faced, or whether they’d 
adopt a new language if given the opportunity.

To begin our most recent study, we sent a question-
naire requesting basic project information from each 
center. Next, we conducted telephone interviews with 
one or two technical leads on each project. From these 
interviews, we generated summary documents that  
we sent back to the technical leads for review and 
corrections.

Software characteristics
While our main object of study was 

the scientists’ software development 
process, we first wanted to charac-
terize the product they were working 
on to provide context for their soft-
ware environment. We asked about 
the software’s attributes (code size, 
organizational structure, and degree 
of code reuse via libraries), and the 
intended machine target (what kinds 
of machines the codes are intended to 
run on).

Attributes
The codes range from 100,000 to 

500,000 lines. Most are written as a 
mixture of C/C++ and Fortran, with 
one code a pure Fortran implementa-
tion. One code uses a Python scripting 

layer that provides an interface for running the applica-
tion. With one exception, core elements of these projects 
evolved from preexisting codes. All codes use the mes-
sage-passing interface (MPI) library to achieve parallel-
ism. In addition, each code uses external libraries for 
features such as

I/O (HDF, NetCDF, CGNS, or Panda);
mesh operations, including adaptive mesh refine-
ment (ParaMesh, Mesquite, Metis, MeshSim, or 
SAMRAI);
computational geometry (CGAL);
linear algebra (BLAS, LAPACK), and
tools for solving sparse linear systems and systems 
modeled by partial differential equations (PETSc, 
Hypre, or Clawpack).

While these codes use parallel libraries that sit atop 
MPI, developers still had to write raw MPI code to 
achieve desired functionality. Therefore, they dealt with 
the additional complexities of writing message-passing 
applications. Some codes use a layered approach that 
hides the details of message-passing, so a programmer 
can add functionality without writing MPI code. How-
ever, programmers had to write these abstraction layers 
from scratch.

Each code is organized into independent subsystems 
that individuals or small groups maintain. All codes use 
a component-based architecture to minimize coupling 
between individual subsystems. In several cases, these 
independent subsystems are almost like separate proj-
ects. They can run as stand-alone applications and might 
incorporate new features independent of the larger, 
coupled application. Since most codes involve multiple 
programming languages, there are language interoper-
ability issues. The one exception, a pure Fortran applica-
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Figure 5. Image from Stanford University’s Center for Integrated Turbulence 
Simulations depicts a simulation of a Pratt & Whitney jet engine showing instantaneous 
axial velocity at midspan.
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tion, once used a Python framework to drive the appli-
cation but it was abandoned because of the difficulty in  
porting a hybrid Python/Fortran application to multiple 
platforms.

One project’s component framework was built around 
the Common Component Architecture, a community 
effort to simplify building such multilanguage, coupled 
codes. In that case, the chief software architect was an 
early adopter of this technology and is actively involved 
with the larger CCA effort. The other projects developed 
their own communication frameworks.

Machine target
The codes are designed to run on “flat” MPI-based 

machines, where communication takes place through 
message-passing, even if some 
processes share physical memory. 
While all the codes currently run on 
clusters of symmetric multiproces-
sors, none has been explicitly opti-
mized to take advantage of the SMP 
nodes. The developers assume that 
the vendor MPI implementations 
are efficient enough that optimizing 
for SMP nodes won’t yield large performance improve-
ments. Tuning for a specific architecture is considered a 
poor use of resources. The investment required to gain 
expertise in a particular architecture is too great given 
that new architectures appear every six months.

Two projects groups experimented in the past with 
improving performance on clusters of SMPs by using 
OpenMP to leverage parallelism within nodes and MPI 
to leverage parallelism across nodes. Results were mixed. 
One group found that a pure MPI implementation was 
competitive with a hybrid MPI-OpenMP approach, and 
the other observed increased performance when incor-
porating OpenMP but hasn’t followed up on this work 
due to other priorities.

Project organization
The scientists must coordinate their efforts, since these 

projects involve more than one person. We wanted to 
understand the organizational structure, the staff, and 
their configuration-management process. We were look-
ing for similarities and differences with software projects 
in other domains, and we wanted to determine whether 
the scientists encountered any domain-specific issues 
from a project-management point of view.

