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Brain−computer interfaces (BCIs) hold great promise for 

improving information delivery and preserving user attention, 

but this promise has not yet translated to practical use. A 

prototype BCI that optimizes email notifications in noisy, 

complex environments, CARSON combines multiple measures 

from the brain to predict both cognitive workload and message 

relevancy to determine the optimum time to interrupt the user.

People consume information at many differ-
ent times and in many different ways. In 1971, 
political scientist and economist Herbert Simon 
pointed out that “a wealth of information creates 

a poverty of attention and a need to allocate that atten-
tion efficiently among the overabundance of informa-
tion sources that might consume it.”1 Since Simon’s time, 
demands on our attention have greatly increased. At work 
or home or on the go, we use multiple devices to read news 
articles, shop online, stay updated with our social net-
works, sift through instant messages and emails, stream 
videos, and track our activities. Emerging augmented-
reality technologies such as smart glasses and car head-up 
displays move information from peripheral to immedi-
ately noticeable locations. As people engage with more 
and more data, attention has become a precious resource.

The consequences of misappropriating attention are 
well documented. Consuming too much or the wrong 
information, or consuming information at the wrong 
moment, can not only decrease working performance 
but also increase stress and anxiety. For example, an 
analysis of 10,000 programming sessions found that 
the average programmer takes 10−15 minutes to resume 
editing code after a single interruption.2 

While the advent of novel information delivery ser-
vices and new types of devices has expanded our capac-
ity to access information, our capacity to perceive and 
understand information has not changed. This ten-
sion between greater information availability and bio-
logical constraints on attention leaves user interface 
researchers at a crossroads: How can we prevent increas-
ing amounts of information from overwhelming users? 

Designing Brain−
Computer Interfaces for 
Attention-Aware Systems
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When is the best time to give users 
new information so that it won’t be 
disruptive? Which information is 
most helpful (or unhelpful) at any 
given moment? What is the best way 
to deliver timely information to users? 

Physiological signals from the brain 
could serve as inputs to systems that 
help manage user attention. While 
brain−computer interfaces (BCIs) hold 
great promise for improving infor-
mation delivery, this promise has not 
yet translated to practical use. CAR-
SON (Cognitive Automatic Real-Time 
Selection of Notifications) is a proto-
type BCI that combines multiple mea-
sures from the brain to regulate email 
delivery in complex environments. 
We use CARSON to explore the space 
of attention-aware systems, outlining 
design principles that enable BCIs to 
operate in noisy conditions. While sig-
nificant challenges lie ahead for BCIs 
in real working scenarios, we envision 
an interface that someday optimizes 
information delivery to match users’ 
constantly changing needs.

TOWARD INTELLIGENT 
INFORMATION DELIVERY
In everyday social interactions, hu-
mans draw on a wealth of information 
acquired from personal experience 
and observation and act on this in-
formation in real time. For example, 
teachers who detect boredom in their 
students will use more demonstrative 
gestures and modify the tone of their 
voice to regain the students’ atten-
tion. Student engagement improves 
because teachers perceive the problem 
and are able to quickly adapt to it.

Computing devices cannot recog-
nize the often subtle social cues that 
indicate a cognitive state like bore-
dom, happiness, or frustration. Con-
sequently, they cannot adapt to retain 

our interest or prevent us from becom-
ing overwhelmed. Yet people uncon-
sciously treat computers as social 
entities, and research suggests that 
“polite” computers can significantly 
improve user interaction.3 If the com-
puter is a collaborator, it is often a clue-
less one.

This limitation underscores a 
fundamental problem in human−
computer interaction (HCI): the 
amount or quality of information that 
a computer has about us pales in com-
parison to what we naturally intuit 
about one another. The bandwidth of 
communication between computers 
and users is too narrow to construct 
an attentive system.

In the hope of broadening this 
bandwidth, researchers have begun 
monitoring the brain as a powerful 
source of input to build an intelligent 
system that always delivers relevant 
information when and how users 
expect it. Unfortunately, as Edward 
Cutrell and Desney Tan pointed out, 
“reality is a bit more sobering; we are a 
long way from the Matrix.”4 The brain 
is complex, neural data from sensors 
is noisy, and users’ natural working 
environments often introduce com-
plex and difficult-to-control variables. 
Consequently, while BCIs have existed 
for decades, their translation to every-
day life has largely remained a vision 
for the future. 

