
54 Computer Published by the IEEE Computer Society 0018-9162/08/$25.00 © 2008 IEEE

C O V E R F E A T U R E

Harnessing
Digital Evolution

N early 150 years ago, Charles Darwin
explained how evolution and natural selec-
tion transformed the earliest life forms into
the rich panoply of life seen today. Scientists
estimate this process has been at work on

Earth for at least 3.5 billion years.
But we remain at the dawn of evolution in another

world: the world of computing. There, evolution helps
humans solve complex problems in engineering and
provides insight into the evolutionary process in nature.
As computing power continues to increase, research-
ers and developers apply evolutionary algorithms to an
ever-widening variety of problems. As the “Evolution
in a Computer” sidebar shows, evolutionary computa-
tion methods such as genetic algorithms have already
achieved considerable success, rivaling and surpassing
human designers in problem domains as wide-ranging
as flash memory sticks and aircraft wings.

We are investigating how to harness the power of
evolution to help construct better computer software.
The increasing interaction between computing technol-
ogy and the physical world motivates this work. Sys-
tems must adapt to their environment, compensate for
failures, optimize performance, and protect themselves
from attacks—all with minimal human intervention.1,2

To design robust and resilient computational systems,
we can take inspiration from nature. Living organisms
have an amazing ability to adapt to changing envi-
ronments, both in the short term through phenotypic

plasticity and in the longer term through Darwinian evo-
lution. Indeed, no existing cybersystem rivals the com-
plexity of Earth’s biosphere, yet life on Earth has evolved
to not only deal with this complexity but to thrive on it.

Many researchers have studied how to use the charac-
teristics of natural systems to design better computing
systems. One approach mimics the behaviors of social
insects and other species. However, while such biomi-
metic methods have shown promise in controlling fleets
of unmanned robotic systems and in other applications,
they can only codify behaviors observed in nature today.
Purely biomimetic approaches seek to imitate the results
of evolution, but they do not account for the process of
natural selection that produced those behaviors.

For example, we can design the control software on
a microrobot so that it mimics certain behaviors found
in ants. However, while the robot might possess some
physical characteristics reminiscent of an ant, the dif-
ferences vastly outnumber the similarities. On the other
hand, if we had the ability to evolve the control software,
taking into account the capabilities of the robot and the
characteristics of its environment, new behaviors might
emerge that more effectively control the robot.3

DIGITAL PETRI DISH
Digital evolution gives us this power, and we are inves-

tigating how it can aid us in designing robust compu-
tational systems. Digital evolution is a form of evolu-
tionary computation in which self-replicating computer

In digital evolution, self-replicating computer programs—digital organisms—experience

mutations and selective pressures, potentially producing computational systems that, like

natural organisms, adapt to their environment and protect themselves from threats. Such

organisms can help guide the design of computer software.

Philip McKinley, Betty H.C. Cheng, Charles Ofria, David Knoester,
Benjamin Beckmann, and Heather Goldsby
Michigan State University

 January 2008 55

programs evolve within a user-defined computational
environment.4 These digital organisms receive limited
resources whose use must be carefully balanced if they
are to survive. As organisms replicate, instruction-level
mutations produce variation within the population.
Over generations, natural selection can produce instruc-
tion sequences that can realize complex behaviors, some-
times revealing unexpected and strikingly clever strate-
gies for solving problems.

Our work uses and extends the Avida digital evolu-
tion platform. Figure 1 depicts an Avida population and
the structure of an individual organism. Each digital
organism consists of a circular list of instructions—its
genome—and a virtual CPU, which executes the instruc-
tions. An Avida environment comprises several cells,
each of which can contain at most one organism, or
Avidian. When an Avidian replicates, the system places
the offspring in a randomly selected cell, terminating
any previous inhabitant. Organisms can send messages
to each other, produce and consume resources, and sense
and change their environment’s properties. Through

these interactions, an organism can gain or lose virtual
CPU cycles, affecting how fast it executes instructions.

The virtual CPU architecture used in most of our stud-
ies is simple, containing three general-purpose registers
{AX, BX, CX}, two general-purpose stacks {GS, LS}, and
four special-purpose heads. These heads serve as point-
ers into the organism’s genome and resemble a tradi-
tional program counter or stack pointer. The instruction
set for this virtual CPU is Turing-complete, and there-
fore, theoretically, it can realize any computable func-
tion. Available instructions perform basic computational
tasks (addition, multiplication, and bit-shifts), control
execution flow, enable communication, and allow for
replication. Although the instruction set resembles a tra-
ditional assembly language, it is designed so that random
mutations (inserting, deleting, or changing instructions)
will always yield a syntactically correct program.