Organizational structure
Each project is divided into groups that focus on dif-

ferent aspects of the problem. This division is reflected in 
the code, where the software is partitioned into indepen-
dent subsystems, and one group owns each subsystem. 
Each subsystem has one or two chief programmers who 
understand the subsystem in depth and are responsible 

for it. These chief programmers make the majority of 
the code changes. Each project also has either a chief 
software architect or a group responsible for the integra-
tion code.

Development is compartmentalized and the groups 
are relatively independent. Integrated code-development 
meetings are held once a week to let core developers dis-
cuss issues such as coordinating code changes that will 
affect more than one module.

Staff
About 75 people are actively involved on a given 

project. Ten to 25 are core developers who routinely 
contribute code. The developers consist of profession-
als, professional staff members with MSs and PhDs, 

postdocs, and graduate students. 
Their backgrounds are in physics, 
chemistry, applied math, engineer-
ing (mechanical, civil, aerospace, or 
chemical), and computer science. 
The programmers have from 5 to 
25 years of sequential program-
ming experience, and 0 to 15 years 
of parallel-programming experi-

ence. Graduate students also work on the code as part 
of their research, though they aren’t core developers.

Configuration management
The projects use version-control systems such as CVS 

and Subversion to coordinate changes to the code, and 
all have integrated version control into their development 
process. No projects have a formal process for approv-
ing code before it’s checked into the repository. Instead, 
there’s agreement that test cases should pass before com-
mits are made to the repository. Developers are individu-
ally responsible for performing any necessary unit, stand-
alone, and integration testing. On one project, developers 
are automatically notified by e-mail whenever code is 
checked in to the repository so that they’re aware of recent 
modifications that might affect them.

Since all codes are actively used for scientific research 
and development, the projects must allow the developers 
to modify the code while ensuring that a stable version is 
always available. Therefore, all projects maintain both 
stable and development versions of the code.

Only one project has a formal bug-tracking system 
in active use. On the other projects, defect tracking is 
accomplished through wikis and informal commu-
nication among project members. Some projects have 
attempted to introduce defect-tracking systems, but 
developers didn’t adopt them.

Software usage
Our study focused mainly on software development. 

However, we also wanted to get a sense of how the soft-
ware was used, and who was using it. Since requirements 

The software is partitioned  
into independent subsystems, 

and one group owns  
each subsystem. 
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are a major issue in other domains of software engineer-
ing, and user needs drive requirements, we wanted to 
understand the user’s role in this domain. In addition, we 
wanted to understand execution times. We didn’t know 
how long these types of programs took to run, and we 
believed that large execution times were a major obstacle 
to programmer productivity. We wanted to understand 
the entire process of how the software was used, from 
setting up the input to examining the output.

The main users of the codes are research scientists 
who are the active developers. Some students also use 
the software for their own scientific research, and aren’t 
active in the code development, but these efforts aren’t 
the centers’ primary concern. Some codes have external 
users who might modify the programs to suit their own 
needs.

Characterizing execution times 
is difficult because they vary enor-
mously depending upon the size of 
the problem. Typical runs are on the 
order of 10 to 100 hours.

Most projects use configuration 
files for specifying program parame-
ters, with two exceptions: One proj-
ect uses an interactive Python-based scripting interface, 
and another provides a programmatic Fortran interface 
for specifying the simulation’s initial conditions. Some 
projects have expressed interest in developing a graphi-
cal interface to simplify the task of setting up the input 
for a run.

For some projects, generating inputs is time-consum-
ing. Some codes simulate systems with intricate geom-
etries (for example, the space shuttle), which are mod-
eled as unstructured meshes. Generating the mesh for an 
input can take an experienced user from half an hour to 
weeks or months. In one case, a user spent a year generat-
ing a mesh for input. Determining whether a given mesh 
is of sufficient quality is an active area of research.

Users apply visualization tools to examine the simula-
tions’ output. The projects use a mix of visualization 
tools developed in-house (Flashview, Rocketeer, and 
SCIRun) or by third parties (IDL, TecPlot, EnSight, 
ParaView, OpenDX, Matlab, Iris Explorer, and VisIt).

Development activities
The developers engage in different activities during 

the course of development. We asked for details about 
adding new features and testing, tuning, debugging, and 
porting the code.

