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Harnessing  
Digital Evolution 

N early 150 years ago, Charles Darwin 
explained how evolution and natural selec-
tion transformed the earliest life forms into 
the rich panoply of life seen today. Scientists 
estimate this process has been at work on 

Earth for at least 3.5 billion years. 
But we remain at the dawn of evolution in another 

world: the world of computing. There, evolution helps 
humans solve complex problems in engineering and 
provides insight into the evolutionary process in nature. 
As computing power continues to increase, research-
ers and developers apply evolutionary algorithms to an 
ever-widening variety of problems. As the “Evolution 
in a Computer” sidebar shows, evolutionary computa-
tion methods such as genetic algorithms have already 
achieved considerable success, rivaling and surpassing 
human designers in problem domains as wide-ranging 
as flash memory sticks and aircraft wings. 

We are investigating how to harness the power of 
evolution to help construct better computer software. 
The increasing interaction between computing technol-
ogy and the physical world motivates this work. Sys-
tems must adapt to their environment, compensate for 
failures, optimize performance, and protect themselves 
from attacks—all with minimal human intervention.1,2

To design robust and resilient computational systems, 
we can take inspiration from nature. Living organisms 
have an amazing ability to adapt to changing envi-
ronments, both in the short term through phenotypic  

plasticity and in the longer term through Darwinian evo-
lution. Indeed, no existing cybersystem rivals the com-
plexity of Earth’s biosphere, yet life on Earth has evolved 
to not only deal with this complexity but to thrive on it.

Many researchers have studied how to use the charac-
teristics of natural systems to design better computing 
systems. One approach mimics the behaviors of social 
insects and other species. However, while such biomi-
metic methods have shown promise in controlling fleets 
of unmanned robotic systems and in other applications, 
they can only codify behaviors observed in nature today. 
Purely biomimetic approaches seek to imitate the results 
of evolution, but they do not account for the process of 
natural selection that produced those behaviors.

For example, we can design the control software on 
a microrobot so that it mimics certain behaviors found 
in ants. However, while the robot might possess some 
physical characteristics reminiscent of an ant, the dif-
ferences vastly outnumber the similarities. On the other 
hand, if we had the ability to evolve the control software, 
taking into account the capabilities of the robot and the 
characteristics of its environment, new behaviors might 
emerge that more effectively control the robot.3

DIGITAL PETRI DISH
Digital evolution gives us this power, and we are inves-

tigating how it can aid us in designing robust compu-
tational systems. Digital evolution is a form of evolu-
tionary computation in which self-replicating computer 

In digital evolution, self-replicating computer programs—digital organisms—experience 

mutations and selective pressures, potentially producing computational systems that, like 

natural organisms, adapt to their environment and protect themselves from threats. Such 

organisms can help guide the design of computer software.
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programs evolve within a user-defined computational 
environment.4 These digital organisms receive limited 
resources whose use must be carefully balanced if they 
are to survive. As organisms replicate, instruction-level 
mutations produce variation within the population. 
Over generations, natural selection can produce instruc-
tion sequences that can realize complex behaviors, some-
times revealing unexpected and strikingly clever strate-
gies for solving problems.

Our work uses and extends the Avida digital evolu-
tion platform. Figure 1 depicts an Avida population and 
the structure of an individual organism. Each digital 
organism consists of a circular list of instructions—its 
genome—and a virtual CPU, which executes the instruc-
tions. An Avida environment comprises several cells, 
each of which can contain at most one organism, or 
Avidian. When an Avidian replicates, the system places 
the offspring in a randomly selected cell, terminating 
any previous inhabitant. Organisms can send messages 
to each other, produce and consume resources, and sense 
and change their environment’s properties. Through 

these interactions, an organism can gain or lose virtual 
CPU cycles, affecting how fast it executes instructions.

The virtual CPU architecture used in most of our stud-
ies is simple, containing three general-purpose registers 
{AX, BX, CX}, two general-purpose stacks {GS, LS}, and 
four special-purpose heads. These heads serve as point-
ers into the organism’s genome and resemble a tradi-
tional program counter or stack pointer. The instruction 
set for this virtual CPU is Turing-complete, and there-
fore, theoretically, it can realize any computable func-
tion. Available instructions perform basic computational 
tasks (addition, multiplication, and bit-shifts), control 
execution flow, enable communication, and allow for 
replication. Although the instruction set resembles a tra-
ditional assembly language, it is designed so that random 
mutations (inserting, deleting, or changing instructions) 
will always yield a syntactically correct program.

