
Attribute Aggregation in Federated Identity Management
David W Chadwick and George Inman, University of Kent

Abstract
We describe how in today’s federated identity management (FIM) systems, such as
CardSpace and Shibboleth, service providers (SPs) rely on identity providers (IdPs) to
authenticate the users and provide their identity attributes. The SPs then use these
attributes for granting or denying users access to their resources. Unfortunately most FIM
systems have one significant limitation, which is that the user can only use one IdP within
a single SP session, when in many scenarios the user needs to provide attributes from
multiple IdPs. We describe how this can be achieved through the introduction of a new
service called a linking service. The conceptual model of the linking service is described
as well as the mapping of its messages onto today’s standard protocols (SAML, Liberty
Alliance and WS-*).

Definitions
Attribute – a distinct characteristic of a person.

Attribute Authority (AA) – an entity that is trusted to assert that a particular person has a
particular attribute

Authoritative Source – an AA that can definitively answer queries concerning a specific
identity attribute for which it is responsible.

Identity – a set of attributes that characterise a person.

Identifier – A string which is used to uniquely identify an entity within one domain or
system.

Identity Provider (IdP) - a type of SP that creates, maintains, and manages identity
attributes for people and provides user authentication. An IdP is an AA combined with an
authentication service.

Service Provider (SP) - an organisation that offers web based services.

Introduction to Federated Identity Management
No single person or system knows anyone’s complete set of identity attributes.
Individuals are most likely to know the majority of the attributes that serve to identify
them. But even then there are limitations, for example, individuals might not know how
much others trust them. Invariably then, computer systems typically only hold the partial
identities of people i.e. a subset of their digital identity attributes. These computer
systems are known as identity providers (IdPs). Usually identity attributes have to be
conferred on individuals by their authoritative sources. Whilst people may be trusted to

Comment [DWC1]: For a side
bar

assert some of their identity attributes, for example, their favourite drink, they certainly
wont be trusted to assert all of them, for example, their qualifications or criminal records.
Thus different authoritative sources are responsible for assigning different attributes to
individuals.

Access Control in FIM
In the role based access control (RBAC) and attribute based access control (ABAC)
models, authorisation is based upon the user’s roles or attributes respectively. Federated
identity management systems typically adopt the ABAC model. The systems that assign
attributes to users, i.e. the IdPs, are different from and remote to the systems that
consume them and grant access to the users i.e. the service providers (SPs). Thus trust
needs to be established between the IdPs and the SPs. Federations are built upon this trust.
Authorisation to use a federated service is granted based on a user’s identity attributes. If
the latter are provided by trusted authoritative sources, then the SP can be assured of the
identity of the user, even if the user’s identifiers at the various IdPs are unknown to the
SP. Hence systems such as Shibboleth [1] and CardSpace were born. These allow an
arbitrary number of IdPs and SPs to form trust relationships between themselves in a
federation.

Unfortunately, one of the current limitations of Shibboleth, CardSpace and similar
systems is that the user can only select one of his IdPs in any given session with a SP.
The user selects one of his IdPs, is authenticated to it, and the IdP then sends an
authentication and attribute assertion to the SP. Consequently authorisation is limited to a
subset of the user’s identity attributes. For many web based services this is not enough.
We need a mechanism to allow a user to select (or aggregate) attributes from multiple
IdPs in a single service session. In short, attribute aggregation is required.

Previous Research in Attribute Aggregation
Early work on merging or aggregating attributes from multiple attribute authorities
assumed that the user had a globally unique identifier which was common across all the
attribute authorities [2]. This name identifier was usually an X.500 distinguished name
held in an X.509 public key certificate assigned by a Certification Authority. This was
subsequently standardised in 2001 in X.509 attribute certificates. The user only needed to
authenticate once, with his public key certificate, and then merging together the different
attributes from the different attribute certificates was easy since they all contained the
same user distinguished name.