Avidians receive virtual CPU-cycle rewards for per-
forming user-defined tasks, generally defined in terms of
the organisms’ externally visible behaviors—their pheno-
type. For example, a task might require the organism to

Evolution in a Computer
Evolutionary computation,1 a subfield of computer

science, applies the basic principles of genetic evolu-
tion to problem solving. EC is based on evolutionary
biology and extends into many other fields, includ-
ing artificial life. In general, an EC system contains
one or more populations of individuals that compete
for resources in a computational environment. These
individuals produce offspring according to their fit-
ness, which often depends on the problem domain.
The most well-known evolutionary computation
method is the genetic algorithm.2 In this iterative
search technique the individuals in the population
are encodings of candidate solutions to an optimiza-
tion problem. In each generation, the fitness of every
individual is calculated, and a subset of individuals is
selected, recombined, or mutated, and moved to the
next generation.

Genetic programming3 provides a related method
in which the individuals are actual computer pro-
grams. These approaches and other EC methods have
been used to solve complex problems, in some cases
producing patentable designs.3 The annual Genetic
and Evolutionary Computation Conference gives
awards for human-competitive results produced
by genetic and evolutionary computation (www.
geneticprogramming.org/hc2007/cfe2007.html).

While the broad field of evolutionary computation
has been studied extensively since the 1960s, the
subfield of digital evolution is much younger. Self-rep-
licating digital organisms can be traced to the game

Core War, which Steen Rasmussen extended in 1990
into a system he called Core World. Soon after, Thomas
Ray designed Tierra, which used a streamlined and
fault-tolerant genetic language.

In 1993, Charles Ofria, Chris Adami, and C. Titus
Brown began developing the Avida digital-evolution
platform4 at the California Institute of Technology. In
Avida, each program lives in its own address space,
unlike Tierra’s shared address space. This enhance-
ment increased the power of digital evolution as
an experimental tool. Avida has since been used to
conduct pioneering research in the evolution of bio-
complexity, with an emphasis on understanding the
evolutionary design process in nature. In addition to
providing a tool for biologists, digital evolution pro-
vides an open-ended search technique for problems
in science and engineering.

References
 1. K.A. De Jong, Evolutionary Computation: A Unified

Approach, MIT Press, 2002.
 2. J.H. Holland, Adaptation in Natural and Artificial Systems:

An Introductory Analysis with Applications to Biology, Con-
trol, and Artificial Intelligence, Univ. Michigan Press, 1975.

 3. J.R. Koza et al., Genetic Programming IV: Routine Human-
Competitive Machine Intelligence, Genetic Programming,
Springer, 2005.

 4. C. Ofria and C.O. Wilke, “Avida: A Software Platform for
Research in Computational Evolutionary Biology,” J. Arti-
ficial Life, vol. 10, 2004, pp. 191-229.

56 Computer

C O V E R F E A T U R E

perform a particular mathematical or logical operation
and output the result, or communicate with neighboring
organisms in a manner helpful to distributed problem
solving. Tasks create selective pressures in the popula-
tion, favoring genomes where mutations have produced
sequences of instructions that complete tasks.

In our studies, evolved code segments for completing
tasks vary in length from a few instructions to several
tens of instructions. An evolved solution might not be
optimal when considering the task in isolation, but will
likely have other properties that make it well-suited to
its environment—robustness to mutation, for example.
Moreover, code for completing tasks cannot mutate
into the genome at the expense of replication, which is
the only way organisms can pass their genetic material

to future generations. Avidians that are most success-
ful—those that replicate faster, or perform user-defined
tasks—are more likely to spread throughout and even-
tually dominate the population. Indeed, Avida satisfies
the three conditions necessary for evolution to occur5:
replication, variation (mutation), and differential fitness
(competition). Avida does not simulate evolution—it is
an instance of evolution.