Avidians receive virtual CPU-cycle rewards for per-
forming user-defined tasks, generally defined in terms of 
the organisms’ externally visible behaviors—their pheno-
type. For example, a task might require the organism to 

Evolution in a Computer
Evolutionary computation,1 a subfield of computer 

science, applies the basic principles of genetic evolu-
tion to problem solving. EC is based on evolutionary 
biology and extends into many other fields, includ-
ing artificial life. In general, an EC system contains 
one or more populations of individuals that compete 
for resources in a computational environment. These 
individuals produce offspring according to their fit-
ness, which often depends on the problem domain. 
The most well-known evolutionary computation 
method is the genetic algorithm.2 In this iterative 
search technique the individuals in the population 
are encodings of candidate solutions to an optimiza-
tion problem. In each generation, the fitness of every 
individual is calculated, and a subset of individuals is 
selected, recombined, or mutated, and moved to the 
next generation. 

Genetic programming3 provides a related method 
in which the individuals are actual computer pro-
grams. These approaches and other EC methods have 
been used to solve complex problems, in some cases 
producing patentable designs.3 The annual Genetic 
and Evolutionary Computation Conference gives 
awards for human-competitive results produced  
by genetic and evolutionary computation (www. 
geneticprogramming.org/hc2007/cfe2007.html).

While the broad field of evolutionary computation 
has been studied extensively since the 1960s, the 
subfield of digital evolution is much younger. Self-rep-
licating digital organisms can be traced to the game 

Core War, which Steen Rasmussen extended in 1990 
into a system he called Core World. Soon after, Thomas 
Ray designed Tierra, which used a streamlined and 
fault-tolerant genetic language.

In 1993, Charles Ofria, Chris Adami, and C. Titus 
Brown began developing the Avida digital-evolution 
platform4 at the California Institute of Technology. In 
Avida, each program lives in its own address space, 
unlike Tierra’s shared address space. This enhance-
ment increased the power of digital evolution as 
an experimental tool. Avida has since been used to 
conduct pioneering research in the evolution of bio-
complexity, with an emphasis on understanding the 
evolutionary design process in nature. In addition to 
providing a tool for biologists, digital evolution pro-
vides an open-ended search technique for problems 
in science and engineering.
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perform a particular mathematical or logical operation 
and output the result, or communicate with neighboring 
organisms in a manner helpful to distributed problem 
solving. Tasks create selective pressures in the popula-
tion, favoring genomes where mutations have produced 
sequences of instructions that complete tasks.

In our studies, evolved code segments for completing 
tasks vary in length from a few instructions to several 
tens of instructions. An evolved solution might not be 
optimal when considering the task in isolation, but will 
likely have other properties that make it well-suited to 
its environment—robustness to mutation, for example. 
Moreover, code for completing tasks cannot mutate 
into the genome at the expense of replication, which is 
the only way organisms can pass their genetic material 

to future generations. Avidians that are most success-
ful—those that replicate faster, or perform user-defined 
tasks—are more likely to spread throughout and even-
tually dominate the population. Indeed, Avida satisfies 
the three conditions necessary for evolution to occur5: 
replication, variation (mutation), and differential fitness 
(competition). Avida does not simulate evolution—it is 
an instance of evolution.

Researchers created the Avida platform primarily for 
studying evolution in nature. Observing evolution in 
digital organisms lets users address questions difficult 
or impossible to study with organic life forms, such as 
explicitly disabling selected mutations and observing the 
effects, or analyzing the genomes of all organisms along 
a particular evolutionary path. For example, Richard 
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Figure 1. Elements of the Avida digital evolution platform: (top) structure of an individual organism and (bottom) a population of 
digital organisms in an 8  10 grid of cells. Different colors represent organisms with  different genomes.
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Lenski and colleagues6 used Avida to demonstrate that 
evolution can produce complex features by combining 
previously evolved “building blocks,” helping to answer a 
long-standing scientific question posed by Darwin. How-
ever, Avida is an extensible platform that lets researchers 
and developers apply digital evolution to many different 
problem domains, including nonbiological ones. The user 
can completely customize many Avida features—includ-
ing the virtual CPU architecture, instruction sets, and 
tasks. Today, a user with a modest compute cluster can 
explore hundreds of populations, totaling millions of 
generations, in a single day. Effectively, Avida provides 
the user with a digital “petri dish” for creating and ana-
lyzing new computational behaviors.

