
Entropy-as-a-Service: Unlocking the Full Potential of
Cryptography

Apostol Vassilev and Robert Staples
NIST

Abstract

Securing the Internet requires strong cryptography, which depends on the availability of good

entropy for generating unpredictable keys and accurate clocks. Attacks abusing weak keys or old

inputs portend challenges for the Internet. EaaS is a novel architecture providing entropy and

timestamps from a decentralized root of trust, scaling gracefully across diverse geopolitical locales

and remaining trustworthy unless much of the collective is compromised.

Introduction

Cryptography is fundamentally important for information security, whether information is

data in transit over the Internet or at rest on storage devices. Today, the security of data

protected by cryptography depends not on secret algorithms, but primarily on having strong

keys and keeping them secret.

Generating strong cryptographic keys is no simple matter. Experts recommend using the

output from deterministic random bit generators (DRBGs), to generate keys for

cryptographic applications [2]. However, the sequence of numbers generated by a DRBG

can be traced predictably to the seed (initial value) supplied to the generator. Knowing the

seed, one can reconstruct the sequence of numbers a particular DRBG produces. Thus,

DRBGs must be seeded with hard-to-guess random data from a reliable source.

In information theory, such sources are referred to as “high-entropy” sources that provide

true randomness. Usually they are based on nondeterministic physical processes such as ring

oscillators or some kind of quantum behavior. Most practical computer systems rely on

events such as mouse movements, keyboard stroke timings, network events and hard disk

access times to generate hard-to-guess random data for seeding DRBG’s. Although

sometimes plausible, such sources often provide a limited amount of unpredictability, i.e.

low entropy, because, as in the case of headless or embedded devices, they lack these

sources of unpredictability, cf. [1]. This problem is exacerbated in cloud computing. Cloud

computing environments often lack the sources of non-determinism harnessed by traditional

computers for harvesting entropy. Cloud service providers typically use a single reference

Disclaimer
The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for
the purpose.

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
Computer (Long Beach Calif). 2016 September ; 49(9): 98–102. doi:10.1109/MC.2016.275.N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript

image of a guest virtual machine (a “golden” image) in order to create multiple instances of

it in response to user demand. Each instance often has very limited ability to harvest

randomness.

Another domain where the demand for good cryptographic keys is strong is the Internet of

Things, or “IoT”. IoT devices tend to be small, resource-constrained, headless or embedded

but their functional capabilities span a wide range. Although characterizing the ability of IoT

devices to generate good cryptographic keys is out of scope for this paper, it is reasonable to

think that some types of IoT devices with network connectivity and modest computational

power to perform asymmetric cryptographic operations may also benefit from the proposed

service architecture.

There is a growing need for strong entropy on the Internet and the Entropy-as-a-Service

(EaaS) system is designed to help.

1 Recent Findings of Poor Entropy

The concerns about the potential weakness of cryptographic keys are far from just

theoretical. This section briefly reviews real-life examples of catastrophic security breaches

resulting from poorly constructed or predictable cryptographic keys.

1.1 Mining Your Ps and Qs

A recent study [1] provided one of the most comprehensive Internet-wide searches of SSH

and TLS servers to date, checking 12.8 million TLS and 23 Million SSH hosts.

In this survey, the researchers discovered alarming results: 5% of HTTPS and 10% of SSH

hosts shared keys because of insufficient entropy from the source used, allowing them to

actually calculate the private keys of 0.5% of HTTPS hosts and 1% of SSH hosts.

Almost all vulnerable hosts were headless or embedded network devices like routers or

firewalls. Such hosts often run a pared-down Linux kernel and do not have the usual random

events from input devices that a desktop computer would have. As a result, there exists an

“entropy hole” in which the output of /dev/urandom could be constant across multiple

boots for a period of time early in the boot process. In one case, the same key was generated

in over 25% of boots.

1.2 Entropy-starvation in Embedded Devices

We built on the approaches from the study discussed above [1] to investigate the strength of

the Linux kernel entropy sources. In particular, we simulated the behavior of an embedded

or headless device, without a hard drive or a keyboard/mouse, always starting with empty

pool (i.e. no “seed”). We built a pared-down Linux kernel with different combinations of

kernel entropy input devices disabled. Depending on the combination of entropy sources

disabled, the entropy count in the pool took anywhere from 20 to 45 seconds to generate the

bare-minimum threshold of 112 bits – see Figure 1. More time was needed to reach the

threshold when some contributing sources were turned off, simulating environments with

constrained resources.

Vassilev and Staples Page 2

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

This experiment illustrates the potential weakness of Linux kernel entropy sources in

embedded/headless Internet deployments, e.g., in cloud environments. We observed

particularly strong demand for entropy through the unblocking/dev/urandom interface with

requests as high as 4096-bits shortly after boot when little random data is accumulated,

highlighted with the black dashed circle in Figure 1. This behavior of Linux in fact opened

the door for the exploits described in [1].