The sidebar “BCIs and Attention 
Awareness” outlines the promises and 
challenges of this approach and pro-
vides context for our work.

CARSON: AN INTELLIGENT 
INTERRUPTION SYSTEM
Playfully named for the butler who 
adeptly navigates complex social 
settings in the hit British TV series 
Downton Abbey, CARSON is a BCI 

that passively monitors signals from 
the brain and uses those measures 
to deeply personalize the comput-
ing experience to improve how peo-
ple engage with information. In 
particular, it leverages functional near-
infrared spectroscopy (fNIRS) signals 
to predict both the user’s cognitive 
workload and the relevance of incom-
ing emails to determine the optimum 
time to interrupt the user and deliver 
the emails. To address some of the 
challenges of building functional, 
attention-aware BCIs in the wild, CAR-
SON applies design strategies that mit-
igate the impact of misclassifications 
on the user experience. This is criti-
cal as physiological computing sys-
tems begin to migrate to more general, 
less-controlled environments.

Measuring brain activity
Observing many of the same phys-
iological parameters as functional 
magnetic resonance imaging (fMRI), 
fNIRS is an optical brain-sensing tech-
nology that fundamentally consists of 
light sources and detectors, as Figure 1 
shows. To detect brain activity, fNIRS 
sends light in the near-infrared range 
(650−900 nm) into the head, where is 
it diffusely reflected by the scalp and 
skull but absorbed by the oxygenated 
and deoxygenated hemoglobin in the 
brain. Following a banana-shaped path, 
a small portion of the light sent into 
the head returns to the sensor, allow-
ing researchers to calculate the con-
centration and oxygenation of blood at 
the brain’s surface.

Because active regions of the brain 
demand more oxygen, these parame-
ters can be used to estimate localized 
brain activity at depths of 1−3 cm. 
Despite a somewhat slow physiolog-
ical response on the order of 5−8 sec-
onds, fNIRS is relatively tolerant to 
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BCIS AND ATTENTION AWARENESS

When it comes to incorporating physiological 
signals from the brain into intelligent sys-

tems, there are many open questions about how 
to process this unique, but potentially noisy, input: 
What information should be emphasized? When 
should it be delivered to the system? How should 
it be presented to the user? The building blocks 
for brain−computer interfaces (BCIs) continue to 
appear in research, even if they are not explicitly 
cast in that light. Taken together, they offer a 
promising but still incomplete picture of future 
information delivery. 

The fact that attentional resources are finite is 
foundational to modern psychology and cognitive 
science.1 The more information sources (dis-
tractions) there are, the fewer resources that are 
available to devote to a given task. Consequently, 
building computers that automatically preserve 
user attention has been a focus of human−
computer interaction (HCI) research for more than 
20 years.2 In presenting an early system designed 
to improve email notifications, Eric Horvitz, Andy 
Jacobs, and David Hovel wrote that “human atten-
tion is the most valuable and scarcest commod-
ity”3 in HCI. Attention awareness likewise was the 
basis for the CLUES system, which used personal 
information in a person’s work environment to 
automatically prioritize messages.4

For the past decade, researchers have ex-
plored using BCIs to manage user attention. Dan-
iel Chen and Roel Vertegaal used physiological 
sensing to identify interruptible moments,5 Anton 
Nijholt and Desney Tan proposed using BCIs 
for intelligent systems,6 a team led by Jan van 
Erp described a BCI framework for multimodal 
interaction and multitask environments,7 and 
Thorsten Zander and his colleagues advocated 
BCI-based implicit control of interfaces.8

Our own work has applied BCIs to informa-
tion filtering, a valuable mechanism commonly 
realized in recommendation systems that 
helps users deal with the profusion of choices 
characteristic of online entertainment.9 Using 
functional near-infrared spectroscopy (fNIRS) 
as the sole input to a proof-of-concept movie 
recommender, we found that implicit measures 
of preference can be used to recommend mov-
ies that subjects rate higher than when recom-
mended by a control condition. Unlike systems 

that require users to explicitly rate or flag their 
preferences, ours makes recommendations 
passively so that the user need not expend 
cognitive resources.