APPLICATION TO SOFTWARE DESIGN
Among other applications in science and engineering, 

digital evolution enables a fundamentally new approach 
to software design, whereby developers can actively 
explore new program behaviors and prospective path-
ways for complex software systems, all during the initial 
design. As depicted in Figure 2, we can apply Avida in at 
least three different ways to create software.

First, similar to biomimetics, behaviors that evolve in 
silico can provide insight into the design of new algo-
rithms and protocols. Moreover, since digital organ-
isms live in an environment that can be user-configured, 
exploration of behaviors is not limited to those found 
in the natural world. Novel strategies revealed through 
digital evolution can be codified in a traditional pro-
gramming language and deployed in hardware. For 
example, digital evolution might yield energy-conserv-
ing behaviors that can be programmed and deployed in 
sensor networks.

Second, since the genomes of digital organisms are 
programs, they can be cross-compiled and executed 
directly atop hardware. For example, our group has 
recently developed a tool that converts Avida genomes 
to C code, which can be compiled and executed on a 
variety of devices, including sensor nodes and mobile 

robots. Such technologies let us test Avida-generated 
behaviors—such as cooperative communication opera-
tions and group-oriented mobility control—in the real 
world.

In the third approach, instead of evolving the software 
itself, we can evolve organisms that generate software 
artifacts. For example, we have applied digital evolution 
to the problem of generating and extending software 
design models to satisfy requirements. Specifically, Avid-
ians act as generators and evolve to construct in-memory 
representations of state diagrams describing the system’s 
behavior. Organisms can gain virtual CPU cycles by con-
structing state diagrams that meet requirements specified 
by the user, including scenarios that should be supported 
and properties that should be satisfied. If successful, nat-
ural selection produces a population of organisms that 
generate increasingly better solutions. Existing software 
engineering tools can be used to translate the resulting 
models into code.

ONGOING STUDIES
Our initial investigations focus on evolving behaviors 

needed in computing systems that interact with the physi-
cal world: cooperative communication, energy conserva-
tion, and adding new functionality to an existing sys-
tem. When exploring a particular problem, we typically 
execute several batches of Avida runs, each with a differ-
ent mix of tasks, then analyze the evolutionary process 
and resulting behaviors. A batch typically contains 20 
runs, each of which starts with the same default organ-
ism capable only of self-replication. All other behaviors 
must enter the genome through mutations. Since each run 
within a batch starts with a different random number 
seed, the populations take different evolutionary paths.

Cooperative communication
The first study addresses the evolution of coopera-

tive communication algorithms. Sensor networks often 
employ complex distributed operations such as mul-
ticasting, gathering sensed data, and detecting and 
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responding to events of interest. Unfortunately, many 
traditional algorithms for solving these problems are 
brittle when deployed in dynamic environments, and 
improvements are limited to the methods considered by 
human designers.

On the other hand, digital evolution provides a means 
to explore a larger solution space, potentially discovering 
algorithms more likely to remain effective even under 
extremely adverse conditions. For digital organisms to 
thrive in highly dynamic environments such as Avida, 
where organisms continually replace one another, they 
must evolve resilient solutions.

Consider the evolution of a particular distributed prob-
lem-solving task. We assign each cell in the environment 
a random 32-bit identifier, which a resident organism 
can sense using the GET-ID instruction. The organisms 
must determine the largest sensed value and distribute 
it throughout the population. Performing this operation 
could provide a basis for a leader-election algorithm, or 
a wireless sensor network could use it to obtain and dis-
tribute the maximum sensed value.

We designed a set of tasks to reward Avidians with 
more virtual CPU time for exhibiting cooperative behav-
iors and to penalize them with less when they did not. 
Over time, the population evolved to identify the largest 
value. To further assess the robustness of their solution to 
the problem, once the largest value had been discovered, 
we removed it from the population. This forced the popu-
lation to continually search for the maximum value.

Figure 3 shows snapshots of a population that evolved 
these behaviors. The snapshots show the spread of two 
different values. Each snapshot identifies which organ-
isms send the largest cell ID (blue), which send the sec-
ond-largest cell ID (red), and which send both (green). 
By frame 6, nearly all organisms are sending messages 
that carry the largest cell ID; a few organisms near the 
cell with the second-largest ID send both. We reset the 
largest cell ID just prior to frame 7. As shown, the trans-

mission of that cell ID dies out quickly. The population, 
however, recovers and proliferates messages that carry 
the new largest cell ID.