2 Entropy-as-a-Service

The security issues resulting from the effects of poor entropy discussed so far illustrate the

fundamental importance of good randomness for security – see also “The Importance of

Entropy to Information Security”, A. Vassilev and T. Hall, IEEE Computer, 47(2), pp.79–81,

2/2014.

The existing technological headwinds that hinder the implementation of robust random bit

generation capabilities in conventional computing devices make apparent the need for

alternative means of providing high-quality entropy to devices that cannot produce their own

in sufficient quantity or quality.

The widely available and highly redundant nature of the Internet creates an effective medium

by which to provide good random data to needy clients, in this case using a REST (cf.,

http://www.restapitutorial.com/) interface, i.e. an Entropy-as-a-Service (EaaS) solution.

Instead of relying solely on weak pseudo-random data in classical computers, EaaS provides

a novel and secure way of delivering high-entropy data to requesting devices. EaaS leverages

existing protocols and technologies, which makes adoption easy.

EaaS uses HTTP to transfer entropy payloads from the service to clients. To secure this

transmission, the server encrypts the data using the client’s provided public key and digitally

signs the payload with the server’s own private key.

2.1 A sketch of a protocol

The client makes a HTTP GET request to the EaaS server, with the number of bytes of

random data to return, and its own public key, which is used to encrypt the returned payload.

The structure of the server XML response is shown below.

Successful Response

<response>

 <entropy>

 encrypted base64-encoded

 random data

 </entropy>

 <timestamp></timestamp>

 <dsig></dsig>

</response>

Vassilev and Staples Page 3

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://www.restapitutorial.com/

Here, the tags are: Entropy – the payload, encoded in base64 format; Timestamp; Signature
(dsig).

2.2 Resolving the chicken-and-egg conundrum

Clients need a public key to access EaaS and request high-entropy data to strengthen their

key generation capabilities. How then, can a client have a strong public key to come to the

EaaS system in the first place?

The critical observation here is that it is much easier and cheaper to generate strong keys

out-of-band than to implement robust random bit generation capabilities in conventional

devices. Manufacturers of devices can, and often do, generate strong keys in the factory and

provision them on devices. This model of key provisioning is well known and widely used in

many industries, including smart card and TPM manufacturing. When a customer receives a

shipment of devices to deploy, they also receive through independent means the secrets

required to change the factory keys on each device and assume ownership of the devices.

In order for an adversary to break this model of provisioning and take control of a deployed

device, they must penetrate the manufacturer factory security and record every device key

issued. In addition, the adversary must monitor every single interaction between a device

and EaaS. Missing just one such interaction would render the attacker defeated. This sets a

very high security bar for attackers.

Another mitigation against such potential attacks is to always mix the externally-obtained

random data with locally-generated pseudo-random data using suitable cryptographic

mechanisms, e.g., hashing, and renew the EaaS access key on each round, as illustrated in

Figure 2. Note that the mechanism for updating the client key for accessing EaaS can be

shown to provide perfect forward secrecy.

3 The EaaS architecture

The architecture of the Entropy-as-a-Service system consists of two main parts: the client-

side and the server-side. The critical components of the system are the entropy source, the

EaaS server and a secure device in the client systems capable of providing strong isolation

and protection of cryptographic keys stored inside the device and offering a set of basic

cryptographic services.

3.1 The Server Side

The EaaS server is continuously fed random data from the attached quantum source. The

data enters a FIFO-like buffer in the server’s RAM, and when a client request comes, the

server reads the top value off of the buffer, signs and encrypts it, and then sends it to the

requester. The FIFO buffer shifts after every request and when new data comes from the

random source. The EaaS server ensures that the FIFO buffer is erased prior to server

shutdown and never paged to disk. Open implementations can help provide trust that this

does, in fact, occur.

Vassilev and Staples Page 4

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

3.2 The Client Side

The client side of the system consists of a classic computing device enabled with a dedicated

hardware component capable of storing secret cryptographic keys and seeds. The client

system has a dedicated software application bridging the communication between the EaaS

and the hardware component. Examples of secure hardware components are the “Trusted

Platform Module”, or “TPM”, TrustZone in ARM processors, and the IPT technology in

Intel processors.

Additionally, if a client system or device does not have a secure hardware component, it can

still use the EaaS system. The presence of a hardware component simply provides further

guarantees to the system or device user, when present.

4 Attacks and their Built-In Mitigations

One important feature of EaaS is that it transfers entropy to clients in a secure fashion.

As can be seen in Figure 4, the protocol sketch, the signature and timestamp of the response

allow the client to verify the authenticity of both. Timestamping, in particular, prevents

“response replay” attacks.

The digital signature protects against both man-in-the-middle attacks, when a malicious

actor intercepts messages and serves as a relay, and DNS poisoning attacks, in which a

malicious actor either intercepts DNS requests, or sets up a spoof server near the victim,

provided the EaaS public key is provisioned on the client in advance.

