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Abstract

Securing the Internet requires strong cryptography, which depends on the availability of good 

entropy for generating unpredictable keys and accurate clocks. Attacks abusing weak keys or old 

inputs portend challenges for the Internet. EaaS is a novel architecture providing entropy and 

timestamps from a decentralized root of trust, scaling gracefully across diverse geopolitical locales 

and remaining trustworthy unless much of the collective is compromised.

Introduction

Cryptography is fundamentally important for information security, whether information is 

data in transit over the Internet or at rest on storage devices. Today, the security of data 

protected by cryptography depends not on secret algorithms, but primarily on having strong 

keys and keeping them secret.

Generating strong cryptographic keys is no simple matter. Experts recommend using the 

output from deterministic random bit generators (DRBGs), to generate keys for 

cryptographic applications [2]. However, the sequence of numbers generated by a DRBG 

can be traced predictably to the seed (initial value) supplied to the generator. Knowing the 

seed, one can reconstruct the sequence of numbers a particular DRBG produces. Thus, 

DRBGs must be seeded with hard-to-guess random data from a reliable source.

In information theory, such sources are referred to as “high-entropy” sources that provide 

true randomness. Usually they are based on nondeterministic physical processes such as ring 

oscillators or some kind of quantum behavior. Most practical computer systems rely on 

events such as mouse movements, keyboard stroke timings, network events and hard disk 

access times to generate hard-to-guess random data for seeding DRBG’s. Although 

sometimes plausible, such sources often provide a limited amount of unpredictability, i.e. 

low entropy, because, as in the case of headless or embedded devices, they lack these 

sources of unpredictability, cf. [1]. This problem is exacerbated in cloud computing. Cloud 

computing environments often lack the sources of non-determinism harnessed by traditional 

computers for harvesting entropy. Cloud service providers typically use a single reference 
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image of a guest virtual machine (a “golden” image) in order to create multiple instances of 

it in response to user demand. Each instance often has very limited ability to harvest 

randomness.

Another domain where the demand for good cryptographic keys is strong is the Internet of 

Things, or “IoT”. IoT devices tend to be small, resource-constrained, headless or embedded 

but their functional capabilities span a wide range. Although characterizing the ability of IoT 

devices to generate good cryptographic keys is out of scope for this paper, it is reasonable to 

think that some types of IoT devices with network connectivity and modest computational 

power to perform asymmetric cryptographic operations may also benefit from the proposed 

service architecture.

There is a growing need for strong entropy on the Internet and the Entropy-as-a-Service 

(EaaS) system is designed to help.

1 Recent Findings of Poor Entropy

The concerns about the potential weakness of cryptographic keys are far from just 

theoretical. This section briefly reviews real-life examples of catastrophic security breaches 

resulting from poorly constructed or predictable cryptographic keys.

1.1 Mining Your Ps and Qs

A recent study [1] provided one of the most comprehensive Internet-wide searches of SSH 

and TLS servers to date, checking 12.8 million TLS and 23 Million SSH hosts.

In this survey, the researchers discovered alarming results: 5% of HTTPS and 10% of SSH 

hosts shared keys because of insufficient entropy from the source used, allowing them to 

actually calculate the private keys of 0.5% of HTTPS hosts and 1% of SSH hosts.

Almost all vulnerable hosts were headless or embedded network devices like routers or 

firewalls. Such hosts often run a pared-down Linux kernel and do not have the usual random 

events from input devices that a desktop computer would have. As a result, there exists an 

“entropy hole” in which the output of /dev/urandom could be constant across multiple 

boots for a period of time early in the boot process. In one case, the same key was generated 

in over 25% of boots.

1.2 Entropy-starvation in Embedded Devices

We built on the approaches from the study discussed above [1] to investigate the strength of 

the Linux kernel entropy sources. In particular, we simulated the behavior of an embedded 

or headless device, without a hard drive or a keyboard/mouse, always starting with empty 

pool (i.e. no “seed”). We built a pared-down Linux kernel with different combinations of 

kernel entropy input devices disabled. Depending on the combination of entropy sources 

disabled, the entropy count in the pool took anywhere from 20 to 45 seconds to generate the 

bare-minimum threshold of 112 bits – see Figure 1. More time was needed to reach the 

threshold when some contributing sources were turned off, simulating environments with 

constrained resources.
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This experiment illustrates the potential weakness of Linux kernel entropy sources in 

embedded/headless Internet deployments, e.g., in cloud environments. We observed 

particularly strong demand for entropy through the unblocking/dev/urandom interface with 

requests as high as 4096-bits shortly after boot when little random data is accumulated, 

highlighted with the black dashed circle in Figure 1. This behavior of Linux in fact opened 

the door for the exploits described in [1].

