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understand the user’s context,3 including the location, ac-
tivities (gestures, body posture, modes of locomotion), 
cognitive/affective states, and social interactions as well as 
the environment’s state. Knowing this information makes 
it possible to provide unprecedented types of user sup-
port. Consider, for example, a person with dementia who 
forgets to pour water into a container on a hot plate in 
the kitchen. Activity recognition could help a pervasive 
monitoring system identify this situation and then either 
inform the user or turn off the hot plate. Many other high-
risk or potentially dangerous scenarios at home, in the 
workplace, and other locations would likewise benefit from 
this capability.

However, current context-recognition approaches are 
restricted to domains with dedicated sensors. Achieving 
true ambient intelligence calls for a new opportunistic 
activity recognition paradigm. Instead of deploying infor-
mation sources for a specific recognition goal, the methods 
themselves must adapt to the data available at any time. 
We present novel techniques that allow for opportunistic 
activity recognition in dynamic sensor configurations.

A NEW PARADIGM
The IoT provides access to many sensors “for free” as 

M ore than 20 years ago, Xerox PARC’s Mark 
Weiser laid out a vision in which highly minia-
turized wireless sensor nodes and computers, 
so small that they would disappear in the 

background, would assist us in all facets of our lives.1 By 
being ubiquitous, they would know what we need at all 
times and deliver support proactively.

This vision of ambient intelligence continues to drive 
researchers. The Internet of Things (IoT) now provides the 
necessary infrastructure to transparently access sensors, 
processors, and actuators using standardized protocols 
regardless of hardware, operating systems, or location.2 
For example, the IPv6 protocol forms the IoT’s backbone.

To realize ambient intelligence, these “things” must 
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a by-product of other applications. On-body sensors are 
found in smartphones, wristwatches and other wear-
able or portable gadgets, as well as in smart clothing and 
shoes. Homes and offices include a rich array of sensors 
for lighting and climate control, appliance usage (oven 
and refrigerator door sensors), electricity usage metering, 
security (motion-activated lights and surveillance cameras, 
door/window movement sensors for intrusion detection), 
and entertainment (motion-sensing game consoles like 
Microsoft Kinect for Xbox 360 and the Nintendo Wii U). 
The number of sensors in our environments is likely to 
increase in the future. As users change locations, pick up 
or leave behind devices, change smart clothing, or interact 
with smart objects, they will encounter various sensor 
configurations in their surroundings. 

Despite this potential for widespread sensing, however, 
ambient intelligence is still far from ubiquitous. Indeed, 
as the “Classic Activity Recognition Paradigm” sidebar 
explains, researchers derive the probabilistic models that 
current signal processing and machine learning tech-
niques use to identify activities in sensor data streams 
from datasets collected at design time with predefined 
and optimal sensor configurations. However, collecting 
datasets for all possible sensor configurations is clearly not 
feasible. A new opportunistic activity recognition paradigm 
is thus required to realize ambient intelligence with readily 
available resources. 

BRIDGING THE ABSTRACTION GAP
Service-oriented architectures (SOAs) have become a 

common abstraction for building context-aware applica-
tions.4 In the IOT, smart things advertise their services, 
such as recognizing a contextual element—for example, 
presence in a room. SOAs can include autonomic prop-
erties5 and adapt to changing resources,6 which makes 
it possible to substitute service providers and compose 
services to address complex problems. At the core of the 
approach lies a semantic description of application goals, 
service capabilities, and their interrelations, enabling 
semantic reasoning. Many context-aware middleware sys-
tems support SOAs in dynamic environments.7

SOAs require that sensor nodes provide contextual data. 
This is relatively straightforward with RFID, presence, or 
temperature sensors. An SOA can apply reasoning on 
single sensor readings and easily substitute semantically 
identical sensors, such as one temperature sensor for an-
other in the same room. However, these sensors cannot 
understand complex manipulative gestures, body pos-
tures, or modes of locomotion. 

Opportunistic activity recognition requires the abil-
ity to detect meaningful patterns hidden in noisy time 
series spread across multiple on-body and environmental 
sensors. Advanced signal processing and machine learn-
ing techniques are needed to recognize these patterns. In 

addition, identical types of sensors cannot be substituted 
naively for one another, as a sensor’s location, orientation, 
and field of view influence its readings—for example, a 
smartphone’s motion sensor delivers very different signals 
when its orientation changes, or if it is placed in a shirt 
versus a trousers pocket. Opportunistic activity recogni-
tion must account for this highly variable input. 