Researchers created the Avida platform primarily for
studying evolution in nature. Observing evolution in
digital organisms lets users address questions difficult
or impossible to study with organic life forms, such as
explicitly disabling selected mutations and observing the
effects, or analyzing the genomes of all organisms along
a particular evolutionary path. For example, Richard

D send−msg
z if−label
u h−copy

u h−copy
u h−copy

D send−msg
u h−copy

z if−label
u h−copy

E retrieve−msg
F get−id
f if−grt
w mov−head

v h−searchi swap−stk

z if−labelF get−idc nop−CD send−msg

t h−divide
a nop−Ay get−head
o adde if−lessy get−headA set−flow

s h−alloc

C rotate−r
m inc

e if−less
b nop−B

h push
q nand

k shift−r

p sub

p sub

C rotate−r

get−id

mov−head
if−grt

retrieve−msg
CX

Heads

Write

Read

Flow−control

Instruction

Cell
interface

CPU
Stacks

LS
GS

Registers

BX

AX

Figure 1. Elements of the Avida digital evolution platform: (top) structure of an individual organism and (bottom) a population of
digital organisms in an 8 10 grid of cells. Different colors represent organisms with different genomes.

 January 2008 57

Lenski and colleagues6 used Avida to demonstrate that
evolution can produce complex features by combining
previously evolved “building blocks,” helping to answer a
long-standing scientific question posed by Darwin. How-
ever, Avida is an extensible platform that lets researchers
and developers apply digital evolution to many different
problem domains, including nonbiological ones. The user
can completely customize many Avida features—includ-
ing the virtual CPU architecture, instruction sets, and
tasks. Today, a user with a modest compute cluster can
explore hundreds of populations, totaling millions of
generations, in a single day. Effectively, Avida provides
the user with a digital “petri dish” for creating and ana-
lyzing new computational behaviors.

APPLICATION TO SOFTWARE DESIGN
Among other applications in science and engineering,

digital evolution enables a fundamentally new approach
to software design, whereby developers can actively
explore new program behaviors and prospective path-
ways for complex software systems, all during the initial
design. As depicted in Figure 2, we can apply Avida in at
least three different ways to create software.

First, similar to biomimetics, behaviors that evolve in
silico can provide insight into the design of new algo-
rithms and protocols. Moreover, since digital organ-
isms live in an environment that can be user-configured,
exploration of behaviors is not limited to those found
in the natural world. Novel strategies revealed through
digital evolution can be codified in a traditional pro-
gramming language and deployed in hardware. For
example, digital evolution might yield energy-conserv-
ing behaviors that can be programmed and deployed in
sensor networks.

Second, since the genomes of digital organisms are
programs, they can be cross-compiled and executed
directly atop hardware. For example, our group has
recently developed a tool that converts Avida genomes
to C code, which can be compiled and executed on a
variety of devices, including sensor nodes and mobile

robots. Such technologies let us test Avida-generated
behaviors—such as cooperative communication opera-
tions and group-oriented mobility control—in the real
world.

In the third approach, instead of evolving the software
itself, we can evolve organisms that generate software
artifacts. For example, we have applied digital evolution
to the problem of generating and extending software
design models to satisfy requirements. Specifically, Avid-
ians act as generators and evolve to construct in-memory
representations of state diagrams describing the system’s
behavior. Organisms can gain virtual CPU cycles by con-
structing state diagrams that meet requirements specified
by the user, including scenarios that should be supported
and properties that should be satisfied. If successful, nat-
ural selection produces a population of organisms that
generate increasingly better solutions. Existing software
engineering tools can be used to translate the resulting
models into code.

ONGOING STUDIES
Our initial investigations focus on evolving behaviors

needed in computing systems that interact with the physi-
cal world: cooperative communication, energy conserva-
tion, and adding new functionality to an existing sys-
tem. When exploring a particular problem, we typically
execute several batches of Avida runs, each with a differ-
ent mix of tasks, then analyze the evolutionary process
and resulting behaviors. A batch typically contains 20
runs, each of which starts with the same default organ-
ism capable only of self-replication. All other behaviors
must enter the genome through mutations. Since each run
within a batch starts with a different random number
seed, the populations take different evolutionary paths.

Cooperative communication
The first study addresses the evolution of coopera-

tive communication algorithms. Sensor networks often
employ complex distributed operations such as mul-
ticasting, gathering sensed data, and detecting and

Software
models

Observed
behavior

Evolved
genomes

Executables

Executables

ExecutablesHuman
programming

Cross-
compilation

Automatic code
generation

Figure 2. Different ways the authors use Avida to help develop computer software for robots and sensors. Three target platforms
appear at the right of the figure and are, from top to bottom, the iRobot Create robot, e-puck educational robot, and MICA mote and
sensor board.

