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COVER FEATURE GRAND CHALLENGES IN SCIENTIFIC COMPUTING

The TOP500 List 
and Progress in High-
Performance Computing
Erich Strohmaier, Lawrence Berkeley National Laboratory 

Hans W. Meuer, University of Mannheim

Jack Dongarra, University of Tennessee

Horst D. Simon, Lawrence Berkeley National Laboratory

For more than two decades, the TOP500 list has enjoyed 

incredible success as a metric for supercomputing performance 

and as a source of data for identifying technological trends. 

The project’s editors refl ect on its usefulness and limitations for 

guiding large-scale scientifi c computing into the exascale era.

The TOP500 list (www.top500.org) has served 
as the de� ning yardstick for supercomput-
ing performance since 1993. Published twice a 
year, it compiles the world’s 500 largest instal-

lations and some of their main characteristics. Systems 
are ranked according to their performance of the Lin-
pack benchmark,1 which solves a dense system of linear 
equations. Over time, the data collected for the list has 
enabled the early identi� cation and quanti� cation of 
many important technological and architectural trends 
related to high-performance computing (HPC).2−4

Here, we brie� y describe the project’s origins, the 
principles guiding data collection, and what has made 
the list so successful during the two-decades-long tran-
sition from giga- to tera- to petascale computing. We also 
examine the list’s limitations. The TOP500’s simplicity 
has invited many criticisms, and we consider several 
complementary or competing projects that have tried 
to address these concerns. Finally, we explore several 
emerging trends and re� ect on the list’s potential useful-
ness for guiding large-scale HPC into the exascale era.

TOP500 ORIGINS 
In the mid-1980s, coauthor Hans Meuer started a small 
and focused annual conference that has since evolved 
into the prestigious International Supercomputing Con-
ference (www.isc-hpc.com). During the conference’s 
opening session, Meuer presented statistics about the 
numbers, locations, and manufacturers of supercomput-
ers worldwide collected from vendors and colleagues in 
academia and industry.

Initially, it was obvious that the supercomputer label 
should be reserved for vector processing systems from 
companies such as Cray, CDC, Fujitsu, NEC, and Hitachi 
that each claimed to have the fastest system for scienti� c 
computation by some selective measure. By the end of 
the decade, however, the situation became increasingly 
complicated as smaller vector systems became available 
from some of these vendors as well as new competitors 
(Convex, IBM) and as massively parallel systems with 
SIMD architectures (Thinking Machines, MasPar) and 
MIMD systems based on scalar processors (Intel, nCube, 
and others) entered the market. Simply counting the 
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installation base for systems of such 
vastly di� erent scales did not produce 
any meaningful data about the mar-
ket. New criteria for which systems 
constituted supercomputers were 
needed.

After two years experimenting 
with various metrics and approaches, 
Meuer and coauthor Erich Strohmaier 
concluded that the best way to pro-
vide a consistent, long-term picture 
of the supercomputer market was to 
maintain a list of systems up to a pre-
determined cuto�  number, ranked 
according to their actual performance. 
On the basis of previous studies they 
determined that at least 500 quali� ed 
systems could be assembled, and so 
the TOP500 list was born.

RANKING SUPERCOMPUTER 
PERFORMANCE
The simplest and most universal rank-
ing metric for scienti� c computing is 
� oating-point operations per second 
(� ops). More specialized metrics such 
as time to solution or time per iteration 
and time per gridpoint can be more 
meaningful in particular application 
domains and allow more detailed 
comparisons—for example, between 
alternative algorithms with di� erent 
complexities—but are harder to de� ne 
properly, more restricted in their use, 
and, due to their specialization, not 
applicable to the overall scienti� c 
computing market.

In addition to limiting performance 
measurement to � ops, we decided to use 
actual measured values to avoid con-
taminating collected data with unsub-
stantiated and often outlandish per-
formance “estimates” for systems that 
did not reliably function or even exist. 
In principle, measured results from 
di� erent benchmarks or applications 
could be used to rank di� erent systems, 

but this would lead to inconsistent val-
ues and make comparisons di�  cult. To 
address this problem, we opted to select 
and mandate use of a single benchmark 
for all TOP500 editions.