OPPORTUNISTIC ACTIVITY RECOGNITION
We envision ambient intelligence as an autonomous 

Classic Activity 
Recognition Paradigm 

A n activity recognition system exploits the fact that 
sensors—whether ambient, object, or wearable—deliver 

characteristic raw signal patterns when a user carries out an 
activity or encounters a specific situation. 

System designers first deploy sensors according to the 
activities to recognize—for example, opening a door, cooking, 
or eating. A common on-body sensor is the accelerometer, 
which is cheap, small, and delivers rich information. Typically 
placed on the wrist, it provides unique signals for gestures as 
diverse as drinking, turning a knob, or pulling a drawer. More 
complex activities require combinations of sensors.1

Designers then devise a recognition chain to detect the 
characteristic signal patterns. To support robustness and com-
putational complexity, the system relies on signal processing 
and machine learning techniques.2,3 It first applies preprocess-
ing to remove noise from the signals and segment them. Next, 
the system extracts signal features to enhance the characteris-
tics unique to each activity and to reduce data dimensionality, 
then it uses classifiers to map these features to discrete activity 
or context classes. If the system uses many sensors, it can fuse 
the decisions of several classifiers operating on individual sen-
sors. The system often performs individual classification on the 
nodes to reduce network load, fusing decisions centrally. At 
this stage, the system calculates class occurrence probabilities 
to recognize more complex activities through probabilistic 
reasoning.

The system obtains recognition chain parameters—cutoff 
frequencies, kinds of features, classifier properties, and so on—
by training on an annotated dataset of sensor readings 
recorded as users execute the activities of interest. Larger data-
sets capture greater variability in activity execution and sensor 
characteristics. 

Although classic activity recognition uses probabilistic 
approaches, it is optimized to the selected sensors. Changing 
the sensors requires redesigning the system.

References
	 1.	 T. Stiefmeier et al., “Wearable Activity Tracking in Car Manufactur-

ing,” IEEE Pervasive Computing, vol. 7, no. 2, 2008, pp. 42-50.
	 2.	 S.J. Preece et al., “Activity Identification Using Body-Mounted  

Sensors—A Review of Classification Techniques,” Physiological 
Measurement, Apr. 2009, pp. R1-R33.

	 3.	 D. Figo et al., “Preprocessing Techniques for Context Recognition 
from Accelerometer Data,” Pervasive and Mobile Computing, vol. 14, 
no. 7, 2010, pp. 645-662.



	 38	 computer

Cover Fe ature

system, in the artificial intelligence (AI) sense, with the 
capacity to solve new problems, adapt online, analyze its 
own behavior, and learn from past experience. The nov-
elty of our approach is that it adapts the data-processing 
steps alongside the sets of sensors used. A combination 

of advanced streaming signal processing and machine 
learning techniques with sensor self-descriptions and a 
management framework make it possible to solve rec-
ognition problems in a wide range of situations using 
opportunistic sensing.
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Figure 1. Opportunistic activity recognition system architecture. (a) The system leverages domain knowledge including sen-
sor self-descriptions, signal and sensor transformation rules, and an activity ontology. (b) The system dynamically configures 
an activity recognition chain based on the recognition goal, the available sensors, and the domain knowledge. It continuously 
analyzes relations between sensors and activities to expand the domain knowledge, thus realizing autonomous evolution.  
(c) The recognition chain maps sensor signals (S) to activity or context classes by applying preprocessing (P), feature extrac-
tion (F), classification (C), and decision fusion methods. The solid arrows indicate streaming dataflows, while dashed arrows 
indicate sensors that might appear or disappear. The signal example is acceleration data measured at the wrist. The second 
half of the signal corresponds to the activity “cleaning table,” characterized by periodic hand movements.
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Only a few situations change the opportunistic configu-
ration of sensor nodes:

•• Sensor appearance. The user enters a sensor’s range, 
resulting in the appearance of one or more signal 
channels. The sensor is known if it was expected at 
design time or has already been detected. It is un-
known if it was unforeseen or has been detected for 
the first time and no metadata exist to immediately 
use it—this could be the case for legacy devices intro-
duced in the IoT.