Adding new features
Each center plans to run a major set of simulations 

each year. These simulations drive an implementation 
plan that determines needed new features. Scientists can 
explore research avenues, but the implementation plan 
sets the overall direction. Demand from large outside 

user bases can also drive new features.
New features can be classified into two categories:

those localized within an individual subsystem (low-
level change), or
those involving changes across subsystems (high-
level change).

Low-level changes are administered solely by owners of 
the subsystem being modified and require no communi-
cation across groups. High-level changes require some 
degree of coordination.

Since the projects have been in operation for almost a 
decade, the code bases are all mature and researchers are 
applying them to do real science. While enhancements 

to existing subsystems continue, few 
new subsystems are planned. Most 
modules have satisfactory parallel 
performance, with the exception 
of very new modules and modules 
where efficient parallelization is still 
an open research problem (for exam-
ple, adaptive mesh refinement).

In some projects, the developers 
don’t have to write code explicitly in parallel but instead 
build atop a parallel infrastructure that abstracts away 
the parallelization details. Other projects require the 
developers to program directly to the MPI library.

Testing
All projects use a suite of regression tests to catch 

any errors programmers introduce while modifying the 
code. Some projects have an automated system for run-
ning regression tests, and others run the regression tests 
manually. One project requires new students to run the 
regression tests as part of their learning process.

Testing new algorithms. Testing a new algorithm 
is challenging in this environment. It’s not sufficient to 
define simple test cases where modules are fed known 
inputs and checked against expected outputs. Rather, 
the researchers evaluate the algorithms in terms of stabil-
ity, accuracy, speed, and linear scalability. A module is 
considered to be functioning correctly if, for the class of 
inputs, the quality of the module’s output is sufficient to 
let it be coupled with other modules and produce coupled 
applications. Since the inputs of interest change as scien-
tists try more complex simulations, an algorithm that is 
acceptable today might not be acceptable tomorrow.

Therefore, the testing process is different from other 
software domains because the focus is on identifying 
algorithmic defects (evaluating the algorithm’s quality) 
rather than on coding defects (errors in implementing 
the algorithm in the source code). Finding and fixing 
algorithmic defects is much more challenging than find-
ing and fixing coding defects.

Testing algorithm quality. Testing the quality of algo-

•
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All projects use a suite of 
regression tests to catch any 

errors programmers introduce 
while modifying the code.
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rithms involves qualitative analysis to determine how 
the algorithm behaves. There are different strategies for 
testing an algorithm, depending on the nature of the 
problem—for example, checking if certain quantities are 
exactly or approximately conserved, if symmetry proper-
ties hold, and against known analytical solutions. Some 
projects work with numerical analysts who can provide 
mathematical guarantees about certain aspects of the 
code such as stability or that certain positive quantities 
such as energy can’t diverge.

In general, the developers don’t know whether an algo-
rithm solves an equation correctly until certain require-
ments are passed. For example, a module might seem to 
be performing correctly in isolation, but when used in a 
coupled application, it might behave in unexpected ways.

This interactive testing process 
requires a substantial amount of 
effort and expertise. Since many 
of the developers are postdocs and 
graduate students without exten-
sive experience, the testing process 
involves much guidance from senior 
people who understand the broader 
scope of the physics and software.

Tuning
Tuning activity occurs when the developers dis-

cover that the software is executing much slower than 
expected. The software might need tuning when it’s 
being ported to a new platform, if major changes to the 
software architecture have caused performance penal-
ties, or simply because changes made to a particular 
subsystem create a bottleneck. At least one project uses 
tuning specialists—developers skilled at identifying and 
fixing performance bottlenecks. One particular tuner 
comes from a local computer science group that develops 
performance-analysis tools.

Platform range. Since one of the project goals is to 
develop algorithms that will last across many machine 
lifetimes, it’s not seen as productive to try to maximize 
the performance on any particular platform. Instead, 
code changes are made that will improve performance 
on a wide range of platforms. In addition, on at least 
one project, the codes are constantly in flux as new algo-
rithms are continually evaluated, changing the core com-
ponents of the code. If there were many machine-specific 
optimizations in the code, understanding the code would 
be much more difficult, which would increase mainte-
nance effort.