This benchmark would not repre-
sent performance of an actual scienti� c 
application but coarsely embody scien-
ti� c computing’s main architectural 
requirements. Because scienti� c com-
puting is primarily driven by integrated 
large-scale calculations, we decided 
to avoid using simplistic benchmarks, 
such as embarrassingly parallel work-
loads, that could lead to very high rank-
ings for systems otherwise unsuitable 
for scienti� c computing. Instead, we 
sought a benchmark that would show-
case systems’ capabilities without 
being overly harsh or restrictive. Over-
all, the collected data should provide 
reasonable upper bounds for actual 
performance while penalizing systems 
unable to support a large fraction of sci-
enti� c computing applications.

Obviously no single benchmark 
can ever hope to represent or approx-
imate performance for most scienti� c 
computing applications, as the space 
of algorithms and implementations is 
too vast. The purpose of using a single 
benchmark in the TOP500 was never 
to claim such representativeness but 
to collect reproducible and compara-
ble metrics.

Using a single benchmark that does 
not utilize all the system components 
necessary for most scienti� c applica-
tions or that maps better to particular 
computer architectures could lead to 
misleadingly high performance num-
bers for some systems, incorrectly indi-
cating these systems’ suitability for sci-
enti� c computing. To minimize such 
implicit bias, we decided that the bench-
mark should exercise all major system 
components and be based on a relatively 
simple algorithm that allows optimiza-
tion for a wide range of architectures.

LINPACK
An evaluation of benchmarks suitable 
for supercomputing in the early 1990s 
found that Linpack1 had the most doc-
umented results by a large margin and 
thus allowed immediate ranking of 
most of the systems of interest. The 
NAS Parallel Benchmarks (NAS PB)5

were also widely used, as most of them 
simulated actual application perfor-
mance more closely, but none of them 
provided enough results to rank more 
than 40 percent of the systems.

Linpack solves a dense system of 
linear equations, which today is some-
times criticized as an overly simplis-
tic problem. However, the benchmark 
is by no means embarrassingly par-
allel and it worked well with respect 
to reducing the rankings of loosely 
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FIGURE 1. Supercomputer performance over time as tracked by the TOP500. The red 
and orange lines show performance of the fi rst and last systems, and the blue line aver-
age performance of all systems. Dashed lines are fi tted exponential growth curves before 
and after 2008 for the orange line and before and after 2013 for the blue line.
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coupled architectures, which were of 
limited use to scientific computing in 
general. The High-Performance Lin-
pack (HPL) implementation comes 
with a self-adjustable problem size, 
which allows it to be used seamlessly 
on systems of vastly different sizes as 
compared to discrete, fixed sizes for 
the NAS PB. Unlike many other bench-
marks with variable problem sizes, 
HPL achieves its best performance on 
large-scale problems that use all of a 
system’s available memory and not on 
small problems that fit into the cache. 
This greatly reduces the need for elab-
orate run rules and procedures to 
enforce full computer-system usage, 
which is similar to what many applica-
tions do. HPL also encodes an import-
ant set of optimization parameters and 
enables substantial performance opti-
mization through their adjustments. 
All of these features made Linpack 
the obvious choice for our TOP500 
ranking.

The selection of Linpack as the sole 
benchmark implies several other lim-
itations. In Linpack, the number of 
operations is not measured but calcu-
lated with a simple formula based on 
the problem size and the original algo-
rithm’s computational complexity. In 
this case, changes and optimizations 
of the algorithm have to be limited so 

that they do not reduce the number of 
floating-point operations performed. 
The TOP500 therefore cannot provide 
any basis for research into algorithmic 
improvements over time. Linpack and 
HPL could certainly be used to compare 
algorithmic improvements, but not in 
the context of the TOP500 ranking.

TOP500 TRENDS
Although we started the TOP500 to 
provide statistics about the HPC mar-
ket at specific dates, it became imme-
diately clear that the inherent ability 
to systematically track the evolution 
of supercomputers over time was even 
more valuable. Any TOP500 edition 
includes a mix of new and older sys-
tems and technologies. In the six 
months between successive editions 
of the list, the turnover rate has until 
recently (2012) averaged about 190 sys-
tems out of 500. The average age of sys-
tems since installation was 1.26 years.  
This continuous high replacement 
rate makes it possible to observe many 
trends by simply looking at the entire 
list. Using only the subsample of new 
systems on each list provides an over-
view of emerging technologies. 