•• Sensor disappearance. The user leaves a sensor’s range 
or the sensor is powered down, resulting in the loss 
of signals.

•• Change in sensor characteristics. Various conditions 
can change sensor signal patterns. For example, 
power-management adjustments to the signal sam-
pling rate, displacement of an on-body sensor along 
a limb, or sensor degradation due to harsh conditions 
could cause a moderate change, while displacement 
of an on-body sensor to a completely different body 
location, an alteration of the field of view of ambi-
ent sensors, or sensor failure could produce a major 
change.

In these situations, an opportunistic activity recogni-
tion system must efficiently use the available resources 
and keep working when the sensor configuration changes; 
ideally, it should be capable of improving throughout these 
changes.

As Figure 1 shows, our system achieves this with a 
sensing and context framework that manages an adaptive 
recognition chain. The sidebar “The Opportunity Frame-
work” describes the framework in detail. The recognition 
chain is made up of interconnected streaming signal 
processing and machine learning elements that map the 
raw sensor signals to activity primitives. To capitalize on 
the vast number of multimodal sensor nodes in the IoT, 
the recognition chain uses dynamic classifier ensembles 
in which each node has a dedicated pipeline for signal 
preprocessing, feature extraction, and classification. The 
opportunity activity recognition system then fuses the de-
cisions of the node-specific classifiers into a global decision 
by, for example, majority voting. This architecture allows 
local processing on the nodes and is well suited to handle 
node addition and removal.

The system generates solutions to a recognition problem 
on the fly using domain knowledge, dynamic configura-
tion, and autonomous evolution.

Domain knowledge
Just as the availability of domain knowledge enables an 

AI system to exhibit more advanced behaviors, our oppor-
tunistic activity recognition system relies on rich domain 

knowledge to identify solutions to recognition goals.
Sensor nodes store part of this knowledge as self- 

descriptions. The system caches this information upon 
node discovery, obtaining an overview of the capabilities of 
nodes in the user’s surrounding. A sensor self-description 
contains static parameters, such as the physical quantity 
that the node measures. It also contains ExperienceItems, 
each of which indicates a goal toward which the node can 
contribute (for example, “walk”), when this is possible (for 
example, “body placement” is required for “walk”), the 
parameters of the recognition chain required to achieve 
that goal (for example—features, classifier), and the rec-
ognition accuracy. 

We provide an initial set of ExperienceItems at design 
time, and train these in the same way as is done with the 
classic paradigm. For instance, “walk” could be derived 
from a gait dataset and indicate that the energy in a 1- to 

The Opportunity 
Framework 

O pportunity is a reference framework for an opportunistic 
activity recognition system designed around a planner.1 

The system autonomously executes a recognition chain in the 
form of a directed dataflow graph of sensor data, relying 
primarily on signal processing and machine learning 
techniques to detect different activities or contexts.

The framework includes a set of descriptors and tools to 
generate recognition-chain configurations on the fly. This 
includes an activity-related ontology, self-descriptions in 
markup language derived from SensorML that the sensor 
nodes must deliver once they register with the system, and 
sensor and signal transformations.

Self-descriptions can be updated dynamically to reflect new 
node properties discovered by opportunistic methods. In a 
prototypical scenario involving the recognition of daily activi-
ties, we related about 200 low-level activities to 15 high-level 
activities. Self-descriptions advertise the activities that the sen-
sors can recognize and the recognition-chain parameters. 
Upon execution of the recognition chain, the system attempts 
to match the recognition goal with the sensors’ capabilities. It 
uses goal reasoning and sensor substitutions to find a configu-
ration solving the recognition problem.

The framework is implemented using Java and OSGi mod-
ules and can be deployed on various platforms, including 
embedded ARM boards with capabilities identical to those of 
current smartphones. An OSGi module encapsulates each 
sensor abstraction and processing element. The framework 
supports centralized or decentralized execution of the recogni-
tion chain. The system accesses sensors in the Internet of 
Things over TCP/IP. 