For a given application, a considerable amount of tun-
ing is needed to achieve reasonable performance on a 
new platform. This tuning process is mostly about deter-
mining data-set size, number of processors, and which 
processors should be assigned which tasks. While indi-
vidual projects don’t focus on maximizing performance 
on any one system, they occasionally can take advantage 

of a team of third-party experts who can achieve a large 
speedup on a particular system.

External tools. Developers do use externally developed 
profiling tools such as Jumpshot, SpeedShop, or Shark. 
However, on some of the codes, external profiling tools 
couldn’t deal with an application written in multiple lan-
guages. In addition, some codes contain their own pro-
filing routines. Some developers find these tools useful, 
but others say they’re familiar enough with the code that 
these profiling tools don’t reveal new information.

There are ongoing efforts to improve performance 
through development of new algorithms, such as new 
adaptive mesh refinement algorithms. However, the 
developers view these efforts as new functionality rather 
than tuning.

Debugging
All the projects use TotalView, a 

popular parallel debugger. Sequen-
tial debugging tools such as Purify 
and Ensure are also used, but they 
are useful only if the failure can be 
reproduced when running the pro-
gram on a single processor. Trace 
statements for debugging are com-

mon, although they’re difficult to interpret when the 
program is running on many processors. The developers 
also examine the simulation outputs with visualization 
tools to help identify defects.

Usage patterns. Developers described several usage 
patterns for applying the tools to localize defects. One com-
mon pattern is to use a debugger to produce a stack trace, 
which is then used to determine where to insert print state-
ments into the code. Another common debugging pattern is 
to try to reproduce a defect when running the program on a 
smaller simulation, as tools such as TotalView and gdb can 
be used effectively on a moderate number of CPUs. 

Existing tools don’t provide any extra assistance for 
some types of defects. Typical debugging tools aren’t 
appropriate for algorithmic debugging, which takes up 
most of the debugging time.

Batching. Large machines are generally batch-sched-
uled, which makes debugging more difficult. Since the 
debugging process typically involves frequent rerunning 
of the code, running under a batch queue can take a week, 
rather than hours, with a dedicated machine running jobs 
interactively. The national laboratories give ASC-Alli-
ance centers partial or full interactive use of a particular 
machine for a few weekends each year. The 60 hours of 
total compute time lets the centers run very large jobs and 
do large-scale debugging. Debugging runs that involve 
smaller numbers of processors are done internally.

Porting
Porting commonly occurs when the Department of 

Energy buys a new machine that becomes available for 

On at least one project, the 
codes are constantly in flux as 

new algorithms are continually 
evaluated, changing the core 

components of the code. 
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project use. Porting might be necessary due to a software 
upgrade on a system in use. It might take from a day to sev-
eral weeks to port to a new system, depending on the code 
and maturity of the new platform’s development tools.

Porting requires a nontrivial amount of effort because 
when a new platform is released, the code can’t simply be 
recompiled and run. Much of the porting effort is spent on 
a large number of small details. For example, developers 
need to modify the build scripts (makefiles) to accommo-
date differences in the new system’s development tools. 
Immature compilers on new systems are another source 
of porting effort. For example, one project spent a year 
getting the code to run on one machine because of C++ 
issues. While workarounds solved 
some problems, others required wait-
ing for the vendor to fix the compiler. 
One project abandoned Python to 
reduce porting effort.

Although porting is only a small 
part of the total effort, it can involve 
a great deal of work in a very 
focused time—for example, several 
people working for a month. Participants perceive port-
ing as requiring an unwarranted amount of effort. Some 
projects have broken compilers and MPI codes on every 
platform. Two projects didn’t port their code to ASCI 
Red because the Fortran compiler didn’t properly sup-
port needed features, and it wasn’t worth the effort to 
work around these problems to get the code to run.

Effort distribution and bottlenecks
Developers report spending 75-95 percent of their devel-

opment time on new features and testing. Tuning and 
porting take 1-10 percent of the total development time. 
However, the distribution of effort varies depending on 
the project’s development phase. Earlier in the projects, 
developers use a different effort distribution to design 
new data structures to handle a particular class of physics 
problems than they do later, when they’re trying to modify 
data structures for new areas. The projects occasionally 
undergo large-scale rearchitecting to better incorporate 
new features, and this also changes the effort distribution.