An analysis of supercomputing 
performance over time revealed that 
it grew noticeably faster than a direct 
interpretation of Moore’s law would 

predict. Figure 1 shows performance 
values for the first and last systems as 
well as average performance of all sys-
tems in the TOP500. Until 2008, these 
curves grew exponentially at a rate of 
1.91 per year (multiplicative factor). 
Compared to the exponential growth 
rate of Moore’s law at 1.59 per year, 
TOP500 system performance had an 
excess exponential growth rate of 1.20 
per year. We suspected that this addi-
tional growth was driven by an increas-
ing number of processor sockets in our 
system sample. (We use the term “pro-
cessor sockets” to clearly differentiate 
processors from processor cores.) 

To better understand this and other 
technological trends contained in the 
TOP500 data, we obtained a clean and 
uniform subsample of systems from 
each edition of the list by extracting 
the new systems and those systems 
that did not use special processors 
with vastly different characteristics 
including SIMD processors, vector 
processors, or accelerators (such as 
Nvidia GPUs and Intel Phi coproces-
sors). The average number of sockets 
for this subsample of systems is shown 
in Figure 2. The exponential increase 
in the number of sockets per system 
up to 2008 is 1.29 per year, which eas-
ily explains the observed growth rate 
above Moore’s law.

Since 2008, however, the exponen-
tial growth rate of the last system on 
the TOP500 has been only 1.55 per year, 
slightly below that of Moore’s law. The 
curve for average performance since 
2013 indicates a similar slowdown. To 
find out why we examined per-socket 
performance, which, as Figure 3 shows, 
exhibits a constant exponential growth 
rate of 1.45 per year—just below what 
Moore’s law would predict. Clearly, the 
increasing number of cores per socket 
has compensated for stagnant core 
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FIGURE 2. Average number of processor sockets for new supercomputers in the TOP500, 
excluding systems with SIMD processors, vector processors, or accelerators. The exponen-
tial increase in the number of sockets up to 2008 accounts for the higher-than-expected 
growth rate in supercomputing performance during the same time period.
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performance in the latter half of the 
past decade.

The changes in the overall growth 
rate since 2008 can be attributed 
mostly to a decline in the growth rate 
of the number of sockets and hence 
components in large-scale HPC sys-
tems, which has been a very modest 
1.07 per year.

The impact of this observed slow-
down is quite profound: prior to 2008, 
overall TOP500 system performance 
increased by a factor of about 1,000 
over an 11-year time period; after 2008, 
it increased by only a factor of about 
100 in the same time period (extrapo-
lated to 11 years). Our data attributes 
this trend mostly to reduced growth in 
system size as measured by the num-
ber of processors and not to reduced 
performance growth for the proces-
sors themselves. This slowdown will 
only compound the projected decline 
in performance growth as we approach 
the end of the decade and Moore’s law.

TOP500 FEEDBACK
TOP500 feedback falls mostly into 
two categories: requests for additional 
data and for different benchmarks. 

Additional data
Requests for additional data usually 
center on system characteristics—
memory, power consumption, disk 
space, costs, and so on. We agree 
that more information would be 
beneficial, but this first requires a 
consistent and precise definition of 
what to collect, which often is diffi-
cult to formulate. Also, such efforts 
are nontrivial in terms of time and 
manpower. In some cases we have 
added new data to the TOP500, while 
in others we have left the task to 
outside individuals and organiza-
tions. Some researchers have created 

geographically restricted top super-
computer  lists—including for Russia 
(http://top50.supercomputers.r u), 
China (www.top500.org/blog/chinas 
-2014-hpc-top100-l ist-i n-english), 
India (http://topsupercomputers-india 
.iisc.ernet.in), and Ireland (www 
.irishsupercomputerlist.org)—with 
substantially lower cutoff values, 
but otherwise largely follow our 
guidelines. Others augment our data 
with their own or publish a resorted 
list such as the Green500 (www 
.green500.org), which incorporates 
power consumption data. Still other 
researchers analyze TOP500 data for 
their own purposes—Peter Kogge and 
Tim Dysart’s projections of architec-
tural trends is one notable example.4

New benchmarks
Some requests for different bench-
marks relate to applications in which 
flops performance is not the main 
metric of interest. The most promi-
nent example is data-intensive appli-
cations. Since 2010, the Graph500 
(www.graph500.org) has provided a 
complementary ranking of comput-
ing systems for such applications. 
As this project illustrates, however, 
developing a suitable benchmark (and 
metric) for a new application domain 
is nontrivial. Using a breadth-first 
search of an undirected graph as the 
base problem, the Graph500 team 

has put substantial effort into speci-
fying and redefining this benchmark 
but, as of July 2015, listed fewer than 
200 systems for which measurements 
had been collected. Reported systems 
range from the largest supercomput-
ers to single-node computers, includ-
ing an iPad 3—which we certainly do 
not consider a supercomputer.