In reality, few users have X.509 public key or attribute certificates, and instead have
different user names and attributes assigned to them by their various IdPs. The Liberty
Alliance was the first group to address the attribute aggregation problem in this scenario,
through their concept of identity federation [3]. In this model, as the user is moving
between services in a federation, the first IdP to authenticate the user asks him if he
would like to be introduced to other IdPs in the federation. When the user subsequently
authenticates to a second IdP, it invites him to federate his second identity with that from
the first IdP. If the user agrees, this causes the two IdPs to each create a random alias for
the user and to exchange these behind the scenes. In this way, neither IdP knows the true

login identifier of the user at the other IdP, but each may refer to the same user via the
random aliases, and thereby aggregate the attributes. Whilst this model is good at
protecting the privacy of the user’s identifiers, and stops IdPs from exchanging data about
users without the users’ consent, each IdP still knows that a “federated” user has some
attributes at the other IdP. This is not mirrored in real life. There is no reason for my
credit card company to know that I am a member of IEEE, or vice versa, yet I might still
want to use both these attributes in a single transaction, for example, to buy a book from
an online store and gain a discount due to my IEEE membership. Thus a SP has to be
given the aggregated set of attributes from multiple IdPs, but without the IdPs knowing
about each others involvement.

Chadwick built on the Liberty Alliance work in [4]. This model envisaged IdPs forming
pairwise relationships, called partnerships, and sharing secret keys between themselves to
cement their relationship. At any time a user could link together his two accounts at a
partnership by authenticating to each IdP in two separate web browser sessions and
providing each IdP with the same random string. They could then transfer this secret to
each other, thereby providing proof it was the same user simultaneously accessing them
both. This enabled them to link the user’s two accounts together, with each including its
own random alias in the message exchange. When a user subsequently contacted a SP
and the SP requested the user’s attributes from one IdP, the IdP would return the random
alias (suitably encrypted) and details of the partner IdP to the SP, allowing the SP to fetch
the linked attributes. Whilst this scheme has the same privacy properties as the Liberty
Alliance model, it also suffers from the same privacy deficiency.

MyVocs [5] developed an alternative mechanism based on a model that Klingenstein
calls Identity Proxying [6]. In this model the SP has one IdP that it trusts absolutely.
Other IdPs are unknown to the SP and they only have trust relationships with the primary
IdP and not with the SP. All user access requests are channelled through this trusted IdP,
which then relays the user to his chosen IdP. The chosen IdP authenticates the user and
returns his attributes to the trusted IdP, which strips off the assertion wrapper,
supplements the attributes with its own user attributes and returns the aggregated set to
the SP as its own attribute assertion. The danger with this model is that the trusted IdP
can assert any attributes about any user to the SP, since it is trusted absolutely to assert
everything. Knowledge about which IdPs originally asserted which user attributes is lost
to the SP. This trust model will not work in many real life scenarios.

In his review of the various attribute aggregation models, Klingenstein [6] also describes:
- the applications database model, in which an SP stores a subset of user attributes locally
and merges these with ones provided by a federated IdP;
- identity relay, an advanced form of identity proxying which reduces the amount of trust
that is needed in the relaying IdP. In this model the SP receives attribute assertions from
both IdPs rather than from just the relaying IdP;
- the client mediated assertion collection model, in which an intelligent client
independently guides the user to authenticate to multiple IdPs, pulling attribute assertions
from each one, and then presenting the combined set to the SP,
- IdP mediated attribute aggregation, which is the model of Chadwick described above,

- SP mediated attribute aggregation in which the SP sequentially redirects the client to
different IdPs. This requires the user to authenticate to each IdP in turn and retrieve an
attribute assertion from it which is then returned to the SP. The SP continues to collect
the various attribute assertions until it has enough to authorise the user.

