
14	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

COVER FEATURE GUEST EDITORS’ INTRODUCTION

Antonino Tumeo, Pacific Northwest National Laboratory

John Feo, Context Relevant

Irregular applications present unpredictable memory-

access patterns, data-dependent control flow, and fine-

grained data transfers. Only a holistic view spanning all

layers of the hardware and software stack can provide

effective solutions to address these challenges.

Irregular Applications:
From Architectures to

Algorithms

	 A U G U S T 2 0 1 5 � 15

In recent decades, high-perfor-
mance computing (HPC) systems
have delivered significant break-
throughs for numerous scientific

applications, allowing the simulation
of physical and chemical phenomena
at an unprecedented and unthinkable
scale. But now, the easy availability
of data—the big data challenge—has
resulted in a surge of computing for
data analytics. Exponentially grow-
ing datasets collected from a variety
of sources impact all major industries:
finance, government, healthcare,
security, transportation, manufactur-
ing, commerce and e-commerce, and
communications—including social
networks and the Web.

Achieving actionable results from
this avalanche of data requires HPC
systems to be optimized for deduction,
machine learning, and graph algo-
rithms. Aside from the size-related
challenges, collected data is often
unstructured and sparse, and not all
records have the same types or features.
As new data records are continuously
generated, new relationships emerge
and disappear in real time. The action
of system agents, which explore and
find relationships in the data records,
will evolve over time in response to the
analysts’ actionable decisions, requir-
ing the evolution of models and mea-
sures. Only highly dynamic, multidi-
mensional data structures—such as
graphs, trees, and grids—are capable of
organizing the collected data in a sup-
portive manner.

Unfortunately, these workloads
have characteristics that are data
dependent and defy reasoning prior to
execution. These workloads’ require-
ments contrast with the regular behav-
iors of scientific simulations, there-
fore new, cross-cutting approaches

involving architectures, system soft-
ware, and algorithms are required to
address them.

Pertinent data structures are
pointer- or linked list–based, result-
ing in unpredictable data accesses. A
pointer in memory representing, for
example, an edge of a graph or a rela-
tion between two values, might lead to
data accesses unrelated in any tempo-
ral or spatial sense. Such lack of local-
ity limits the performance of modern
processor architectures built on deep
memory hierarchies and prefetching to
mitigate latencies associated with the
memory wall problem—that is, a lim-
ited increase in bandwidth despite a rel-
ative increase in computational power.
Moreover, irregular data structure–
based applications usually have lim-
ited arithmetic intensity, as most of
the computation time is spent navigat-
ing the data structures. Thus, modern
processors and accelerators designed
to maximize floating-point operations
per memory access are a poor fit.

Data analytics applications have
large amounts of data parallelism as
many data values can be explored in
parallel. This inherent parallelism
can map well onto modern processors
as emerging limitations in frequency
scaling and instruction-level parallel-
ism results in ever-increasing num-
bers of cores and hardware threads.
However, many new architectures are
improving performance though vec-
tor units and single-instruction, mul-
tiple-data (SIMD) paradigms, thereby
trading flexibility in control for data
parallelism. Unfortunately, the con-
trol flow in data analytics applications
is typically data dependent and often
requires fine-grained synchroniza-
tion as concurrent threads compete
to access (or control) the same data

elements or spawn dynamic numbers
of new threads.

The nonuniform relationships
among data items make partitioning
difficult, resulting in irregular commu-
nication patterns and significant com-
munication overhead. In fact, a data-
set’s size might preclude it from fitting
into the memory available on a single
node of an HPC system—even in cases
in which a node can host more than a
terabyte of RAM. However, current
network interconnects perform well
only with large, batched data trans-
fers; they incur large overhead when
transferring fine-grained messages,
synchronization events, and even the
all-to-all communications required by
many analytics applications.

Current HPC machines are opti-
mized for scientific simulations, arith-
metic-intensive workloads, and regular
computation, whereas data-analytics
applications require hardware opti-
mized for bandwidth, throughput,
concurrency, and all-to-all communi-
cation. In addition, all layers of the sys-
tem stack must help minimize develop-
ment and deployment costs across the
diverse set of emerging next-generation
systems. For example, algorithm devel-
opers should be able to retain a sim-
ple way of expressing and extracting
the latent parallelism of their appli-
cations without having to partition
data by hand and dynamically load
balance. Domain-specific languages
and libraries can also substantially
reduce programming costs, and com-
pilers can provide architecture-specific
optimizations. Highly dynamic run-
time system approaches can alleviate
load-balancing issues and mitigate—
through software techniques trans-
parent to the application developer—
the limitations of deep-memory

Antonino Tumeo, Pacific Northwest National Laboratory

John Feo, Context Relevant

Irregular applications present unpredictable memory-

access patterns, data-dependent control flow, and fine-

grained data transfers. Only a holistic view spanning all

layers of the hardware and software stack can provide

effective solutions to address these challenges.