2 Entropy-as-a-Service

The security issues resulting from the effects of poor entropy discussed so far illustrate the 

fundamental importance of good randomness for security – see also “The Importance of 

Entropy to Information Security”, A. Vassilev and T. Hall, IEEE Computer, 47(2), pp.79–81, 

2/2014.

The existing technological headwinds that hinder the implementation of robust random bit 

generation capabilities in conventional computing devices make apparent the need for 

alternative means of providing high-quality entropy to devices that cannot produce their own 

in sufficient quantity or quality.

The widely available and highly redundant nature of the Internet creates an effective medium 

by which to provide good random data to needy clients, in this case using a REST (cf., 

http://www.restapitutorial.com/) interface, i.e. an Entropy-as-a-Service (EaaS) solution. 

Instead of relying solely on weak pseudo-random data in classical computers, EaaS provides 

a novel and secure way of delivering high-entropy data to requesting devices. EaaS leverages 

existing protocols and technologies, which makes adoption easy.

EaaS uses HTTP to transfer entropy payloads from the service to clients. To secure this 

transmission, the server encrypts the data using the client’s provided public key and digitally 

signs the payload with the server’s own private key.

2.1 A sketch of a protocol

The client makes a HTTP GET request to the EaaS server, with the number of bytes of 

random data to return, and its own public key, which is used to encrypt the returned payload.

The structure of the server XML response is shown below.

Successful Response

<response>

 <entropy>

  encrypted base64-encoded

  random data

 </entropy>

 <timestamp></timestamp>

 <dsig></dsig>

</response>
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Here, the tags are: Entropy – the payload, encoded in base64 format; Timestamp; Signature 
(dsig).

2.2 Resolving the chicken-and-egg conundrum

Clients need a public key to access EaaS and request high-entropy data to strengthen their 

key generation capabilities. How then, can a client have a strong public key to come to the 

EaaS system in the first place?

The critical observation here is that it is much easier and cheaper to generate strong keys 

out-of-band than to implement robust random bit generation capabilities in conventional 

devices. Manufacturers of devices can, and often do, generate strong keys in the factory and 

provision them on devices. This model of key provisioning is well known and widely used in 

many industries, including smart card and TPM manufacturing. When a customer receives a 

shipment of devices to deploy, they also receive through independent means the secrets 

required to change the factory keys on each device and assume ownership of the devices.

In order for an adversary to break this model of provisioning and take control of a deployed 

device, they must penetrate the manufacturer factory security and record every device key 

issued. In addition, the adversary must monitor every single interaction between a device 

and EaaS. Missing just one such interaction would render the attacker defeated. This sets a 

very high security bar for attackers.

Another mitigation against such potential attacks is to always mix the externally-obtained 

random data with locally-generated pseudo-random data using suitable cryptographic 

mechanisms, e.g., hashing, and renew the EaaS access key on each round, as illustrated in 

Figure 2. Note that the mechanism for updating the client key for accessing EaaS can be 

shown to provide perfect forward secrecy.

3 The EaaS architecture

The architecture of the Entropy-as-a-Service system consists of two main parts: the client-

side and the server-side. The critical components of the system are the entropy source, the 

EaaS server and a secure device in the client systems capable of providing strong isolation 

and protection of cryptographic keys stored inside the device and offering a set of basic 

cryptographic services.

3.1 The Server Side

The EaaS server is continuously fed random data from the attached quantum source. The 

data enters a FIFO-like buffer in the server’s RAM, and when a client request comes, the 

server reads the top value off of the buffer, signs and encrypts it, and then sends it to the 

requester. The FIFO buffer shifts after every request and when new data comes from the 

random source. The EaaS server ensures that the FIFO buffer is erased prior to server 

shutdown and never paged to disk. Open implementations can help provide trust that this 

does, in fact, occur.
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3.2 The Client Side

The client side of the system consists of a classic computing device enabled with a dedicated 

hardware component capable of storing secret cryptographic keys and seeds. The client 

system has a dedicated software application bridging the communication between the EaaS 

and the hardware component. Examples of secure hardware components are the “Trusted 

Platform Module”, or “TPM”, TrustZone in ARM processors, and the IPT technology in 

Intel processors.

Additionally, if a client system or device does not have a secure hardware component, it can 

still use the EaaS system. The presence of a hardware component simply provides further 

guarantees to the system or device user, when present.