Most new benchmark requests are 
rooted in the argument that Linpack 
is a poor proxy for application perfor-
mance. This is not surprising, as Lin-
pack was never meant to be an appli-
cation proxy; rather, we chose it for the 
TOP500 because it is a well-defined, eas-
ily optimizable, nontrivial benchmark 
requiring a well-integrated computer 
system for execution. Nowadays, it is 
clear that Linpack primarily stresses 
per-core flops performance and, sec-
ondarily, network performance. Due 
to its optimized implementations, it 
is very insensitive to memory perfor-
mance (bandwidth and latency alike). 
A benchmark that more equally bal-
ances all three characteristics might 
represent overall application perfor-
mance slightly better, and we are cer-
tainly open to and involved in efforts 
to develop such a benchmark—in 
particular, HPCG (High-Performance 
Conjugate Gradients)6 and HPGMG 
(High-Performance Geometric Multi-
grid)7—but constructing a reasonably 
simple benchmark based on a relevant 
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computational algorithm that also dis-
plays most of Linpack’s additional ben-
efits has proved to be quite difficult.

Any attempts to define new bench-
marks for the TOP500 must also con-
sider their potential impact on the 
rankings and derived trends. A bench-
mark that only results in a small, local, 
and hence trivial reordering might 
not yield enough substantive addi-
tional data to justify the effort. Rad-
ically different benchmarks might 
raise the same question Linpack has 
with respect to representation of the 
HPC community at large. Assuming 
that an alternative benchmark would 
include as large a variety of computing 
architectures as Linpack, we believe 
that the benchmark’s details should 
have very little influence on the major 
observed trends.

BEST APPLICATION 
PERFORMANCE
The TOP500 is often criticized because 
the published performance num-
bers for Linpack are far lower than 
what is achievable for actual applica-
tions. Unfortunately, no other bench-
mark with a consistent collection of 
data covering a reasonable subset of 

supercomputers spanning two and a 
half decades exists. However, we can 
construct a series of “best application 
performance” data by looking at recipi-
ents of the ACM Gordon Bell Prize (GBP; 
http://awards.acm.org/bell), awarded 
annually since 1987 at the SC confer-
ence. This award is not based on a sin-
gle benchmark—rather, each year the 
award committee selects a different 
application with the best performance. 
However, “best” does not necessar-
ily imply highest performance, as the 
award considers all aspects of the appli-
cation and system used. The GBP, how-
ever, clearly focuses on real-world sci-
entific applications and can therefore 
serve as an indicator of how far Linpack 
has departed from actual peak applica-
tion-performance levels and how the 
growth rate observed in the TOP500 
would be affected.

Table 1 shows the system and per-
formance data of each year’s GBP- 
winning application in the Sustained 
Performance category, together with 
the top-ranked system from the 
November TOP500 list, since 1993. 
We selected this edition of the list 
as it is released at the same SC con-
ference where the GBP winner is 

announced. Because GBP submis-
sions can take 6−12 months to prepare 
and must occur several months prior 
to announcement of the winner, the 
June TOP500 edition is arguably more 
appropriate, and indeed the table con-
tains many GBP winners whose per-
formance was measured on the pre-
vious June TOP500 list’s top-ranked 
system. We matched performance val-
ues of GBP winners to those of systems 
on the June TOP500 list and obtained 
a very similar outcome. For brevity, 
we present here only the unmatched 
November TOP500 data.

Figure 4 plots the performance 
values of GBP winners together with 
those of number-one systems in 
the TOP500 over time. The correla-
tion rate between these two series of 
performance values (derived from 
log10-transformed data to eliminate 
the raw data’s overwhelming scale 
effects) is near perfect at 0.99. Fitting 
exponential growth rates to both data-
sets yields annual growth rates of 1.89 
for TOP500 systems and 1.85 for GBP 
winners, which is reasonably close 
considering that we made no effort to 
clean up the raw GBP data.