Figure 4 shows the dominant genome from the popu-
lation exhibiting this behavior. This particular genome 
comprises 85 instructions, of which 11 are responsible 
for the desired behavior, 22 implement the organism’s 
replication cycle, one instruction is shared, and 51 
instructions—or 60 percent of the genome—are neutral 
mutations that do not affect the organism’s phenotype. 
Genomes of living organisms, including humans, also 
contain large percentages of “junk DNA,” the role of 
which researchers do not completely understand, but 
which might include serving as building blocks for new 
functionality.

Interestingly, this particular genome has a spin-wait 
near the top of the highlighted code segment, which 
effectively makes the organism’s replication dependent 
upon receiving a message that carries a cell ID larger 
than its own. Organisms with this genome have evolved 
to the point where they depend upon other organisms’ 
behavior for their survival: If an organism does not 
receive a message that has a data field larger than its 
own cell ID, it will not reproduce.

Energy management
Mobile devices with limited battery resources must 

conserve energy. For example, communication traffic 
flowing through an ad hoc wireless network directly 
affects the energy consumption at individual nodes, and 
excessive or disproportionate energy consumption can 
lead to node failure and possibly network partitioning. 
Determining the optimal energy management strategy in 
such situations involves many factors—such as dynamic 
flows, physical topology, movement constraints, security 
concerns, and energy consumption—and a multitude of 
possible scenarios. This part of our research investigates 
whether digital evolution can yield energy-efficient algo-

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Figure 3. Snapshots of an Avida population in a 60  60 grid. The snapshots demonstrate distribution of the largest sensed value (blue) 
and, when that value resets, the next-largest value (red). Organisms sending both messages appear in green.
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rithms and protocols that per-
form well under dynamic and 
adverse conditions.

Our early studies focus on 
the evolution of sleep behav-
ior in digital organisms.7 We 
subjected populations of Avid-
ians to an environment with a 
slowly diminishing resource and 
recorded their ability to adapt 
to the changing environment 
using sleep instructions. These 
instructions let organisms enter 
a low-energy state that lasts 
for multiple CPU cycles. Avid-
ians were rewarded for per-
forming simple computational 
tasks—logic operations—but 
only when this resource, the 
digital equivalent of sunlight, 
was available. The resource was 
available a percentage of each 
256-time-step Avidian day, but 
that percentage declined with 
each passing year of 500 Avid-
ian days.

We observed that Avidians 
adapted to use sleep instruc-
tions effectively, despite the risk 
that a sleeping organism might 
be replaced before it repro-
duced. Examination of genomes 
showed that some populations 
evolved a behavior we antici-
pated, where organisms would 
sleep for short intervals and 
periodically wake to check for 
the resource. However, a major-
ity of the populations evolved 
an unexpected behavior, the 
equivalent of a biological alarm 
clock, that adjusted the length 
of the gestation cycle to syn-
chronize with the resource’s 
availability. Moreover, experi-
ments revealed that organisms 
evolved to start sleeping just 
before the resource went away 
and—just prior to the return of 
the resource—to awaken and 
begin preparing data to be used 
in tasks.

This “early to bed, early to rise” behavior lets organisms 
finish tasks early during periods of resource availability, 
thereby increasing the probability of receiving a reward. 
It also helps avoid situations in which an organism starts 

working on a task but completes it just after the resource 
disappears, when there is no reward. Figure 5 shows a 
sample population that evolved this behavior, recorded in 
snapshots of a 60  60 grid during a single Avidian day.
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At this point in the run, the resource is available about 
44 percent of the day. The black squares depict sleep-
ing organisms, the white squares awake ones. The three 
snapshots at the top part of the figure depict the popula-
tion’s state when the resource is available, while the five 
snapshots on the bottom part depict the population’s 
state when the resource is unavailable. This adaptive 
behavior arose in 37 out of 50 runs. 

Our ongoing studies address conservation of energy 
balanced against other activities, such as detecting and 
reporting events of interest. We plan to test the most 
promising evolved solutions on sensor network simula-
tors and, eventually, deploy them on physical devices and 
compare them to hand-built solutions. 