Whilst SP and client mediated collections are secure and fully protect the privacy of the
user as there are no links between the IdPs, their downside is that the user has to
authenticate to each IdP in order to collect the various attribute assertions. Users may find
this overhead too tedious. Identity relay is secure but compromises the user’s privacy
somewhat in that the relaying IdP is aware of the user’s links with the other IdPs. This
violates Kim Cameron’s 3rd law of justifiable parties (see
http://www.identityblog.com/?p=352/#lawsofiden_topic). The model we propose is a
variant on both the IdP mediated attribute aggregation and identity relay models and
introduces a linking service to both hold the links between user identities and relay
attribute requests between SPs and IdPs.

Attribute Aggregation Conceptual Model
Our conceptual model for attribute aggregation assumes that the user is the best (and
probably only) person to know the authoritative sources for his identity attributes. This is
a reasonable assumption to make, since most people know who issue their credit cards,
passports, health cards, driving licenses, group memberships etc. We also know that
privacy protection is important from a requirements survey that we carried out prior to
the design of our system [7]. We have therefore devised a new web service, called a
linking service, whose purpose is to hold links between the user’s various IdPs, as
directed by the user, whilst fully preserving the user’s privacy. Privacy preservation is
achieved in the following way. Whilst each IdP knows one partial identity of the user, no
IdP is aware of any of the user’s other partial identities. Whilst the linking service knows
that a user has several linked partial identities, it does not know any of them or who the
user is, since it delegates user authentication to the linked IdPs. Consequently the linking
service only knows that some user is known to several IdPs, and it holds the links to these
on behalf of the user, without knowing who the user is.

When the user contacts a SP for service provision and is redirected to his IdP for
authentication, the IdP returns a pointer to the linking service in its response. This allows
the SP to contact the linking service in order to achieve attribute aggregation. The linking
service may either relay the SP’s request to each linked IdP, and relay the encrypted
responses back to the SP, or it may return the set of linked IdPs to the SP allowing it to
aggregate the attributes. The linking service is under the total control of the user, who
creates and deletes the links, and says which linked IdPs can be released to which SPs,
through an IdP link release policy (see sidebar).

Privacy preservation is ensured through a minimal of trust. The user, IdPs and SPs trust
the linking service to hold the IdP links securely, and to only divulge them to SPs under
the instructions of the user. The linking service is simply trusted as an honest broker to

keep the links secure without knowing the identities of any of the users. If an IdP or SP
does not trust the linking service it will simply not interact with it.

Our model removes the burden from the user of having to authenticate to each IdP
separately during service provision. Only one authentication exchange is required, and
this can be to any one of the IdPs linked together in the linking service. The following
sections describe in more detail how the linking service works.

Link Registration Phase
The user goes to the web page of his preferred linking service (there can be any number
of these on the web, or it could run on the user’s own PC). The linking service displays a
list of all the IdPs with which it has trust relationships. The user selects one that he wants
to create links to. The linking service redirects the user to the chosen IdP, whereupon the
user is asked to login and authenticate. The user authenticates using the IdP’s chosen
method. Upon successful authentication, the IdP creates a random (but permanent)
identifier for the user which is to be used solely with the linking service. The IdP returns
an authentication assertion containing this permanent ID. This assertion effectively says
“I have authenticated this user, and he is to be known by you as PIDx.” When the linking
service receives this message it creates a new link entry for the user in its linking table,
assigning the user its own local identifier, say Fred, then displays the list of IdPs again.
The user selects another IdP, is redirected there, authenticates, and the second IdP returns
a different permanent identifier, say PIDy, to the linking service. The linking service adds
this link entry to its linking table. The user can perform this IdP linking as many times as
he wishes, and the linking service will create a new link table entry for this user each time,
as in Table 1. The linking process is shown pictorially in Figure 1.

Each PID is regarded as a secret between the linking service and the issuing IdP and
therefore must be encrypted with the public key of the recipient when being transferred
between the two.