16	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

GUEST EDITORS’ INTRODUCTION

hierarchies and large-packet commu-
nication networks. Approaches exploit-
ing map-reduce methods or adapting
conventional software stacks are also
demonstrating some success; however,
the necessity to adapt to a specific com-
putational paradigm that might not
suit the target problem limits these
solutions’ effectiveness.

IN THIS ISSUE
To examine possible strategies to
address the challenges of irregular
applications, the theme of this month’s
issue, we take a holistic point of view
and provide a forward-looking per-
spective of what is possible. The four
articles herein analyze and propose
solutions for irregular behaviors at dif-
ferent layers of the stack.

“In-Memory Data Rearrangement
for Irregular, Data-Intensive Comput-
ing,” by Scott Lloyd and Maya Gokhale,
examines irregular behaviors from
a system’s lowest layer and proposes
a hardware design that dynamically
restructures in-memory data in a cache-
friendly layout. The method offers both
speedup and energy benefits, and the
authors present a prototype implemen-
tation and validate it on a reconfigu-
rable device—a field-programmable
gate array—using the Hybrid Memory
Cube memory model.

In “Optimizing Sparse Linear Alge-
bra for Large-Scale Graph Analyt-
ics,” Daniele Buono, John A. Gunnels,
Xinyu Que, Fabio Checconi, Fabrizio
Petrini, Tai-Ching Tuan, and Chris
Long examine architecture-specific
optimizations of sparse linear alge-
bra operations on modern HPC sys-
tems based on the IBM Power8 proces-
sor. Although much recent work has
explored the mapping between graphs
and linear algebra, sparse matrices
remain the prototypical irregular data
structure. In particular, this article
delves into optimizations of sparse
matrix-vector multiplication (SpMV)
and sparse generalized matrix-matrix
multiplication (SpGEMM), trading off
higher data accesses for better mem-
ory and cache locality.

In “Scaling Runtimes for Irregular
Algorithms to Large-Scale NUMA Sys-
tems,” Andrew Lenharth and Keshav
Pingali describe the Galois system,
which provides a carefully restricted
sequential programming model that
can be implemented in any object-ori-
ented language (the authors use C++)
and enables automatic parallelization
of irregular algorithms. The authors
demonstrate that the Galois runtime
system can execute irregular applica-
tions efficiently on nonuniform mem-
ory access (NUMA) shared-memory

machines such as the 512-core SGI UV
used in their experiments.

Finally, Mahantesh Halappanavar,
Alex Pothen, Ariful Azad, Frederik
Manne, Johannes Langguth, and Arif
Khan address important algorithmic
issues in “Codesign Lessons Learned
from Implementing Graph Matching
on Multithreaded Architectures.” The
authors explore the interplay between
algorithm design and architectural
features using graph matching, a
fundamental problem in many data-
intensive applications that employ
graph-based data structures.

These four articles exemplify a
variety of approaches for mak-
ing future HPC systems more

amenable to data-analytics workloads
in the era of big data. Breakthroughs
are only possible if we take a holis-
tic view of the entire stack and code-
sign the hardware and software lay-
ers. Only through this kind of intense
collaboration among data scientists,
software engineers, and computer
architects will we achieve platform
design capable of surmounting the
challenges in performance and data
size scalability brought by irregular
behaviors.

We enjoyed preparing this spe-
cial issue on a critical topic in the
new age of computing, and hope
you will join the conversation at
www.linkedin.com/grp/post/52513
-6027558200293810180.

ABOUT THE AUTHORS

ANTONINO TUMEO is a senior research scientist in the High Performance

Computing Group at the Pacific Northwest National Laboratory. His research

interests include simulation and modeling of high-performance and embed-

ded computer architectures, hardware/software codesign, field-programmable

gate array (FPGA) prototyping, and GPGPU computing. Tumeo received a PhD

in computer science and engineering from Politecnico di Milano, Italy. He is a

member of IEEE and ACM. Contact him at antonino.tumeo@pnnl.gov.

JOHN FEO is vice president of engineering at Context Relevant, a predictive

data analytics company based in Seattle, Washington. His research interests

include parallel computing, parallel application development, graph databases,

functional languages, and performance studies. Feo received a PhD in com-

puter science from the University of Texas at Austin. He is a member of ACM.

Contact him at marwick04@aol.com.

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