58 Computer

C O V E R F E A T U R E

responding to events of interest. Unfortunately, many
traditional algorithms for solving these problems are
brittle when deployed in dynamic environments, and
improvements are limited to the methods considered by
human designers.

On the other hand, digital evolution provides a means
to explore a larger solution space, potentially discovering
algorithms more likely to remain effective even under
extremely adverse conditions. For digital organisms to
thrive in highly dynamic environments such as Avida,
where organisms continually replace one another, they
must evolve resilient solutions.

Consider the evolution of a particular distributed prob-
lem-solving task. We assign each cell in the environment
a random 32-bit identifier, which a resident organism
can sense using the GET-ID instruction. The organisms
must determine the largest sensed value and distribute
it throughout the population. Performing this operation
could provide a basis for a leader-election algorithm, or
a wireless sensor network could use it to obtain and dis-
tribute the maximum sensed value.

We designed a set of tasks to reward Avidians with
more virtual CPU time for exhibiting cooperative behav-
iors and to penalize them with less when they did not.
Over time, the population evolved to identify the largest
value. To further assess the robustness of their solution to
the problem, once the largest value had been discovered,
we removed it from the population. This forced the popu-
lation to continually search for the maximum value.

Figure 3 shows snapshots of a population that evolved
these behaviors. The snapshots show the spread of two
different values. Each snapshot identifies which organ-
isms send the largest cell ID (blue), which send the sec-
ond-largest cell ID (red), and which send both (green).
By frame 6, nearly all organisms are sending messages
that carry the largest cell ID; a few organisms near the
cell with the second-largest ID send both. We reset the
largest cell ID just prior to frame 7. As shown, the trans-

mission of that cell ID dies out quickly. The population,
however, recovers and proliferates messages that carry
the new largest cell ID.

Figure 4 shows the dominant genome from the popu-
lation exhibiting this behavior. This particular genome
comprises 85 instructions, of which 11 are responsible
for the desired behavior, 22 implement the organism’s
replication cycle, one instruction is shared, and 51
instructions—or 60 percent of the genome—are neutral
mutations that do not affect the organism’s phenotype.
Genomes of living organisms, including humans, also
contain large percentages of “junk DNA,” the role of
which researchers do not completely understand, but
which might include serving as building blocks for new
functionality.

Interestingly, this particular genome has a spin-wait
near the top of the highlighted code segment, which
effectively makes the organism’s replication dependent
upon receiving a message that carries a cell ID larger
than its own. Organisms with this genome have evolved
to the point where they depend upon other organisms’
behavior for their survival: If an organism does not
receive a message that has a data field larger than its
own cell ID, it will not reproduce.

Energy management
Mobile devices with limited battery resources must

conserve energy. For example, communication traffic
flowing through an ad hoc wireless network directly
affects the energy consumption at individual nodes, and
excessive or disproportionate energy consumption can
lead to node failure and possibly network partitioning.
Determining the optimal energy management strategy in
such situations involves many factors—such as dynamic
flows, physical topology, movement constraints, security
concerns, and energy consumption—and a multitude of
possible scenarios. This part of our research investigates
whether digital evolution can yield energy-efficient algo-

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

Figure 3. Snapshots of an Avida population in a 60 60 grid. The snapshots demonstrate distribution of the largest sensed value (blue)
and, when that value resets, the next-largest value (red). Organisms sending both messages appear in green.

 January 2008 59

rithms and protocols that per-
form well under dynamic and
adverse conditions.

Our early studies focus on
the evolution of sleep behav-
ior in digital organisms.7 We
subjected populations of Avid-
ians to an environment with a
slowly diminishing resource and
recorded their ability to adapt
to the changing environment
using sleep instructions. These
instructions let organisms enter
a low-energy state that lasts
for multiple CPU cycles. Avid-
ians were rewarded for per-
forming simple computational
tasks—logic operations—but
only when this resource, the
digital equivalent of sunlight,
was available. The resource was
available a percentage of each
256-time-step Avidian day, but
that percentage declined with
each passing year of 500 Avid-
ian days.