IdP 1

IdP 2

Linking
Service

1
2

34

5

6

7

UserX, Attr1, RegLoA 3, PID 1:LS

UserA, Attr2, RegLoA 2, PID 2:LS

Fred, IdP 1:PID 1, RLoA1
Fred, IdP 2:PID 2, RLoA2

Storage Requirements

1. User contacts her preferred linking service, and chooses one of her IDPs (IDP 1)
2. User is redirected to her chosen IDP
3. User authenticates to IDP, and IDP generates a PID for this user with this linking

service (PID 1:LS)
4. User is redirected back to linking service with an authentication assertion that carries

the Session LOA and PID. Linking service stores this in the user’s linking table entry.
5. User chooses another of her IDPs and the whole process is repeated again

Figure 1. Establishing links between IdPs

Level of Assurance
Different IdPs will authenticate users in different ways, and to different strengths e.g.
usernames and passwords are weaker than public key certificates and private keys. This is
termed the Level of Authentication, or Level of Assurance (LOA). It is the assurance that
a relying party can have that the user is really who it thinks he or she is. The assurance a
relying party has, depends not only upon the electronic authentication method that was
used, but also on the initial registration process that preceded this, for example,
registering electronically over the web is much weaker than turning up in person with
your passport. NIST has a recommendation which classifies the LOA at four levels, with
level 4 being the strongest and level 1 being the weakest [8]. Some SPs may wish to grant
a user different access permissions based on the LOA of their current session, e.g. if the
user authenticates with an LOA of 1 they can read the resource, but with an LOA of 3
they can modify its contents. One of the limitations of the NIST recommendation is that
the LOA is a compound metric dependent upon both the strength of the registration
process and the strength of the electronic authentication method. We believe it is more
useful if they are separate metrics, as described below.

Prior to any computer based authentication taking place, a user needs to register with a
service, and provide various credentials to prove their identity. For example, before a new
student is registered to use the University of Kent’s computing services, they must first
present their passport and existing qualifications, to prove they are entitled to register as a
student. We call this the Registration LOA. Different systems will require different
registration documents and have different registration procedures, and will therefore have

different Registration LOAs. After successful registration, the university allocates the
student a login ID (their identifier) and associates various attributes with this in its
database, e.g. degree course, student’s name, date of birth, email address, department,
tutor and so on. The university may offer different authentication mechanisms for student
login, such as un/pw with Kerberos, un/pw with SSL, one time passwords via a mobile
phone etc. Each of these mechanisms is assigned an Authentication LOA, but with one
proviso. No Authentication LOA can be higher than the Registration LOA, since it is the
latter that originally authenticated who the user was. When a user logs in for a session,
they are assigned a Session LOA that equates to the Authentication LOA of the
authentication mechanism they chose to use.

Returning now to the linking service, we have made provisions to include the LOA in our
protocol messages. When the linking service redirects the user to an IdP during the link
registration phase, the user authenticates to the IdP with their preferred authentication
mechanism, and this has an associated Authentication LOA. The IdP may return this as
the current Session LOA to the linking service, along with the permanent identifier. The
linking service stores this Session LOA as the Registration LOA of the user for this
permanent identifier/IdP tuple, as shown in Table 1.

Local User ID PID IdP Registration

LOA
Fred A=12345 airmiles.com 1
Fred EduPersonID=u23@kent.ac.uk kent.ac.uk 2
Fred PID=4567890 XYX.co.uk 1
Fred UID=qwertyuiop cardbank.com 3
Etc……
TABLE 1. An Example IdP Linking Table

Service Provision Phase
When a user wishes to use a web service, she first contacts the web site. The SP does not
know who the user is, so must therefore redirect her to her IdP for authentication. In the
Shibboleth model, the SP does this either directly (in a small federation) or indirectly via
a Where Are You From service. In CardSpace, the SP returns the user to her Identity
Selector whereupon she picks a card which represents her chosen IdP. She then presents
her authentication credentials to the IdP, either directly in Shibboleth, or indirectly in
CardSpace. The authentication dialogue is enhanced when attribute aggregation is
supported, by asking the user if she wishes to use attribute aggregation with this SP. This
can simply be a tick box alongside the username/password screen.