The average ratio of GBP to Linpack 
performance values given in Table 1 
is 50 percent, and even eliminating 
obvious outliers from the list of GBP 
winners (a system without Linpack 
in 1995, special-purpose systems in 
2000 and 2001, and a high-performing 
35.3-Tflops system in 2003) results in 
an average ratio of 45 percent. Ratios 
rarely fall below 25 percent, and little 
if any systematic change in values is 
apparent: average ratios for the first 
10 years are only about 10−20 percent 
higher than those for the last 10 years. 
While GBP performance values argu-
ably are no more representative than 
Linpack performance values, this high 
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TABLE 1. Gordon Bell Prize (GBP) winners from 1993 to 2014  
and top-ranked systems from the corresponding TOP500 list. 

Year

TOP500 no. 1 
system perf. 

(Gflops)

GBP 
winnerperf. 

(Gflops)

Perf. ratio 
GBP winner/
TOP500 no. 1 

system (%)
TOP500  
no. 1 system GBP system

GBP 
system 
pos. in 

TOP500 GBP application

1993 0.1245 0.06 48.2 Numerical Wind 
Tunnel

CMS 2 Modeling of a shock front using 
the Boltzmann equation

1994 0.1704 0.14 82.2 Numerical Wind 
Tunnel

Intel Paragon 2 Structural mechanics using the 
boundary element method

1995 0.1704 0.179 105.0 Numerical Wind 
Tunnel

Numerical 
Wind Tunnel

1 Quantum chromodynamics 
simulation

1996 0.3682 0.111 30.1 CP-PACS Numerical 
Wind Tunnel

2 Fluid dynamics problem

1997 1.338 0.43 32.1 ASCI Red ASCI Red 1 Motion of 322 million self-
gravitating particles

1998 1.338 0.657 49.1 ASCI Red Cray T3E 2 Modeling of metallic magnet 
atoms

1999 2.3796 1.18 49.6 ASCI Red ASCI Blue 
Pacific

2 Fluid turbulence in compressible 
flows

2000 4.938 1.349 27.3 ASCI White, SP 
Power3

Grape-6 − Simulation of black holes in a 
galactic center

2001 7.226 11.55 159.8 ASCI White, SP 
Power3

Grape-6 − Simulation of black holes in a 
galactic center

2002 35.86 26.58 74.1 Earth Simulator Earth 
Simulator

1 Global atmospheric simulation 
with the spectral transform 
method

2003 35.86 5 13.9 Earth Simulator Earth 
Simulator

1 Earthquake simulation

2004 70.72 15.2 21.5 BlueGene/L beta Earth 
Simulator

3 Geodynamo simulation

2005 280.6 101.7 36.2 BlueGene/L BlueGene/L 1 Solidification simulations

2006 280.6 207.3 73.9 BlueGene/L BlueGene/L 1 Large-scale electronic structure 
calculations of high-Z metals

2007 478.2 115.1 24.1 BlueGene/L BlueGene/L 1 Simulation of Kevin−Helmholtz 
instability in molten metals

2008 1,105 409 37.0 Roadrunner Cray XT4 2 Simulation of disorder 
effects in high-temperature 
superconductors

2009 1,759 1,030 58.6 Jaguar (Cray XT5) Jaguar (Cray 
XT5)

1 Ab initio computation of free 
energies in nanoscale systems

2010 2,566 700 27.3 Tianhe-1A Jaguar (Cray 
XT5)

2 Direct numerical simulation of 
blood flow

2011 10,510 3,080 29.3 K Computer K Computer 1 First-principles calculations of 
silicon nanowire electron states

2012 17,590 4,450 25.3 Titan (Cray XK7) K Computer 3 Astrophysical N-body simulation

2013 33,862.7 11,000 32.5 Tianhe-2 
(MilkyWay-2)

Sequoia 
(BlueGene/Q)

3 Cloud cavitation collapse

2014* 33,862.7 24,770 73.1 Tianhe-2 
(MilkyWay-2)

Titan (Cray 
XK7)

2 Gravitational tree code to 
simulate the Milky Way

*Finalist with the highest reported flops metric; no flops number was available for the actual winner, which ran code on Anton-2 and was selected based on a speedup metric.
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correlation indicates that Linpack 
still serves as a reasonably close upper 
bound for actual application perfor-
mance. A more balanced benchmark 
might close the existing gap by a factor 
of 2 but would probably be regarded as 
overly demanding if its performance 
levels fell too far below the GBP levels.  
Figure 4 indicates that correcting per-
formance by such a small factor would 
not materially affect the observed 
long-term trends.