Attacks involving dishonest or curious EaaS server instances are mitigated by mixing data

from several sources together before use. Thus, even if multiple EaaS instances were

somehow colluding against a specific client, if the client can access just one source of non-

colluding entropy, including its own weak entropy pool, the efforts of the malicious

instances are mitigated, since they have no way of knowing the input from the other, good

sources.

5 Real-World Uses

5.1 Real world application: Attestation of cryptographic key strength

One example of the usefulness of this type of system is in assessing the security strength of

an enterprise system. Cryptography is fundamentally important for this task and the strength

of cryptographic keys being generated at the endpoints of the system is of great importance.

Endpoints using EaaS can attest the strength of keys generated from data coming from a

known-good source. Additionally, enterprises could stand up their own internal EaaS, and

have complete trust over the entropy in their endpoints.

5.2 Real world application: VM orchestration in cloud computing environments

Today, virtualization and cloud computing have become prevalent in the technology sphere.

Vassilev and Staples Page 5

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Two virtual machine instances instantiated from a common (“golden”) image may

demonstrate similar or even identical internal state of the local entropy pool so gaining

insight in one would allow insight into the other.

However, this is easily remedied by using EaaS to feed unique random data into the image

after cloning, or by requesting some EaaS data on boot.

5.3 Helping the security on the Internet

Another important use case is that of headless or other embedded Internet devices that may

be entropy-starved, as can be seen in [1].

One way to fix this is to use EaaS to obtain entropy on devices upon boot up. The devices

could also store some entropy across boot cycles. Thus, a device is only vulnerable for a few

seconds after the initial boot, until the EaaS call is made but simple design decisions may

prevent key generation in this small window of time. The greatly improved behavior of

Linux seeded with EaaS is shown in Figure 5.

One interesting effect illustrating the benefits of seeding early after boot with EaaS is visible

in the change of behavior of the Linux Kernel Process Scheduler (LKPS) – a critical

component of the operating system. LKPS needs random data to implement fair and efficient

process scheduling. LKPS acquires random data through a blocking interface and can only

do that when there is sufficient amount of entropy accumulated in the kernel. Notice that

when Linux is seeded with EaaS, LKPS acquires its first random seed after about half the

time needed in the case of non-seeded Linux, shown in the lower part of Figure 5. The black

oval indicates the missed LKPS seeding due to a lack of sufficient entropy in the kernel. In

other words, LKPS reaches its normal operational regime much faster when Linux is seeded

from the start, thereby improving the overall stability and performance of the operating

system without any additional design or configuration changes.

6 Conclusions and future plans

The proverbial “Achilles’ Heel” of the assurances from cryptographic security protection is

the strength of the keys used to protect critical data.

EaaS stands to create the basis of a future ecosystem of servers which can provide verifiably

high-quality entropy to needy clients on request, thereby unlocking the full potential of

cryptography. To facilitate the creation of the ecosystem, we plan to share our server

implementation, allowing other organizations or entities to review, adopt, and host their own

EaaS instances.

We also envision the need to develop criteria for establishing trustworthiness of servers

participating in the ecosystem. This, in turn, would allow users of EaaS to select and rely on

a subset of servers from the ecosystem that satisfies a desired level of trust/risk.

The authors welcome input and comments regarding EaaS.

Vassilev and Staples Page 6

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

References

1. Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. Proc 21st Usenix
Security Symp [Security 12]. 2012. www.usenix.org/system/files/conference/usenixsecurity12/
sec12-final228.pdf

2. NIST SP 800-90A, http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

Vassilev and Staples Page 7

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

Figure 1.
Linux kernel entropy accumulation

Vassilev and Staples Page 8

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Figure 2.
Client key management

Vassilev and Staples Page 9

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Figure 3.
EaaS Ecosystem (Image Courtesy: Cornell Univ. Networks Course Blog, https://

blogs.cornell.edu/info2040/2012/09/26/7720/)

Vassilev and Staples Page 10

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

https://blogs.cornell.edu/info2040/2012/09/26/7720/
https://blogs.cornell.edu/info2040/2012/09/26/7720/

Figure 4.
The Eaas Architecture

Vassilev and Staples Page 11

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Figure 5.
Linux seeded with EaaS

Vassilev and Staples Page 12

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

	Abstract
	Introduction
	1 Recent Findings of Poor Entropy
	1.1 Mining Your Ps and Qs
	1.2 Entropy-starvation in Embedded Devices

	2 Entropy-as-a-Service
	2.1 A sketch of a protocol
	Successful Response

	2.2 Resolving the chicken-and-egg conundrum

	3 The EaaS architecture
	3.1 The Server Side
	3.2 The Client Side

	4 Attacks and their Built-In Mitigations
	5 Real-World Uses
	5.1 Real world application: Attestation of cryptographic key strength
	5.2 Real world application: VM orchestration in cloud computing environments
	5.3 Helping the security on the Internet

	6 Conclusions and future plans
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