With direct IdP authentication, the IdP is able to show this enhanced screen since it
knows if it has already generated one or more permanent identifiers for this user with one
or more linking services. With CardSpace, the CardSpace application is able to show this
enhanced screen if the SP says that it supports attribute aggregation (but in this case
CardSpace does not actually know if the user has already set up links or not. This could
be achieved by the IdP issuing a new card to the Identity Selector after it has established
a permanent identifier for this user with a linking service.)

If the user chooses to perform attribute aggregation, the IdP includes one or more
referrals in its response to the SP. A referral in effect says “you may find additional
attributes for this user at this provider”. A referral in this instance points to a linking
service, and includes the permanent identifier of the user encrypted to the public key of
the linking service. When the SP receives the authentication assertion containing the
user’s identity attributes, if these are sufficient for the requested service, then access will
be granted. If they are not sufficient, and the SP supports attribute aggregation, it will
follow the referral(s) by forwarding it(them) to the linking service(s) along with the
authentication assertion (to prove that the user has been authenticated). It sets a Boolean
in the request either asking the linking service to perform the aggregation, or saying it
will perform the aggregation itself.

IdP 1

Service Provider

1.

2.

4.
3

Linking
Service

5.

9.

IdP 3
IdP 2

7.

8.
7.

8.

1. User makes a service request. 2. User is redirected to her chosen IdP 3. User
authenticates to IdP 1. 4. IdP 1 returns an authentication statement + attribute
assertions + referral to linking service 5. SP follows referral 6. Linking service looks up
IDP 1:PID 1 of user and finds links to other IdPs. 7. Linking service requests attributes
from linked IdPs using respective PIDs 8. IdPs return signed and encrypted (to SP)
attribute assertions. 9. Linking service relays all attribute assertions to SP.

6.

Figure 2. Attribute Aggregation Performed by Linking Service

When the linking service receives the referral, it decrypts the permanent identifier and
searches for this in its IdP linking table. Once it has located the appropriate table entry, it
retrieves the other table entries for the same user. Next it looks in its link release policy
table to see which of the linked IdPs can be sent to this SP. If the SP asked to perform the
aggregation, then referrals to the allowed IdPs are returned, with the permanent
identifiers encrypted to their respective IdPs. The SP then follows these referrals in the
same way that it did with the original one(s). If the SP asked the linking service to
perform aggregation on its behalf, the linking service sends attribute query requests to the
allowed IdPs, forwarding the name of the SP and the authentication assertion, so that the
IdPs can encrypt their responses to the public key of the SP and tie the attributes to the

identifier found in the authentication assertion. Finally the IdPs digitally sign their
responses. In this way the SP ultimately receives an authentication assertion and multiple
encrypted attribute assertions, all digitally signed by their authoritative sources, and all
containing the same random user identifier as in the authentication assertion. Since the SP
trusts all these authoritative sources it can be assured that the user possesses all of the
encapsulated identity attributes, even though the identifier of the user is random. The SP
can make its access control decision based on the user’s attributes and not on the
identifier.

Using the LOA in Service Provision
The linking service may have stored Registration LOAs in its IdP Linking Table during
the user’s link registration phase. Though not essential, they serve to improve the
performance of all subsequent user-SP sessions. During a user’s service session, the
linking service will only utilise linked IdPs whose Registration LOAs are higher than or
equal to the current Session LOA provided by the IdP which authenticated this user’s
session. This prevents a user from creating links with low levels of assurance, and
subsequently using them at higher Session LOAs, thereby pretending that the attributes
have a high level of assurance. Conversely, a user is allowed to create links at high
Registration LOAs, and then subsequently use them on lower Session LOAs, since the SP
will know that the attributes can only be trusted up to the level of the current Session
LOA.