Despite a growing consensus that physiolog-
ical computing systems in general, and BCIs in 
particular, offer solutions to information over-
load, many practical hurdles to their implemen-
tation remain. Improvements in signal processing 
and sensor design are needed to increase the 
classification accuracy of models. In addition, 
many studies focus on a single cognitive state, 
which might not be enough to capture complex 
real-world conditions. 
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minor movement artifacts, increas-
ing its potential to attain ecologically 
valid measurements.5

Predicting interruptibility 
Physiological sensors such as fNIRS 
devices can detect periods of low 
and high cognitive workload. Low-
workload periods are often correlated 
with task breakpoints, moments when 
users can handle incoming informa-
tion without severe disruption. While 
user workload is a valuable heuristic 
for determining opportune moments 
of interruption, research indicates that 
the incoming information’s relevance 
is also critical. For example, a study of 
Microsoft developers and managers 
found that turning off email notifica-
tions resulted in some users checking 
their email account more frequently to 
avoid missing an important message.6

Given this tension between the 
user’s desire to focus on a task and to 
maintain a high level of awareness 
about incoming information, the 
context of an interruption is clearly 
important. However, reliably pre-
dicting both message relevance and 
engagement without direct user input 
has been challenging. How can we 
design systems to function in working 
environments where the cost of mis-
takenly delaying a critical message is 
high? What measures can we use to 
better capture the multidimensional 
complexity of interruptions?

As Figure 2 shows, CARSON aims 
to intelligently adapt to complicated 
real-world scenarios by combining 
two measures: the potential cost of 
an interruption based on how busy 
the user is (when are you available?) 
and the relevance of incoming noti-
fications (which messages are most 
important to you?). It uses fNIRS sig-
nals to predict cognitive workload and 

(a)

(b) (c)

Detector

Light
source

Brain tissue

FIGURE 1. Using functional near-infrared spectroscopy (fNIRS) to measure oxygenation 
levels in the blood that correspond with low and high brain activity. (a) A user wears fNIRS 
sensors while interacting with CARSON. (b) The probes secured on users’ foreheads each 
have four light sources and one detector. (c) Light entering brain tissue follows a banana-
shaped path from source to detector. (Photo credits: Tufts University/Steffan Hacker)

Irrelevant email is 
deferred when user
has high workload

Relevant email 
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FIGURE 2. Combining predictions about the user’s cognitive workload with an email’s 
relevance allows CARSON to deliver messages at the most opportune moment.
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message importance and then incor-
porates these measures into an inter-
ruptibility formula that builds on Eric 
Horvitz and Johnson Apacible’s cal-
culation of the expected cost of inter-
ruption (COI):7

COI = (Wwl × COIwl)(Wutil × COIutil),

where COIwl represents the cost of an 
interruption when cognitive workload 
fluctuates between low (0) and high (1), 
and COIutil represents the cost of an 
irrelevant email (1) versus a highly rel-
evant email (0). Each is weighted by 
CARSON’s confidence in those values. 
These weights are critical in design-
ing a system that can function in dif-
ferent environments.

Designing for complex 
environments
Automating information delivery is 
dangerous because people reason-
ably expect important messages not 
to be delayed. Given unpredictable 
environments and noisy sensors, 
however, inaccurate classification 
models could be an unavoidable con-
straint in the near future. As a result, 
we applied two design principles to 
CARSON: we created graded, noncrit-
ical responses to brain input, and per-
sonalized the system to consider the 
environment’s complexity.

Building noise into adaptation. The 
most obvious way to deal with a costly 
interruption by an incoming message 
is to defer notification to a better time 
for the user. However, this can strip 
users of their sense of control. A noti-
fication should not be deferred indef-
initely simply because the system has 
not determined a good moment for 
the interruption.