Evolving behavioral models 
We also use digital organisms to assist in construct-

ing models of software behavior, including adding new 
functionality to an existing system. Software develop-
ers often use model-driven development (MDD)8 to 
construct graphical models of desired structure and 
behavior, automatically transform the models into more 
formal specifications, and eventually generate the cor-
responding code.

Currently, many developers use the Unified Model-
ing Language to model systems. Despite MDD’s many 
advantages, however, the construction of a UML behav-
ioral model—which comprises a set of state diagrams for 
interacting objects—can be error-prone and difficult to 
automate, especially when extending an existing model 

to include new functionality. Digital evolution provides 
a means to generate possible solutions automatically.

Our approach, depicted in Figure 6, treats each Avidian 
as a generator of state diagrams: When the organism exe-
cutes, it constructs an in-memory representation of one 
or more state diagrams. To implement this method, we 
extended Avida and integrated it with existing software 
engineering tools. First, we provide each organism with 
information about class diagram elements and, option-
ally, any existing state diagrams of the system. We call 
this information instinctual knowledge.

When replication creates a new organism, it is pro-
vided with a file containing its instinctual knowledge. 
For every class in the class diagram, the file contains an 
optional existing state diagram and lists of elements—
such as triggers, guards, actions, and states. We also 
enhanced the Avida instruction set with instructions that 
let an organism use its instinctual knowledge to create 
additional transitions in one or more state diagrams.

For a given problem, the developer defines a col-
lection of tasks that reward organisms for generating 
state diagrams that support scenarios, satisfy formally 
specified properties, and optimize software engineering 
metrics, such as minimizing the number of transitions 
in a diagram. To enable Avida to assess the completion 
of such tasks, we integrated it with a UML formaliza-
tion framework, Hydra,9 and the Spin model checker.10 
Hydra translates generated state diagrams into a repre-
sentation in the Promela specification language, which 
Spin verifies against properties.

Figure 5. Representations of a population’s response to the resource availability during an Avidian day. Black squares represent 
sleeping organisms, white squares represent awake ones. Snapshots in the figure’s top half show the population when the resource is 
available, and they are rewarded for completing tasks. Snapshots in the figure’s bottom half show the population when the resource 
is not available, and task completion goes unrewarded.
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As in other Avida applications, a population starts 
with a single organism capable only of replication. As the 
organism and its descendants replicate, random muta-
tions produce different genomes. Organisms that gen-
erate state diagrams exhibiting desired characteristics 
receive more CPU cycles and thus replicate faster.

Effectively, an Avida population is subject to a natu-
ral-selection pressure that rewards organisms for gen-
erating state diagrams that support key scenarios and 
satisfy critical properties. If an organism generates state 
diagrams that support all key scenarios and satisfy all 
properties, it has successfully and automatically gener-
ated a behavioral model for the system. We refer to the 
state diagrams that meet these requirements as compli-
ant state diagrams. At this point, the experiment suc-
ceeds and we can halt it, or we might allow it to proceed 
to find other sets of compliant state diagrams. We used 
this approach to generate state diagrams describing new 
mobility behavior in a robot.11 Researchers and develop-
ers can apply this technology to other domains exhibit-
ing complex requirements.

FUTURE DIRECTIONS
Although evolutionary computation is a well-estab-

lished computing subfield, we are just beginning to 
understand how to harness the evolution of self-repli-
cating digital organisms. Several major lines of research 
offer opportunities for those interested in this area of 
study.

The first involves different architectures and instruc-
tion sets. Avida is an extensible platform, and various 
von Neumann CPU architectures have been implemented 
and used in past studies. Within the current Avida envi-
ronment, we are investigating instruction sets with bet-
ter support for flow control, function invocation, and 

context switching. However, fundamentally different 
computation models, such as data flow machines or even 
models based on processors found in natural systems, 
such as gene regulatory networks, might lead to the evo-
lution of complex and adaptive behaviors.

We also plan to expand our work on evolving digital 
organisms to construct models of software and other 
aspects of computing systems. Integrating Avida with 
tools for automated software engineering helps address 
the increasing need for high-assurance, robust software 
that can tolerate adverse physical conditions and flaws 
in hardware fabrication. Moreover, Avidians can evolve 
to help design other structures—such as network topolo-
gies—important to distributed computing.