We observed that Avidians
adapted to use sleep instruc-
tions effectively, despite the risk
that a sleeping organism might
be replaced before it repro-
duced. Examination of genomes
showed that some populations
evolved a behavior we antici-
pated, where organisms would
sleep for short intervals and
periodically wake to check for
the resource. However, a major-
ity of the populations evolved
an unexpected behavior, the
equivalent of a biological alarm
clock, that adjusted the length
of the gestation cycle to syn-
chronize with the resource’s
availability. Moreover, experi-
ments revealed that organisms
evolved to start sleeping just
before the resource went away
and—just prior to the return of
the resource—to awaken and
begin preparing data to be used
in tasks.

This “early to bed, early to rise” behavior lets organisms
finish tasks early during periods of resource availability,
thereby increasing the probability of receiving a reward.
It also helps avoid situations in which an organism starts

working on a task but completes it just after the resource
disappears, when there is no reward. Figure 5 shows a
sample population that evolved this behavior, recorded in
snapshots of a 60 60 grid during a single Avidian day.

b nop−B

get−id

if−grt

mov−head

if−label

h−copy

h−copy

h−copy

send−msg

h−copy

send−msg

if−label

h−copy

rotate−r

h−copy

if−label

nop−C

nop−A

h−divide

mov−head

nop−A

nop−B

retrieve−msg

k shift−r
C rotate−r

s h−alloc

B rotate−l
A set−flow
a nop−A
c nop−C
z if−label
b nop−B
z if−label
g pop
c nop−C
l shift−l

t h−divide

o add
s h−alloc
k shift−r
e if−less

t h−divide
w mov−head
c nop−C

d if−n−equ
a nop−A
E retrieve−msg
c nop−C
c nop−C
l shift−l
b nop−B
G get−pos
v h−search
x jmp−head

t h−divide

l shift−l
x jmp−head
l shift−l
y get−head
p sub
A set−flow
k shift−r
r IO
A set−flow
p sub
k shift−r
h push
q nand
e if−less
b nop−B
C rotate−r
m inc

s h−alloc

t h−divide
a nop−A
y get−head
o add
e if−less
y get−head
A set−flow

z if−label
F get−id
c nop−C
D send−msg

i swap−stk
v h−search

E retrieve−msg
F get−id
f if−grt
w mov−head

z if−label
u h−copy
u h−copy
u h−copy

D send−msg
u h−copy
D send−msg

z if−label
u h−copy

C rotate−r

u h−copy
z if−label
c nop−C
a nop−A
t h−divide
w mov−head
a nop−A

if−label

get−id

nop−C

send−msg

swap−stk

h−search

Unconditionally
copy five
instructions to
the offspring’s
genome.

Task and replication
 cycle

Task−related

Send two
messages
containing the
larger value from
above, and rotate
clockwise.

Send a message
containing the
sensed value.

Shared between a
spin-wait and
replication cycle.

Spin−wait until a
larger value is
received.

Neutral mutation

Copy an
instruction
from parent to
offspring,
divide if
replication
is complete.

Replication cycle

Figure 4. Dominant genome in a population that evolved to identify and distribute the largest
cell ID. The full genome appears on the left. The expanded section of the genome shows how
evolution co-opted the organism’s replication cycle and inserted logic to help perform the
task.

60 Computer

C O V E R F E A T U R E

At this point in the run, the resource is available about
44 percent of the day. The black squares depict sleep-
ing organisms, the white squares awake ones. The three
snapshots at the top part of the figure depict the popula-
tion’s state when the resource is available, while the five
snapshots on the bottom part depict the population’s
state when the resource is unavailable. This adaptive
behavior arose in 37 out of 50 runs.

Our ongoing studies address conservation of energy
balanced against other activities, such as detecting and
reporting events of interest. We plan to test the most
promising evolved solutions on sensor network simula-
tors and, eventually, deploy them on physical devices and
compare them to hand-built solutions.

Evolving behavioral models
We also use digital organisms to assist in construct-

ing models of software behavior, including adding new
functionality to an existing system. Software develop-
ers often use model-driven development (MDD)8 to
construct graphical models of desired structure and
behavior, automatically transform the models into more
formal specifications, and eventually generate the cor-
responding code.

Currently, many developers use the Unified Model-
ing Language to model systems. Despite MDD’s many
advantages, however, the construction of a UML behav-
ioral model—which comprises a set of state diagrams for
interacting objects—can be error-prone and difficult to
automate, especially when extending an existing model

to include new functionality. Digital evolution provides
a means to generate possible solutions automatically.