To counter this problem, CARSON 
slowly decreases the cost of a delayed 
interruption over time, regardless of 
cognitive workload, making delivery 
more and more likely. When CARSON 
has high confidence in its predictions, 
it will delay the message longer. When 
it has low confidence, it sets a much 
lower maximum wait time. This graded 
strategy guarantees that lengthy delays 
occur only when the system is sure that 
a message is not important.

Personalizing interruptions. Select-
ing the ideal threshold at which a user 
should be interrupted is also chal-
lenging. If the threshold is set too 
high, all messages will be deferred; if 
the threshold is set too low, all mes-
sages will immediately be delivered. 
This problem is more acute with phys-
iological data, as the translation of 
real-time measurements to classifi-
cations results in wide variations in 
model accuracy.

CARSON manages its threshold 
based on a distribution of classifica-
tion probabilities that occurs during 
actual system use—it selects the 
point that maximizes the distance 
between the probabilities of truly 
relevant and irrelevant emails. This 
approach creates personalized inter-
ruption parameters that are sensitive 
to noise in the environment.

TRAINING CARSON  
TO READ THE BRAIN
Intelligent systems can automatically 
identify user state in real time. As with 
many BCIs, CARSON requires a cali-
bration period to “learn” how a user’s 
physiological signals correspond to his 
or her cognitive workload.

As an example of this process, 
CARSON learns to predict the differ-
ence between interruptions contain-
ing important information and those 
that contain unimportant informa-
tion. This capability extends work by 
Erin Solovey and her colleagues, who 
demonstrated that fNIRS could detect 
three multitasking states: branching, in 
which a user performs secondary tasks 
while still holding in mind the pri-
mary task’s goals; delay task, in which a 
user ignores secondary tasks; and dual 
task, when a user frequently shifts be-
tween the primary task and secondary 
tasks.8 For CARSON, we hypothesized 
that dealing with irrelevant email no-
tifications would increase brain activ-
ity, while relevant notifications (which 
support the primary task) would ulti-
mately reduce it.

To predict cognitive workload, we 
repeatedly interrupt users working 
on a difficult information-monitoring 
task with either important or unim-
portant notifications for 15 minutes. 
CARSON monitors each interrup-
tion’s impact on the corresponding 

(2 probes x 4 source/detector pairs x 2 wavelengths)            One example
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FIGURE 3. To predict the cognitive workload of users working on a difficult information-
monitoring task while being repeatedly interrupted by either important or unimportant 
email notifications, we record fNIRS signal activity of each information source over time, 
extract high-level features that describe the signal (in this case, mean change and slope), 
and input that information into a support vector machine (SVM)-based model that pre-
dicts message relevancy.
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fNIRS signal for 20 seconds. Each light 
source/detector pairing in the fNIRS 
probes is considered a different chan-
nel of information. As Figure 3 shows, 
we record each information source’s 
signal activity over time, extract high-
level features that describe the signal, 
and input that data into a model that 
predicts message relevancy. Although 
the best combination of signal features 
remains an open question, inputting 
the mean change in and slope of the 
signal to a support vector machine 
yields high accuracies.9

Once these fNIRS features are 
trained, CARSON streams them to 
the model for real-time classification. 
The output is both a prediction of 
cognitive workload and a probability 
(or confidence value) of that classifi-
cation. We use these probabilities—
which are critical to negating harm-
ful misclassifications—to weight our 
classifications in calculating COI.

We tested our model’s accuracy on 
14 participants during real-time use 
in an interruption task and discov-
ered that 12 exhibited data at above-
chance levels. However, the average 
probability estimate between relevant 
and irrelevant emails differed by only 
10 percent on average (less than zero 
is below chance). While this provides 
weak evidence that fNIRS can detect 
the value of incoming messages, we 
viewed it as an opportunity to test 
CARSON’s design principles in real-
world working environments that are 
difficult to control.

TESTING CARSON
To put CARSON to the test, we con-
structed a hypothetical scenario in 
which users act as information spe-
cialists for a news station. Their job 
involves monitoring a Twitter feed 
about the day’s events and periodically 

retweeting messages to keep followers 
informed. As Figure 4 shows, users are 
instructed to click on every third tweet 
of each topic they are assigned to fol-
low. These topics are assigned by the 
system, and can vary in both content 
and number. The more topics a user 
must follow, the more challenging 

the task becomes. Manipulating the 
number of topics is a way to explore 
high-workload scenarios in which 
interruptions are disruptive versus 
low-workload moments when users 
can handle additional information.