Mobility presents another major area of future study. 
Members of our group have recently modified Avida to 
let organisms move among cells, and we have started 
developing a continuous-space Avida environment in 
which the laws of physics govern movement and commu-
nication. We are particularly interested in the evolution 
of cooperative mobility control. Coordination of move-
ments is critical to behaviors such as flocking, avoiding 
obstacles, and eluding enemies. Moreover, recent stud-
ies with mobile sensors have shown that it’s possible to 
exploit mobility to provide certain benefits to network 
performance, energy conservation, and communication 
security. A fundamental question is whether digital evo-
lution might find behaviors that enable a collection of 
mobile robots to adapt to, and perhaps exploit, current 
conditions in ways not otherwise apparent to human 
designers.

A related area of study involves integrating biomimetics 
and digital evolution. Evolution has produced complex 
behaviors in natural systems, which might provide an 
effective starting point for evolving control software for 
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robots. For example, some animal species exhibit fission-
fusion relationships in which individuals join together 
for some tasks, such as guarding a den or attacking prey, 
but act independently at most other times. We can hand-
code such behaviors in an Avida organism and use it to 
seed the evolutionary process. Evolution in Avida would 
likely modify the behaviors to account for differences 
between robots and animals, including both enhanced 
capabilities such as availability of radio communication 
and limitations such as physical agility.

Finally, we can explore the joint evolution of the sys-
tem’s morphology, or physical structure, and its control 
software. Several researchers use evolutionary computa-
tion to help design integrated software and hardware for 
robots.12 After all, organisms’ bodies and brains evolve 
together in nature. Indeed, some would argue that intel-
ligent behavior can evolve only when the system’s deci-
sion-making part is coupled with a physical body that 

has sensors and actuators. Others claim that the sense-
and-respond functionality can be abstracted from the 
physical world (into software sensors and actuators, for 
example) and still lead to evolution of intelligent behav-
ior. Using digital evolution, we have begun studies to 
help answer this question.

O ur preliminary studies using Avida to evolve inter-
esting behaviors show promise and open doors 
to several areas of future research. In addition, 

the “Related Research” sidebar profiles several other 
research groups that apply various forms of evolutionary 
computation to systems design. This problem domain 
appears to offer a fertile research area with potentially 
important implications, given the increasing complexity 
of computing systems. We hope this research community 
will continue to grow.

Related Research
Research into harnessing evolution extends into 

both the design and behavior of virtual and embod-
ied agents and machines. Evolution has been har-
nessed to create more realistic videogames, MEMS 
chips that operate under extreme conditions, and 
swarm behavior in robots. Research papers in this 
area can be found in journals and conferences spon-
sored by the IEEE Computational Intelligence Society, 

the ACM Special Interest Group for Genetic and Evo-
lutionary Computation, and the International Society 
of Artificial Life, among others. 

Table A displays a small sampling of the groups 
conducting research in this field. While these groups 
use widely varying underlying substrates, they all 
share the concept of harnessing evolution and using 
it to solve problems.

Table A. Sampling of groups applying evolutionary computing to systems design.

Laboratory/Group Institution/Organization Keywords

Neural Networks Research Group University of Texas at Austin Neuroevolution, self-organization, robotics, evolutionary  
  computation
Dynamical and Evolutionary Machine  Brandeis University Coevolution, evolutionary robotics, neuroevolution 
Organization Laboratory
Cornell Computational Synthesis Laboratory Cornell University Evolutionary robotics, modular robotics, rapid   
  prototyping
IRIDIA Laboratory Free University of Brussels Swarm intelligence, swarm-bots, self-organizing  
  systems, biological networks
Laboratory of Intelligent Systems École Polytechnique Fédérale Flying robots, artificial evolution, social systems 
 de Lausanne
Adaptive Control and Evolvable Systems  US National Aeronautics and  Automated design, system optimization 
Group Space Administration
Digital Biology Interest Group University College London Evolutionary computation, bio-inspired computing,  
  developmental systems
Evolutionary Computation Laboratory University of Central Florida Neuroevolution, coevolution, autonomous agents
Bionics and Evolutiontechnique Department Technische Universität Berlin Bio-inspired machines, bionics
Adaptive Computation Group University of New Mexico Artificial immune systems, genetic algorithms, biological  
  modeling
Evolutionary and Adaptive Systems Group University of Sussex Artificial life, evolutionary computation, adaptive systems
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Further information on our research can be found at 
www.cse.msu.edu/thinktank. For papers on other digital 
evolution applications, and Avida downloads and accom-
panying documentation, see http://devolab.cse.msu.edu. 
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