4 Attacks and their Built-In Mitigations

One important feature of EaaS is that it transfers entropy to clients in a secure fashion.

As can be seen in Figure 4, the protocol sketch, the signature and timestamp of the response 

allow the client to verify the authenticity of both. Timestamping, in particular, prevents 

“response replay” attacks.

The digital signature protects against both man-in-the-middle attacks, when a malicious 

actor intercepts messages and serves as a relay, and DNS poisoning attacks, in which a 

malicious actor either intercepts DNS requests, or sets up a spoof server near the victim, 

provided the EaaS public key is provisioned on the client in advance.

Attacks involving dishonest or curious EaaS server instances are mitigated by mixing data 

from several sources together before use. Thus, even if multiple EaaS instances were 

somehow colluding against a specific client, if the client can access just one source of non-

colluding entropy, including its own weak entropy pool, the efforts of the malicious 

instances are mitigated, since they have no way of knowing the input from the other, good 

sources.

5 Real-World Uses

5.1 Real world application: Attestation of cryptographic key strength

One example of the usefulness of this type of system is in assessing the security strength of 

an enterprise system. Cryptography is fundamentally important for this task and the strength 

of cryptographic keys being generated at the endpoints of the system is of great importance.

Endpoints using EaaS can attest the strength of keys generated from data coming from a 

known-good source. Additionally, enterprises could stand up their own internal EaaS, and 

have complete trust over the entropy in their endpoints.

5.2 Real world application: VM orchestration in cloud computing environments

Today, virtualization and cloud computing have become prevalent in the technology sphere.
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Two virtual machine instances instantiated from a common (“golden”) image may 

demonstrate similar or even identical internal state of the local entropy pool so gaining 

insight in one would allow insight into the other.

However, this is easily remedied by using EaaS to feed unique random data into the image 

after cloning, or by requesting some EaaS data on boot.

5.3 Helping the security on the Internet

Another important use case is that of headless or other embedded Internet devices that may 

be entropy-starved, as can be seen in [1].

One way to fix this is to use EaaS to obtain entropy on devices upon boot up. The devices 

could also store some entropy across boot cycles. Thus, a device is only vulnerable for a few 

seconds after the initial boot, until the EaaS call is made but simple design decisions may 

prevent key generation in this small window of time. The greatly improved behavior of 

Linux seeded with EaaS is shown in Figure 5.

One interesting effect illustrating the benefits of seeding early after boot with EaaS is visible 

in the change of behavior of the Linux Kernel Process Scheduler (LKPS) – a critical 

component of the operating system. LKPS needs random data to implement fair and efficient 

process scheduling. LKPS acquires random data through a blocking interface and can only 

do that when there is sufficient amount of entropy accumulated in the kernel. Notice that 

when Linux is seeded with EaaS, LKPS acquires its first random seed after about half the 

time needed in the case of non-seeded Linux, shown in the lower part of Figure 5. The black 

oval indicates the missed LKPS seeding due to a lack of sufficient entropy in the kernel. In 

other words, LKPS reaches its normal operational regime much faster when Linux is seeded 

from the start, thereby improving the overall stability and performance of the operating 

system without any additional design or configuration changes.

6 Conclusions and future plans

The proverbial “Achilles’ Heel” of the assurances from cryptographic security protection is 

the strength of the keys used to protect critical data.

EaaS stands to create the basis of a future ecosystem of servers which can provide verifiably 

high-quality entropy to needy clients on request, thereby unlocking the full potential of 

cryptography. To facilitate the creation of the ecosystem, we plan to share our server 

implementation, allowing other organizations or entities to review, adopt, and host their own 

EaaS instances.

We also envision the need to develop criteria for establishing trustworthiness of servers 

participating in the ecosystem. This, in turn, would allow users of EaaS to select and rely on 

a subset of servers from the ecosystem that satisfies a desired level of trust/risk.

The authors welcome input and comments regarding EaaS.
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Figure 1. 
Linux kernel entropy accumulation
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Figure 2. 
Client key management
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Figure 3. 
EaaS Ecosystem (Image Courtesy: Cornell Univ. Networks Course Blog, https://

blogs.cornell.edu/info2040/2012/09/26/7720/)

Vassilev and Staples Page 10

Computer (Long Beach Calif). Author manuscript; available in PMC 2016 December 19.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

https://blogs.cornell.edu/info2040/2012/09/26/7720/
https://blogs.cornell.edu/info2040/2012/09/26/7720/


Figure 4. 
The Eaas Architecture
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Figure 5. 
Linux seeded with EaaS
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