While tracking their assigned 
topics, users are also instructed to 

Retweeting every third tweet about winter

(a)

(b)

FIGURE 4. Putting CARSON to the test. (a) A screenshot of the information-monitoring 
task in which users, acting as information specialists for a news station, retweet every 
third message of topics they are assigned to follow. (b) An email notification example.
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respond to emails that are either rele-
vant or irrelevant to the information-
monitoring task. Relevant emails 
specify that users should prioritize 
messages from a particular Twitter 
account and stop doing their normal 
job until they identify that account. 
Irrelevant emails act as distractors, 
mentioning tweets about topics the 
users are not currently monitoring.

Experimental design
Given our goal of moving BCIs into real-
world environments, we conducted a 
within-subjects experiment using our 
hypothetical scenario. We sought to 
answer two main questions: do mis-
classifications harm user performance, 
and how does CARSON impact users’ 
sense of control of their information? 
The study involved 14 participants 
from 18 to 23 years old, with a mean age 
of 21. To improve experimental con-
trol and focus on a physiological signal 
that is less prevalent in literature (rel-
evance), we simulated the detection of 
cognitive workload.  

For each study participant, we built 
a model to predict message impor-
tance by delivering a series of relevant 
and irrelevant email notifications and 
recording the user’s fNIRS signals 
associated with each interruption.

Existing email systems such as 
Gmail estimate message priority. We 
simulated this model by running a 
second session in which we predicted 
the relevance of new emails that par-
ticipants engaged with. The resulting 
accuracy of these predictions served 
as the basis of CARSON’s real-time 
assignment of message priority.

We tested participant performance 
under three conditions:

›› Adaptive—CARSON calculates 
COI based on email relevance 

and the user’s simulated cogni-
tive workload, trying to delay 
notifications to an opportune 
moment for the user.

›› Immediate—CARSON immedi-
ately delivers all email notifica-
tions to the user.

›› Maladaptive—CARSON inverts 
its calculated COI. This helps 
determine whether the sensors 
are providing meaningful infor-
mation. If they are, there should 
be a significant difference in per-
formance between the maladap-
tive and adaptive conditions.

For each condition, participants were 
interrupted by 20 relevant and 20 
irrelevant notifications. Users inter-
acted with seven 45-second trials of 
interruptions during high cognitive 
workload (monitoring two topics) and 
seven during low cognitive workload 
(monitoring one topic), presented in 
random order. The independent vari-
able was notification delivery time.

For each condition, we recorded the 
following dependent measures:

›› Twitter task performance—this 
was calculated using the Lev-
enshtein edit distance between 
strings representing ideal per-
formance and the user’s perfor-
mance; and 

›› the number of errors that we 
could attribute to participants 
not responding quickly enough 
to an important email.

After testing, we surveyed the 
study participants to determine 
whether they found CARSON to be 
useful, confusing, or efficient, and 
how much control they felt they had 
over the system, under each of the 
three conditions.  

Experimental results
In our experiment, users did signifi-
cantly better under the adaptive con-
dition than under the maladaptive 
condition in both Twitter task perfor-
mance (t(13) = –3.1049, p < 0.01) and in 
responding to relevant emails (t(13) = 
–7.79, p < 0.0001). As Figure 5 shows, 
these results suggest that although 
CARSON’s interruption strategy has 
a low classification rate, fNIRS signal 
data can still be meaningfully mapped 
to message relevancy. 

User performance did not signifi-
cantly differ under the adaptive and 
immediate conditions. Because CAR-
SON has very low confidence in iden-
tifying important emails, it severely 
capped the maximum time to delay 
incoming notifications. Irrelevant 
emails were delayed, on average, only 
about 5 seconds. Message were thus 
rarely delayed until a natural task 
breakpoint, indicating that under 
low-accuracy conditions CARSON 
will only occasionally aid but will not 
hurt the user. This is encouraging for 
future work: increased model accu-
racy would extend CARSON’s will-
ingness to delay a message to a more 
opportune moment for the user.