If the linking service has stored the user’s Registration LOA for a linked IdP, and a
subsequent user-service session is authenticated by a different IdP at a lower Session
LOA than this, the linking service is allowed to create a referral to the linked IdP. The
linked IdP may then return user attributes at this low Session LOA. If however the
subsequent user-session is authenticated at a higher Session LOA than the Registration
LOA, the linking service should not create a referral to the linked IdP, since the linked
IdP should always refuse to return any attributes for the user in this high Session LOA.
This is because its attributes have not been assured to such a high level and it breaks the
original proviso that no Authentication LOA can be higher than the original Registration
LOA.

If the linking service has not stored the user’s Registration LOA for a linked IdP, then the
linking service will need to create a referral to this linked IdP for all subsequent user-
service sessions, providing it is allowed by the link release policy, and the IdP will need
to follow the same rules as above when deciding if the Session LOA is low enough to
allow the user’s attributes to be returned.

Link Release Policy
The user is allowed to create an IdP link release policy. This tells the linking service
which linked IdPs should be released to which SPs. In the simplest case, the user might
indicate that all linked IdPs can be released to all SPs. This will normally be the default
policy (and would be indicated by an * in each of the columns of a link release policy
table). In the most complex case, the user will require a different set of linked IdPs to be
used with each SP. An example of such a policy for the user known locally to the linking

Comment [DWC2]: Can be a
side bar

service as Fred is shown in table 2. This policy indicates that books.co.uk can receive
attributes from three IdPs (airmiles.com, kent.ac.uk and cardbank.com); cardbank.com
can receive attributes from all linked IdPs; and any other SP should only receive
attributes from kent.ac.uk. The reason that both the permanent identifier and IdP are held
in this table is because the user may have two different identities with one IdP, and might
wish to link these together in a SP session.

Local User ID SP PID IdP
Fred books.co.uk A=12345 airmiles.com
Fred cardbank.com * *
Fred books.co.uk EduPersonID=u23@kent.ac.uk kent.ac.uk
Fred books.co.uk UID=qwertyuiop cardbank.com
Fred * EduPersonID=u23@kent.ac.uk kent.ac.uk
Etc…
TABLE 2. IdP Link Release Policy Table

Mapping to Standard Protocols
Our conceptual model has been mapped to the Security Assertions Markup Language
(SAML) v2 protocol [9] during the link registration phase, and to both Liberty Alliance
and CardSpace protocols during the service provision phase. Our attribute aggregation
model provides for the passing of the LOA between the various components, but this is
currently not part of the SAMLv2 specification. However OASIS is currently working on
a SAML profile of the NIST LOA recommendation, and this is what we have used.

Link Registration Protocol
The link registration protocol uses standard SAML v2.0 authentication request/response
messages [9] to request user authentication by a selected IdP and return a persistent
identifier to the linking service. Upon receipt of the permanent identifier in the SAML
response, the linking service will either find an existing entry in the IdP Linking Table for
this permanent identifier/IdP tuple, or a new entry will be created in the table. Either way,
the user can then link additional IdP accounts to this one.

In order to ensure that the IdP always returns a persistent identifier to the linking service,
the SAML authentication request is constrained in the following ways:

- the Format attribute of the <NameIdPolicy> element is set
to“urn:oasis:names:tc:SAML:2.0:nameid-format:persistent”

- the allowCreate attribute of the <NameIdPolicy> element is set to true, which
allows the IdP to create a persistent identifier the first time around.

Service Provision Protocols
We devised two possible protocol mappings for attribute aggregation using Liberty
Alliance protocols, and one using CardSpace protocols. All three mappings encode
referrals as Liberty Alliance ID-WSF Endpoint References (EPRs) according to the EPR
generation rules defined in Section 4.2 of [10]. Each EPR points to a linking service or
IdP where the SP can find additional attributes for the user and the <sec:Token> of each
EPR contains the encrypted permanent identifier of the user at the IdP. The Liberty

Alliance mapping we have implemented uses the Liberty ID-WSF Discovery Service
[11].