Our approach, depicted in Figure 6, treats each Avidian
as a generator of state diagrams: When the organism exe-
cutes, it constructs an in-memory representation of one
or more state diagrams. To implement this method, we
extended Avida and integrated it with existing software
engineering tools. First, we provide each organism with
information about class diagram elements and, option-
ally, any existing state diagrams of the system. We call
this information instinctual knowledge.

When replication creates a new organism, it is pro-
vided with a file containing its instinctual knowledge.
For every class in the class diagram, the file contains an
optional existing state diagram and lists of elements—
such as triggers, guards, actions, and states. We also
enhanced the Avida instruction set with instructions that
let an organism use its instinctual knowledge to create
additional transitions in one or more state diagrams.

For a given problem, the developer defines a col-
lection of tasks that reward organisms for generating
state diagrams that support scenarios, satisfy formally
specified properties, and optimize software engineering
metrics, such as minimizing the number of transitions
in a diagram. To enable Avida to assess the completion
of such tasks, we integrated it with a UML formaliza-
tion framework, Hydra,9 and the Spin model checker.10
Hydra translates generated state diagrams into a repre-
sentation in the Promela specification language, which
Spin verifies against properties.

Figure 5. Representations of a population’s response to the resource availability during an Avidian day. Black squares represent
sleeping organisms, white squares represent awake ones. Snapshots in the figure’s top half show the population when the resource is
available, and they are rewarded for completing tasks. Snapshots in the figure’s bottom half show the population when the resource
is not available, and task completion goes unrewarded.

 January 2008 61

As in other Avida applications, a population starts
with a single organism capable only of replication. As the
organism and its descendants replicate, random muta-
tions produce different genomes. Organisms that gen-
erate state diagrams exhibiting desired characteristics
receive more CPU cycles and thus replicate faster.

Effectively, an Avida population is subject to a natu-
ral-selection pressure that rewards organisms for gen-
erating state diagrams that support key scenarios and
satisfy critical properties. If an organism generates state
diagrams that support all key scenarios and satisfy all
properties, it has successfully and automatically gener-
ated a behavioral model for the system. We refer to the
state diagrams that meet these requirements as compli-
ant state diagrams. At this point, the experiment suc-
ceeds and we can halt it, or we might allow it to proceed
to find other sets of compliant state diagrams. We used
this approach to generate state diagrams describing new
mobility behavior in a robot.11 Researchers and develop-
ers can apply this technology to other domains exhibit-
ing complex requirements.

FUTURE DIRECTIONS
Although evolutionary computation is a well-estab-

lished computing subfield, we are just beginning to
understand how to harness the evolution of self-repli-
cating digital organisms. Several major lines of research
offer opportunities for those interested in this area of
study.

The first involves different architectures and instruc-
tion sets. Avida is an extensible platform, and various
von Neumann CPU architectures have been implemented
and used in past studies. Within the current Avida envi-
ronment, we are investigating instruction sets with bet-
ter support for flow control, function invocation, and

context switching. However, fundamentally different
computation models, such as data flow machines or even
models based on processors found in natural systems,
such as gene regulatory networks, might lead to the evo-
lution of complex and adaptive behaviors.

We also plan to expand our work on evolving digital
organisms to construct models of software and other
aspects of computing systems. Integrating Avida with
tools for automated software engineering helps address
the increasing need for high-assurance, robust software
that can tolerate adverse physical conditions and flaws
in hardware fabrication. Moreover, Avidians can evolve
to help design other structures—such as network topolo-
gies—important to distributed computing.

Mobility presents another major area of future study.
Members of our group have recently modified Avida to
let organisms move among cells, and we have started
developing a continuous-space Avida environment in
which the laws of physics govern movement and commu-
nication. We are particularly interested in the evolution
of cooperative mobility control. Coordination of move-
ments is critical to behaviors such as flocking, avoiding
obstacles, and eluding enemies. Moreover, recent stud-
ies with mobile sensors have shown that it’s possible to
exploit mobility to provide certain benefits to network
performance, energy conservation, and communication
security. A fundamental question is whether digital evo-
lution might find behaviors that enable a collection of
mobile robots to adapt to, and perhaps exploit, current
conditions in ways not otherwise apparent to human
designers.

A related area of study involves integrating biomimetics
and digital evolution. Evolution has produced complex
behaviors in natural systems, which might provide an
effective starting point for evolving control software for

Instinctual knowledge

Model evaluation criteria

Existing state
diagramsClass diagram

Globally, it is
never the case
that x = 0.