TOWARD EXASCALE 
COMPUTING
As we approach the exascale era, the 
rate of increase in peak and applica-
tion performance of our largest sys-
tems has clearly slowed. Our analysis 
suggests that over the next decade we 
will likely fall short of historical trends 
for performance increases by almost 
an order of magnitude (100× instead 
of 1,000×). An even more substantial 
slowdown can be expected once any 
change or an end to Moore’s law affects 
increases in per-socket performance.

Any such slowdown will eventually 
open up opportunities for companies 

to explore competitive advantages 
through stronger architectural dif-
ferentiation. For scientific comput-
ing, this most likely will increase the 
difficulty of judging the appropriate-
ness of different architectures and 
their potential performance without 
detailed measurements of special-
ized benchmarks and applications. 
At first sight, this might indicate less 
relevance for Linpack or the TOP500, 
but neither of these was ever meant 
to guide procurement decisions or 
architectural design. For these critical 
tasks, we must examine the scientific 
applications we use every day.

Augmenting the TOP500 with a 
more balanced benchmark might 
correct rankings by a small factor 
and provide additional angles for 
analysis. But to be useful and man-
ageable, any such benchmark must 
be simple and scalable, enable a 
broad variety of implementations 
and optimizations, and be useable on 
a large set of architectures.

The current approach for compil-
ing the TOP500 clearly cannot address 
truly novel architectures such as 

neuromorphic or quantum systems. 
Should a market for such systems 
develop, very domain-specific bench-
marking and ranking techniques would 
need to be developed, a situation similar 
to that of data-intensive computing.

A project such as the TOP500 that 
collects data for analysis of the HPC 
market and long-term technological 
trends is best served by building upon 
a broadly applicable benchmark that is 
flexible enough to avoid handicapping 
otherwise well-designed systems but 
demanding enough to penalize archi-
tectures that do not adequately sup-
port the scientific computing commu-
nity. We acknowledge that there are 
limitations to the TOP500 and actively 
work to improve it, but we also believe 
that the TOP500 continues to provide 
important insights about how to move 
forward into the exascale era that are 
based on actual data instead of mar-
keting claims.

The TOP500 has enjoyed incredi-
ble success as a metric for super-
computing performance for 

IN MEMORIAM: HANS WERNER MEUER (1936−2014) 

Hans W. Meuer started the TOP500 list together 
with Erich Strohmaier, Jack Dongarra, and Horst 

D. Simon in 1993. The project grew directly out of 
his work as cofounder and organizer in 1986 of the 
first Mannheim Supercomputer Seminar, an annual 
meeting that in 2001 became the International 
Supercomputing Conference (ISC). 

In addition to serving as general chair of ISC from 
its inception until his passing, Meuer was director 
of the Computing Center and a professor of math-
ematics and computer science at the University of 
Mannheim, Germany, from 1976 until his retirement 
in 2000. From 1998 until 2013, he also served as 
managing director of Prometeus GmbH, a company 
that runs a series of conferences in fields closely 
associated with high-performance computing.

Prior to joining the University of Mannheim, Meuer 
studied mathematics, physics, and politics at the 
universities of Marburg, Giessen, and Vienna. From 
1962 until 1973, he was a research specialist, project 
leader, and group and department chief at the Jülich 
Research Center, during which he received his PhD in 
applied mathematics from RWTH Aachen University. 
From 1986 until 2004, he served as editor in chief 
of the professional IT journal Pik (Praxis der Informa-
tionsverarbeitung und Kommunikation). Meuer was a 
member of ACM and the German Informatics Society. 
He published numerous articles in the areas of mathe-
matics, data processing, and computer science.

Meuer passed away at the age of 77 at his home 
in Daisbach, southern Germany, on 20 Jan. 2014 
after a brief battle with cancer.
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more than two decades. The trends 
it exposes, the focused optimization 
efforts it inspires, and the publicity 
it brings to the HPC community are 
critical. As increasingly diverse archi-
tectures emerge, appropriate bench-
marks that match application needs 
are more necessary than ever.

HPL encapsulates some aspects of 
real scientific applications—strong 
demands for system reliability and sta-
bility, flops performance, and to some 
extent network performance—but 
no longer tests memory performance 
adequately. Alternative benchmarks 
that complement HPL could help cor-
rect individual rankings and improve 
our understanding of systems, but 
they are not likely to significantly alter 
observed technological trends. 
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