Service Provision using Liberty Alliance Discovery Service
After the user contacts the SP, the SP issues a SAML authentication request message
which the user’s browser passes to the IdP. This message asks the IdP to generate a
random identifier for the user in the authentication response (by setting the Format
attribute to “urn:oasis:names:tc:SAML:2.0:nameid-format:transient”) and to return both
attributes and referrals (EPRs) in the response. The SAML response consists of a single
SAML assertion which contains a single SSO assertion containing three statements: an
SSO authentication statement, an attribute statement containing the users attributes and
an attribute statement containing the EPR(s) of the linking service(s). The authentication
statement contains the Session LOA.

Once the SP has received the SAML response it may attempt to access each of the
referral EPR’s using the discovery service. The Liberty Alliance IDWSF DiscoveryQuery
operation (Section 3.3 of [11]) enables an IDWSF discovery service to be queried for
relevant endpoint references that can be used to access other web based services. The
DiscoveryQuery operation consists of a Query message and a QueryResponse. We define
two types of DiscoveryQuery service. The first type, sent from an SP to a linking service,
asks for the Discovery Services of the linked IdPs. The second type, sent from a linking
service or SP to an IdP or linking service, asks for the EPR of the recipient’s SAML v2.0
Attribute Authority so that it can subsequently be queried for the user’s attributes. The
IdP is able to map the permanent identifier in the DiscoveryQuery message to the local
identifier of the user before the attribute query is sent to the AA.

If we left the design exactly like this, it would mean that the SP would need to create two
different types of discovery query message depending upon whether it was talking to an
IdP or linking service. In order to make the design more flexible, and to allow
implementers to replace IdPs with linking services recursively, we have designed the
protocol so that a single DiscoveryQuery message contains a request for both types of
service and is sent to both types of recipient. The recipient knows what type of service it
can provide, so it knows how to respond to the query, and which of the ServiceType
elements inside the Query to ignore. Consequently only one service is returned in the
response to each request. This means that the SP does not need to know whether it is
talking to a linking service or an IdP and can create its DiscoveryQuery messages in
exactly the same way to both.

The DiscoveryQuery message contains the <sec:Token> copied from the referral EPR
and the initial authentication assertion in the message’s SOAP header. This is the only
non standard part of the protocol. In the original SOAP binding only the <sec:Token>
would be present. The linking service decrypts the permanent identifier, retrieves the
linked IdPs, and extracts the Session LOA from the authentication assertion. If the SP is
performing aggregation, the linking service returns an ID-WSF QueryResponse message
containing referral EPRs to the discovery services of the user’s linked IdPs that have
Registration LOAs greater or equal to the Session LOA. The SP then sends a

DiscoveryQuery message to each IdP’s discovery service, requesting the EPR of the AA
of the user. Alternatively, if the linking service is performing the aggregation, it sends the
same message to each IdP. The IdP’s discovery service locates the user’s account by
decrypting the permanent identifier, and if the user’s Registration LOA is greater or equal
to the presented Session LOA it maps the random identifier from the authentication
assertion into the user’s account. The IdP returns a QueryResponse containing either the
EPR of the AA where the random identifier is now valid, or null if the query was invalid
e.g. the Session LOA was too high. The SP (or linking service) sends a standard
<samlp:AttributeQuery> to the AA, using the random identifier, whereupon the AA
returns a standard <samlp:Response>, encrypted so that only the SP can retrieve the
attributes.

Service Provision with the CardSpace Protocols
We have devised a protocol mapping for performing attribute aggregation within the
Microsoft CardSpace infrastructure, which requires only minor changes to the CardSpace
Identity Selector client and to the WS-Trust protocol.