Reference
	 1.	 M. Kurz et al., “The OPPORTUNITY Framework and Data Processing 

Ecosystem for Opportunistic Activity and Context Recognition,” 
Int’l J. Sensors, Wireless Comm. and Control, vol. 1, no. 2, 2012,  
pp. 102-125.



	 40	 computer

Cover Fe ature

3-Hz frequency band for a foot-mounted accelerometer is 
a feature suited to a decision tree classifier.

An ontology relates activity concepts to support goal 
reasoning, and known sensor transformations indicate 
how sensors can be combined to emulate others. We pro-
vide the system with basic transformations for typical 
modalities. For example, the system can process signals 
from a compass to emulate a gyroscope. This allows rich 
capabilities for substituting sensors.

Dynamic configuration
As in SOAs, our approach favors dynamic configura-

tions. We specify what the system is to recognize, but not 
how. At runtime, the system searches for a configuration 
that satisfies the recognition goal. It uses goal reasoning 
to restate the goal according to the nodes’ capabilities. 
Because some required sensors might not be available, 
the system also attempts to match available and required 
sensors through sensor transformations.

Autonomous evolution
As with AI learning agents, our system can adapt and 

expand its domain knowledge as new situations arise at run-
time. This autonomous process combines self-monitoring,  
-adaptation, and -learning. 

Nodes can self-monitor 
and describe dynamic pa-
rameters, such as their current 
orientation, and then update 
dynamic entries in their 
self-description. The system 
can autonomously adapt 
ExperienceItems or create 
new ones when it discovers 
new solutions to a recogni-
tion goal. It also can store new 
sensor transformations as it 
discovers them.

Over time, the system 
evolves to operate in unfore-
seen situations beyond the 
initially provided domain 
knowledge. 

SYSTEM OPERATION
Following a user as he 

moves about his house illus-
trates how the opportunistic 
activity recognition system 
operates. Figure 2 focuses on 
five typical situations: coming 
home, relaxing, cooking, 
gaming, and going jogging. 

Setting up the recognition goal
The scenario begins with the user returning home (1). To 

quantify his physical activity, we set the recognition goal 
to “locomotion.” There are accelerometers in the user’s 
smartphone, wristwatch, and smart clothing, but none of 
the nodes’ ExperienceItems recognize this activity. After 
goal reasoning, the system determines that “walk” and 
“run” are aspects of locomotion.

The smartphone indicates that it can recognize these 
activities when placed in a hip holster or trousers pocket, 
with the node’s ExperienceItems specifying different  
recognition-chain parameters for these locations. We 
found that a device can autonomously identify the body 
location at which it is being carried by analyzing its 
movement patterns.8 The system thus can instantiate a 
recognition chain for locomotion according to the phone’s 
position. If the phone changes location, the system updates 
the node’s self-description and reconfigures itself.

Substituting sensors
The user enters his home and heads to the living room 

to relax, leaving his smartphone on a table (2). Although 
the system can no longer use the phone to perform activity 
recognition, the user is within range of a passive infrared 
(PIR) motion sensor for lighting control. The PIR sensor rec-

Figure 2. The opportunistic activity recognition system leverages a wide range of sensors 
available in the user’s surroundings. As the user moves around, he enters and leaves the 
sensing range of these devices. This scenario includes five typical situations: (1) coming 
home, (2) relaxing, (3) cooking, (4) gaming, and (5) going jogging.
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ognizes “movement,” and the system uses goal reasoning 
to determine that this constitutes locomotion in the house. 
The recognition chain instantiated using the PIR sensor 
does not need complex features or classifiers: movement 
simply means locomotion.

Exploiting unknown sensors  
with transfer learning

Unknown new sensors will appear in the IoT with in-
frastructure upgrades, or when the user buys new gadgets. 
These sensors might not self-describe if they are legacy de-
vices. Nevertheless, being able to use an unknown sensor 
automatically would reduce system maintenance and 
programming costs. Our approach thus uses an autono-
mous process that “spreads” recognition capabilities to 
new nodes, much like AI agents teaching each other tasks.

Transfer learning consists of translating the knowledge 
available to solve a problem in one domain to a different 

but related domain. We devised a lightweight implementa-
tion of transfer learning to translate the ability to recognize 
activities from one node to another. 