In their survey responses, study 
participants rarely noted differences 
between the three conditions. One 
user observed that the adaptive con-
dition was “easier to handle/manage 
than the last one” (referring to the 
immediate condition). More gener-
ally, users did not express any loss 
of control or inefficiency between 
one condition and another. This atti-
tude is best reflected by a participant 
who stated, “It seemed like it was the 
same as before.” In light of known 
system misclassifications, this sug-
gests that users might not detect 
CARSON’s adaptiveness. 



	 O C T O B E R  2 0 1 5 � 27

LESSONS FROM CARSON
Our work on CARSON has yielded sev-
eral insights about designing BCIs and 
deploying them in the wild.

Complex problems need 
more than one measure
Current applications and devices pro-
vide various mechanisms to help 
manage information. Gmail, for 
example, tries to capture the impor-
tance of emails with a priority inbox, 
and many smartphones have set-
tings to assign higher priority levels 
to specific contacts. CARSON aims to 
expand the bandwidth between user 
and computer—to build an attention-
aware system that has access to more 
information than existing applications 
and leverages untapped physiological 
resources to present that information 
to the user in the best possible way.

The advantage of physiological sig-
nals is that they can be recorded with-
out direct user involvement, thus pre-
serving users’ attentional resources. 
And because physiological responses 
can be generalized to broader con-
texts, they could become the basis for 
comparing and prioritizing text mes-
sages, emails, and other types of noti-
fications across domains. However, 
physiological responses to different 
user states could overlap or interfere 
with one another, and using multiple 
models increases the risk of misclas-
sification. Future BCI research must 
resolve these challenges as the tech-
nology continues to mature and sup-
port more complex user problems.

Designing for noise  
and misclassification
System interventions can disrupt a 
user’s perception of control, especially 
when they are the result of misclas-
sifications. This presents a dilemma 

for designers of interruption systems 
driven by brain input because accu-
racy can be difficult to guarantee. 
However, as our participants showed, 
users generally are not aware of the 
timing or content of incoming notifi-
cations until they arrive, allowing the 
system some flexibility in manipulat-
ing their delivery. 

Our study also highlights the effec-
tiveness of graded adaptation strate-
gies. CARSON’s physiological-based 
email deferral policy provided subtle 
adaptations. While users performed 
significantly better in the adaptive 
and immediate conditions, the mal-
adaptive condition was not disruptive 
enough to register on any dimension 
of our survey.

Brain and body metrics are 
increasingly accessible with 
the emergence of wearable 

computing. At the same time, the 
amount of information we process has 

grown rapidly. Our devices are capa-
ble of remarkable power and speed, 
but they also remain insensitive to 
our mental states and thus frequently 
cause annoying and disruptive 
interruptions.  

However, CARSON and other com-
parable systems provide concrete 
examples of how physiological mea-
sures can improve the way we engage 
with information. While inaccurate 
classification models and noisy sig-
nals have traditionally impeded the 
translation of BCIs to the consumer 
space, good design principles could 
help mitigate the impact of misclas-
sification and improve the viability of 
this emerging technology.

At the same time, CARSON’s mea-
surement of cognitive workload is not 
the end game. Capturing the richness 
of our environment will likely involve 
many metrics that weigh numerous 
contextual factors, and this raises 
several challenging questions: What 
is the best combination of sensors to 
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FIGURE 5. Even with low classification accuracy, users generally performed as well as or 
better under the adaptive condition, which employs CARSON’s interruption strategy, than 
under the immediate condition, which constitutes normal email delivery.
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capture user state? What states can be 
detected simultaneously? How do user 
movement and changing environ-
ments impact measures of attention?

Our computing devices could soon 
leverage information from brain and 
body sensors to respond in a manner 
that is more appropriate or familiar 
to us. As technology advances, we can 
begin to imagine an entirely new gen-
eration of BCIs that are sensitive to our 
changing state—optimizing how, when, 
and which information is delivered to 
us. Such interfaces have the potential to 
someday transform our computers from 
tools to collaborators. 
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