Avida integrated

• Scenario support
• SE metricsProperty satisfaction

(using Hydra and Spin)

Organism-generated models

Scenarios and
properties

Developer-specified information

External tools

Avida environment, organisms, and evaluation

state diagrams
"Blue" genome

state diagrams
"Red" genome

state diagrams
"Green" genome

Organism-generated model evaluation

Figure 6. Using Avida to develop software state diagrams. Individual organisms are provided with instinctual knowledge of existing
software and evolve to produce state diagrams that meet developer-specified requirements.

62 Computer

C O V E R F E A T U R E

robots. For example, some animal species exhibit fission-
fusion relationships in which individuals join together
for some tasks, such as guarding a den or attacking prey,
but act independently at most other times. We can hand-
code such behaviors in an Avida organism and use it to
seed the evolutionary process. Evolution in Avida would
likely modify the behaviors to account for differences
between robots and animals, including both enhanced
capabilities such as availability of radio communication
and limitations such as physical agility.

Finally, we can explore the joint evolution of the sys-
tem’s morphology, or physical structure, and its control
software. Several researchers use evolutionary computa-
tion to help design integrated software and hardware for
robots.12 After all, organisms’ bodies and brains evolve
together in nature. Indeed, some would argue that intel-
ligent behavior can evolve only when the system’s deci-
sion-making part is coupled with a physical body that

has sensors and actuators. Others claim that the sense-
and-respond functionality can be abstracted from the
physical world (into software sensors and actuators, for
example) and still lead to evolution of intelligent behav-
ior. Using digital evolution, we have begun studies to
help answer this question.

O ur preliminary studies using Avida to evolve inter-
esting behaviors show promise and open doors
to several areas of future research. In addition,

the “Related Research” sidebar profiles several other
research groups that apply various forms of evolutionary
computation to systems design. This problem domain
appears to offer a fertile research area with potentially
important implications, given the increasing complexity
of computing systems. We hope this research community
will continue to grow.

Related Research
Research into harnessing evolution extends into

both the design and behavior of virtual and embod-
ied agents and machines. Evolution has been har-
nessed to create more realistic videogames, MEMS
chips that operate under extreme conditions, and
swarm behavior in robots. Research papers in this
area can be found in journals and conferences spon-
sored by the IEEE Computational Intelligence Society,

the ACM Special Interest Group for Genetic and Evo-
lutionary Computation, and the International Society
of Artificial Life, among others.

Table A displays a small sampling of the groups
conducting research in this field. While these groups
use widely varying underlying substrates, they all
share the concept of harnessing evolution and using
it to solve problems.

Table A. Sampling of groups applying evolutionary computing to systems design.

Laboratory/Group Institution/Organization Keywords

Neural Networks Research Group University of Texas at Austin Neuroevolution, self-organization, robotics, evolutionary
 computation
Dynamical and Evolutionary Machine Brandeis University Coevolution, evolutionary robotics, neuroevolution
Organization Laboratory
Cornell Computational Synthesis Laboratory Cornell University Evolutionary robotics, modular robotics, rapid
 prototyping
IRIDIA Laboratory Free University of Brussels Swarm intelligence, swarm-bots, self-organizing
 systems, biological networks
Laboratory of Intelligent Systems École Polytechnique Fédérale Flying robots, artificial evolution, social systems
 de Lausanne
Adaptive Control and Evolvable Systems US National Aeronautics and Automated design, system optimization
Group Space Administration
Digital Biology Interest Group University College London Evolutionary computation, bio-inspired computing,
 developmental systems
Evolutionary Computation Laboratory University of Central Florida Neuroevolution, coevolution, autonomous agents
Bionics and Evolutiontechnique Department Technische Universität Berlin Bio-inspired machines, bionics
Adaptive Computation Group University of New Mexico Artificial immune systems, genetic algorithms, biological
 modeling
Evolutionary and Adaptive Systems Group University of Sussex Artificial life, evolutionary computation, adaptive systems

 January 2008 63

Further information on our research can be found at
www.cse.msu.edu/thinktank. For papers on other digital
evolution applications, and Avida downloads and accom-
panying documentation, see http://devolab.cse.msu.edu.

Acknowledgments
We gratefully acknowledge the contributions of the

faculty and students in the Digital Evolution Labora-
tory at Michigan State University. This research was
supported in part by the Michigan State University
Quality Fund, the US Department of the Navy, Office
of Naval Research under grant no. N00014-01-1-0744,
the DARPA Fundamental Laws of Biology program,
and National Science Foundation grants ITR-0313142,
CCF-0523449, CCF-0541131, and CCF-0750787.