As Figure 3a shows, when a preexisting node detects 
an activity, it triggers an incremental supervised learning 
process for task recognition on a new node. The system 
estimates the new node’s performance by comparing its 
decisions to those of the preexisting node. If transfer learn-
ing is successful, a new ExperienceItem is created on the 
new node, which can now help fulfill the recognition goal. 
We have used this approach to transfer recognition tasks 
for locomotion and body postures (stand, sit, walk, lie) to 
eight different on-body accelerometers.9

Continuing with our scenario, the user enters the 
kitchen to prepare lunch (3). His wristwatch can sense arm 
movements with an acceleration sensor, but this node has 
no relevant ExperienceItems to identify these movements 
as locomotion. However, people also typically move their 
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arms when walking or running. In this case, a PIR sensor in 
the kitchen detects the user’s movement and then teaches 
this recognition task to the user’s wristwatch.

Exploiting behavioral assumption
Some consumer appliances, such as clothes dryers and 

ovens, have sensors indicating that the door is open to stop 
operation. These sensors can also provide information 
about a user’s activities when combined with assumptions 
about human behavior. For example, when the appliance 
detects the door opening or closing, it can indicate an 
“open” or “close” gesture by the user and provide a new 
ExperienceItem to the wristwatch.9 

Behavioral assumptions can also be applied to locomo-
tion: a user is likely to “stand” when opening a door and 
afterward will “walk” away. The Opportunity framework 
can apply numerous behavioral assumptions derived from 
the large annotated dataset of activities in the UCI Machine 
Learning Repository (http://archive.ics.uci.edu/ml/datasets/
opportunity+activity+recognition).

Exploiting unknown sensors  
through system identification

After lunch, the user returns to the living room to play a 
game using his Microsoft Kinect system (4). The Kinect is a 
depth camera with motion-tracking as well as facial- and 
voice-recognition capabilities: it delivers 3D coordinates 
of the user’s joints to the Xbox 360 console, enabling him 
to simply move his body to control an on-screen avatar. 

The opportunistic activity recognition system can relate 
this data to that of other unknown sensors, including the 
user’s wristwatch accelerometer, using various system 
identification techniques. As Figure 3b shows, the system 
finds this mapping automatically at runtime, translating 
the Kinect’s recognition chain for use by the wristwatch 

sensor. Using system identification, we have successfully 
translated the capacity to recognize five hand gestures 
between the Kinect and body-worn accelerometers with 
performance degradation of less than 4 percent in as short 
a time as 3 seconds.10 Many other sensor transformations 
could be achieved in this way.

Exploiting unknown sensors  
for unsupervised disambiguation

We have developed a method, inspired by semisuper-
vised learning techniques, to use a newly discovered sensor 

without ExperienceItems to improve a known sensor’s 
accuracy. The top part of Figure 3c shows two activities 
that overlap in a feature space spanned by one sensor and 
thus cannot be recognized without errors. As the bottom 
part of Figure 3c shows, expanding the feature space with 
the new sensor’s dimensions helps disambiguate the two 
activities, which now form distinct clusters. A systematic 
analysis of three sets of data and thousands of pairs of 
sensors showed that it is possible to enable this method 
only when disambiguation is likely to be beneficial.11 Once 
it discovers this information, a sensor can store it in its 
ExperienceItems for future use.

Self-adaptation
Our scenario concludes with the user, outfitted in smart 

clothing, going jogging (5). As Figure 4 shows, intense phys-
ical activity can lead to sensor displacement, which in turn 
causes the sensor signal patterns to change. To address 
this problem, we developed an expectation-maximization 
method using a nearest class-center classifier that enables 
the opportunistic activity recognition system to dynami-
cally self-adapt to the variable statistics of sensor signals.9,12 
This technique improved performance when sensors were 
displaced along a limb. Related methods are applicable to 
other moderate changes, such as sensor rotation or sen-
sitivity change.

Exploiting ensembles to assess performance
An autonomous system must assess its own perfor-

mance. It usually accomplishes this via a “critic”—a module 
that estimates performance from signals available within 
the system. The node ensembles that the IoT makes avail-
able offer a promising way for an opportunistic activity 
recognition system to utilize multiple critics. Because the 
nodes in an ensemble work toward the same goal, the en-
semble can assess the performance of its individual nodes, 
or control their adaptation, as long as most of the nodes 
fulfill their mission. We have developed several methods 
to exploit this capability.