After the user contacts the SP and is referred back to his CardSpace identity selector, the
latter picks up the SP’s security policy using the WS Metadata exchange protocol. The
user picks a card and enters his login details to the prompt. If the SP has stated in its
service metadata that it can accept referral attributes a check box labelled "do you want to
use your linked cards in this transaction?" appears below the authentication dialog. If
clicked, CardSpace attempts to get the user’s claims using a modified WS-Trust message
which contains a new Boolean attribute "aggregateIdentities" which states that referrals
should be returned along with the user’s attributes. Assuming the user’s authentication
credentials are correct, the IdP returns a CardSpace "request security token
response" message which contains a single SAML SSO assertion containing three
statements; an authentication statement, a SAML attribute statement containing the user’s
attributes, and if the user has linked this IdP to one or more linking services an additional
SAML attribute statement containing referral(s) to the linking service(s). CardSpace
relays this assertion to the SP which utilizes these referrals to perform attribute
aggregation using the Liberty Alliance discovery protocol described above.

Conclusions
Federated identity management systems are now starting to be rolled out in significant
numbers. But most have one severe limitation, which is that only one of the user’s IdPs
can be chosen per service session. To counteract this deficiency, we have designed and
built a linking service which allows a user to link his various IdP accounts together in a
privacy preserving manner. These linked accounts can then be used automatically during
service provision to provide the aggregation of attributes from multiple authoritative
sources, without necessitating the user to authenticate separately to each IdP. The system
is based on limited trust between the IdPs, SPs and the linking service. We have mapped
our conceptual model onto existing standard protocols based on SAML, Liberty Alliance
and CardSpace, and have implemented the SAML and Liberty Alliance specifications.

This will be released as open source software as part of the PERMIS software suite1. We
propose to implement the CardSpace protocols next.

Acknowledgements
The authors would like to thank the UK JISC and EC FP7 for funding this research under
the Shintau and TAS3 projects respectively.

References
[1] R. L. "Bob" Morgan, Scott Cantor, Steven Carmody, Walter Hoehn, and Ken
Klingenstein. “Federated Security: The Shibboleth Approach”. Educause Quarterly.
Volume 27, Number 4, 2004
[2] Johnston, W., Mudumbai, S., Thompson, M. “Authorization and Attribute Certificates
for Widely Distributed Access Control,” IEEE 7th Int Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), Stanford, CA.
June, 1998. pp 340 -345
[3] Liberty Alliance. “ID-FF 1.2 Specifications” Available from
http://www.projectliberty.org/liberty/resource_center/specifications/liberty_alliance_id_ff
_1_2_specifications
[4] David Chadwick. “Authorisation using Attributes from Multiple Authorities” in
Proceedings of WETICE 2006, June 2006, Manchester, UK.
[5] Jill Gemmill, John-Paul Robinson, Tom Scavo, Purushotham Bangalore
“Cross-domain authorization for federated virtual organizations using the myVocs
collaboration environment” Concurrency and Computation: Practice and Experience
Published online July 2008
[6] N. Klingenstein. "Attribute Aggregation and Federated Identity," International
Symposium on Applications and the Internet Workshops (SAINTW'07), 2007, pp.26
[7] David Chadwick, George Inman, Nate Klingenstein. “Authorisation using Attributes
from Multiple Authorities – A Study of Requirements”. HCSIT Summit - ePortfolio
International Conference, October 2007, Maastricht.
[8] William E. Burr, Donna F. Dodson, Ray A. Perlner, W. Timothy Polk, Sarbari Gupta,
Emad A. Nabbus. “Electronic Authentication Guideline”, NIST Special Publication NIST
Special Publication 800-63-1, Feb 2008
[9] OASIS. “Assertions and Protocol for the OASIS Security Assertion Markup
Language (SAML) V2.0”, OASIS Standard, 15 March 2005
[10] Hodges, J. Aarts, R. Madsen, P. and Cantor, S.(Editors). “Liberty ID-WSF
Authentication, Single Sign-On, and Identity Mapping Services Specification v2.0”.
Liberty Alliance Project.
[11] Hodges, J. Cahill, C.(Editors). “Liberty ID-WSF Discovery Service Specification
V2.0”. Liberty Alliance Project

1 See www.openpermis.org and sec.cs.kent.ac.uk/permis