References
 1. J.O. Kephart and D.M. Chess, “The Vision of Autonomic

Computing,” Computer, vol. 36, no. 1, 2003, pp. 41-50.
 2. P.K. McKinley et al., “Composing Adaptive Software,” Com-

puter, July 2004, pp. 56-64.
 3. D. Floreano, P. Husbands, and S. Nolfi, “Evolutionary Robot-

ics,” Handbook of Robotics, Springer-Verlag, 2008.
 4. C. Adami, Introduction to Artificial Life, Springer-Verlag,

1998.
 5. D.C. Dennett, “The New Replicators,” The Encyclopedia of

Evolution, M. Pagel, ed., vol. 1, Oxford Univ. Press, 2002,
pp. E83-E92.

 6. R.E. Lenski et al., “The Evolutionary Origin of Complex Fea-
tures,” Nature, vol. 423, 2003, pp. 139-144.

 7. B. Beckmann, P.K. McKinley, and C.A. Ofria, “Evolution
of Adaptive Sleep Response in Digital Organisms,” Proc.
9th European Conf. Artificial Life, Springer, 2007, pp. 233-
242.

 8. D.C. Schmidt, “Model-Driven Engineering,” Computer, Feb.
2006, pp. 25-31.

 9. W.E. McUmber and B.H.C. Cheng, “A General Framework
for Formalizing UML with Formal Languages,” Proc. IEEE
Int’l Conf. Software Eng. (ICSE 01), IEEE Press, May 2001,
pp. 433-442.

 10. G. Holzmann, The Spin Model Checker, Primer and Refer-
ence Manual, Addison-Wesley, 2004.

 11. H.J. Goldsby et al., Automatic Generation of UML Behav-
ioral Models through Digital Evolution, tech. report MSU-
CSE-07-194, Dept. Computer Science and Eng., Michigan
State University, East Lansing, Mich., 2007.

 12. H. Lipson, “Evolutionary Robotics and Open-Ended Design
Automation,” Biomimetics, B. Cohen, ed., CRC Press, 2005,
pp. 129-155.

Philip McKinley is a professor in the Department of Com-
puter Science and Engineering at Michigan State Univer-
sity, East Lansing, Michigan. His research interests include

self-adaptive software, autonomic computing, and digital
evolution. McKinley received a PhD in computer science
from the University of Illinois at Urbana-Champaign. He
is a member of the IEEE and the ACM. Contact him at
mckinley@cse.msu.edu.

Betty H.C. Cheng is a professor in the Department of
Computer Science and Engineering at Michigan State
University. Her research interests include model-driven
engineering, formal and automated analysis of high-
assurance systems, and adaptive and autonomic systems.
Cheng received a PhD in computer science from the Uni-
versity of Illinois at Urbana-Champaign. She is a senior
member of the IEEE. Contact her at chengb@cse.msu.
edu.

Charles Ofria is an assistant professor in the Department
of Computer Science and Engineering and the Ecology,
Evolutionary Biology, and Behavior Program at Michi-
gan State University. His research interests include digi-
tal evolution, biocomplexity, and bioinformatics. Ofria
received a PhD in computation and neural systems from
the California Institute of Technology. Contact him at
ofria@cse.msu.edu.

David Knoester is a doctoral student in the Department
of Computer Science and Engineering at Michigan State
University. His research interests include digital and bio-
logical evolution, self-organizing systems, and distributed
computing systems. Knoester received an MS in computer
science from Michigan State University. He is a member
of the IEEE and the ACM. Contact him at dk@cse.msu.
edu.

Benjamin Beckmann is a doctoral student in the Depart-
ment of Computer Science and Engineering at Michigan
State University. His research interests include sensor net-
works, autonomic computing, and evolutionary robot-
ics. Beckmann received an MS in computer science from
Western Michigan University. He is a member of the IEEE
and the ACM. Contact him at beckma24@msu.edu.

Heather Goldsby is a doctoral student in the Department
of Computer Science and Engineering at Michigan State
University. Her research interests include model-driven
development of high-assurance systems, dynamically
adaptive systems, and using digital evolution to support
software development. Goldsby received an MS in com-
puter science from Michigan State University. She is a
member of the IEEE and the ACM. Contact her at hjg@
cse.msu.edu.