Harsh environments or strenuous activities can damage 
sensors—for example, fibers in smart clothing can rupture 
while the user is exercising. A critic can detect anomalous 
sensors in a node ensemble by looking at the statisti-
cal agreement between the nodes over time. Significant 
changes in the agreement patterns indicate an anomaly. 
Upon detecting such an anomaly, the system either adapts 
the dynamic ensemble to avoid the faulty node or it in-
cludes additional nodes. 

There is, however, no way to estimate the performance 
of a fused set of nodes based solely on the accuracy pa-
rameters in their ExperienceItems. Indeed, this requires a 
pairwise measure of their complementarity, known as di-
versity,12 and precomputing diversity is not appropriate in 
an opportunistic setting. For this reason, the system uses 

The node ensembles that the IoT makes 
available offer a promising way for an 
opportunistic activity recognition system 
to utilize multiple "critics." 
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another critic to estimate diversity at runtime by observing 
the decision agreement between individual classifiers and 
the fused decision. It then uses an information-theoretic 
approach to build classifier ensembles based on the diver-
sity estimated by the critic and the accuracy reported in 
the nodes’ ExperienceItems. Experimental results showed 
that this approach leads to high-performance ensembles.12

LESSONS LEARNED 
The opportunistic activity recognition paradigm is ide-

ally matched to the big data that the IoT makes available 
and could help fulfill the promise of ambient intelligence 
anywhere, anytime, using a plethora of readily deployed 
sensor nodes.

Our work addresses the gap between low-level activity 
recognition methods, which require training data from 
predefined sensor configurations, and higher-level contex-
tual abstractions, which assume the existence of services 
that can be semantically replaced or combined. Function-
ally, our approach is complementary to SOAs and can 

be used to create reliable applications despite changing 
sensor availability. The opportunistic principles can be 
included as part of the firmware of smart things or within 
an overarching IoT framework. As IoT-enabled “things” 
become more common, an opportunistic activity recogni-
tion system becomes more capable as it can exploit larger 
node ensembles and discover more elaborate solutions to a 
recognition problem. Most methods are equally applicable 
to ambient, object, or wearable sensors.

Our approach tightly integrates signal processing and 
machine learning techniques to identify data patterns 
across multiple noisy sensors with a contextual frame-
work to handle goals, sensor capabilities, and sensor 
transformations and to reason about complex activities. 
For instance, the system will instantiate an opportunistic 
method to carry out transfer learning between specific 
sensor modalities only in appropriate situations. In ad-
dition, the system includes runtime capabilities that are 
important to discovering new solutions to the recognition 
problem and to operating in open-ended environments. 
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This integration of low- and high-level approaches enables 
us to translate AI-based principles of autonomous opera-
tion into a practical ambient intelligence system.

I f opportunistic activity recognition is to become a 
mainstream technology, commercial vendors and 
researchers must work together to create adequate 

sensor self-descriptions and activity ontologies for future 
smart things. In addition, there is a need for standardized 
methodological evaluations and performance benchmarks 
for recognition systems. We must also assess the stability-
plasticity tradeoff to avoid catastrophic failures in long-term 
deployments. This poses new design and validation chal-
lenges that might be addressed using control theory. 

In the near term, opportunistic activity recognition 
brings immediate benefits to the IoT:

•• the reuse of readily deployed sensors will reduce 
system costs;

•• the ability to roam around our surroundings and 
seamlessly substitute various sensors will improve 
user acceptance;

•• reconfiguring systems to mitigate sensor losses will 
increase robustness; and

•• systems will autonomously expand to include newly 
deployed resources, simplifying scale-up. 

Decoupling pervasive application design from sensor 
deployment could create a market that is as hot as the 
current smartphone apps market. The decreased reliance 
on dedicated infrastructure will make the IoT accessible 
to enthusiasts as well as established players, leading to the 
creative exploration of many novel concepts in ambient 
intelligence.

Looking farther down the road, ambient intelligence 
systems could learn to discover autonomously when and 
how to use actuators accessed through the IoT to maximize 
user satisfaction. Achieving this next level of intelligence 
will require more human-like machine learning tech-
niques13 and implicit understanding of users’ needs.14  
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