Verification and validation is a common bottleneck, in 
particular, debugging parallel algorithms. Defects that 
are only manifest in more complex execution environ-
ments where observation is more difficult for the pro-
grammer make debugging a challenge. For example, a 
code might run perfectly on 32 processors but fail on 
64 processors. Or a subsystem might work well when 
executing independently, but doesn’t behave as expected 
when interacting with another subsystem.

Other bottlenecks include generating input (CAD 
modeling, mesh generation), expressing algorithms in 
parallel, performing production runs (obtaining time 
to run on large machines), and understanding old code 
(when rearchitecting).

General observations
Based on our interviews, we made some general obser-

vations about software engineering in this domain. It 
surprised us how challenging it is to validate this type of 
software. We’re also interested in the role MPI played, 
because of the HPCS project’s goals to develop alter-
native parallel-programming languages. In particular, 
we’re interested in understanding an alternative to MPI, 
either in the form of a library or framework that encap-
sulates MPI, or another parallel-programming language. 
Finally, we’re interested in the scientists’ opinions on pro-
ductivity, since one of our ultimate goals is to improve 
programmer productivity.

Validation
Validating the codes is a formi-

dable challenge. A validation study 
is typically a research project or the-
sis. A student will choose a problem 
with an interesting set of associated 
experimental data and then identify 
how to simulate it. Because of the 

effort involved in such studies, it’s not feasible to validate 
every new algorithm with an experiment.

MPI
All projects make extensive use of MPI to achieve 

parallelism. MPI is a standard library that’s efficiently 
implemented on all types of platforms: It’s the only tech-
nology that can run 10,000 processor jobs and allow 
the program to be run on a workstation or world-class 
machine without tweaking the code in significant ways. 
In addition, the algorithms the projects employ lend 
themselves to domain decomposition.

Despite MPI’s being the most appropriate technology 
for the job, there’s widespread dissatisfaction with it. 
One project member referred to it as “nothing more than 
high-level assembly language,” where the programmer is 
responsible for all memory management and process sig-
naling. The additional work MPI requires was identified 
as a large barrier to productivity for a project starting 
from scratch. However, one project member mentioned 
that exposing these low-level details to the programmer 
is an advantage of MPI, because it gives the program-
mers more control over what happens in the code.

One advantage is that it’s possible to write MPI code 
knowing very few functions, so it’s easy to teach. While 
teaching people to use MPI isn’t hard, teaching people 
to write MPI effectively is extremely difficult. This fact 
distinguishes first-year graduate students from develop-
ers who’ve been at a center for four or five years.

Libraries and frameworks
All the projects used libraries built atop MPI. How-

ever, while such libraries can abstract away some low-
level details of message-passing code, none of the project 

Despite MPI’s being the most 
appropriate technology for 
the job, there’s widespread 

dissatisfaction with it. 
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teams adopted such libraries and they avoid writing MPI 
code. Even the libraries used can be problematic: On one 
project, the most troublesome code is the parallel HDF5 
I/O library that sits atop MPI.

Other projects outside the ASC-Alliance have 
attempted to reuse existing class libraries to completely 
abstract away the low-level MPI details, but this has led 
to problems. For example, on one such project, some 
C++ code from a parallel framework wasn’t portable 
across platforms because of differences in compiler 
implementations. Another obstacle to reuse is that these 
frameworks make assumptions about how the work will 
be done, and violating these assumptions requires the 
programmer to become involved in 
framework details. The effort to use 
the framework is roughly the same 
as the effort involved in writing the 
code using MPI, which eliminates 
the benefit. Because of this, each 
project team chose to develop a cus-
tom framework.

Other languages
Developers weren’t aware of any alternative to MPI 

that could better meet their needs. Some project teams 
previously looked at high-performance Fortran and 
hybrid MPI-OpenMP as alternatives, but none felt com-
pelled to switch.

Developers mentioned the following desirable features 
in an alternative parallel-programming language:

hides memory operations from the programmer,
provides the programmer with a single memory 
space,
supports remote puts and gets,
is easy to use,
is efficiently implemented on all types of platforms, 
and
can do everything MPI can do plus provide addi-
tional useful capabilities.

Even if a new language meets these criteria, projects 
wouldn’t guarantee its adoption. The existing codes 
are already highly scalable and portable and have taken 
years to develop and verify. All the developers would 
have to be convinced that the new language would make 
their programs much better.

Obstacles to adoption. Both technical and socio-
logical issues create obstacles for the adoption of a new 
language. Technical issues include expressiveness, per-
formance, support for large projects, and portability. 
A new language would need to be expressive enough 
to support all of the needed algorithmic features—for 
example, grid- and particle-based data structures.

A parallel version of C or Fortran wouldn’t be expres-
sive enough, as the code probably wouldn’t be any 

•
•

•
•
•

•

cleaner. The performance would have to be competitive 
with C. C++ is an appealing language because develop-
ers can make C++ code look like C to achieve better 
performance. To support large projects, the language 
must support separation of concerns so that develop-
ers can work on isolated pieces (some languages assume 
programmers have a global view of the system).

Portability. Finally, the language must be portable. 
The developers would have to be convinced that it could 
be ported to anything else in the future. If the developers 
have to redesign the parallelism when a new platform 
comes out, then the new language wouldn’t even be con-
sidered. Even C++ is deemed risky because of its varying 

levels of support for C++ features 
across vendor compilers.

The main sociological issue is 
market share. Developers would 
have to be confident the new lan-
guage would last well into the 
future. Unfortunately, this creates 
a chicken-and-egg problem for new 
languages. Some current codes are 

so complex that migrating to something else would be 
strenuous.

Even if an ideal solution were found, developers 
wouldn’t adopt it immediately. They would have to 
experiment with the technology. They would also like to 
see several large workhorse applications converted and 
benchmarked. Being able to use the existing code base in 
some fashion would make the transition easier, although 
developers would still consider a new language that didn’t 
allow this if it satisfied their other requirements.

Measures of productivity
Developers suggested several useful measures of pro-

ductivity. One was scientifically useful results—suffi-
cient simulated time and resolution, plus sufficient accu-
racy of physical models and algorithms—over calendar 
time. Another measure was problem size over calendar 
time, where the goal is to run a larger simulation over 
shorter calendar time. One developer gave the example 
of running a particular simulation in a calendar week 
instead of a calendar quarter. This is related both to code 
speed and machine availability.

Implementation. Other suggested measures had to 
do with time to implementation: Minimize the time 
between an algorithm’s conception and its implementa-
tion on a parallel architecture or the time to perform 
minor or substantial code modifications. For users to 
be productive, they must move quickly from equations 
to mapping equations to a parallel model, and then to 
getting an implementation and running it on a machine. 
Even a petascale machine would be too small for some 
of the problems being addressed.

Developers spend most of their time trying to map the 
solution to what’s achievable given today’s computing 
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resources, so that the problem is solvable in a reason-
able period. Therefore, they focus on developing more 
efficient algorithms, and they’re more concerned with 
how long it will take to develop a solution than how long 
a particular run takes. They have a much longer-term 
view on performance issues than high-end computing 
system vendors.

For a professor overseeing students, one suggested 
metric was the time between a grad student complet-
ing second-year coursework and becoming a productive 
researcher. This involves acquiring skills as a developer 
and designer of parallel algorithms, and understanding 
the physics and how parallelism applies to it.

Infrastructure. It would have been more productive 
if each project team didn’t have to build its software 
infrastructure largely from the ground up. One devel-
oper related how, after a computational scientist at Law-
rence Livermore National Laboratory designed and pro-
grammed an algorithm, the program was handed off to 
an applications programmer who would rewrite it to run 
quickly on the system: A good test of a productive envi-
ronment is when the applications programmer doesn’t 
need to rewrite the computational scientists’ programs.

Some productivity issues were only tangentially related 
to expressing parallelism in the code. One developer 
brought up the importance of verifying and validating to 
a project’s productivity, especially given the substantial 
learning curve involved in adopting a formal verification 
and validation process, which the national laboratories 
pushed several years ago. The ability to estimate the effort 
required to implement features and the resulting perfor-
mance of the code outside users’ code reuse, and external 
users, easily modifying the code to suit their own needs 
were among other productivity issues mentioned.

T hese projects face unique challenges both because 
of the nature of the problem and the difficulties 
associated with programming the environment. 

Because the projects we examined are based in academic 
environments, it’s unclear how much they would gen-
eralize to computational science projects in industry or 
government. ■
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