
What Happened to Software Metrics?

J. Voas and R. Kuhn
National Institute of Standards and Technology (NIST)

In the 1980s, the software community was all ‘a buzz’ with seemingly endless ‘potential’

approaches for producing higher quality software. At the forefront of that was the field of

software metrics, along with the corresponding testing techniques, tools, and process

improvement schemes that relied on the software metrics. Later, there were also suggestions

of legal remedies such as Uniform Computer Information Transactions Act (UCITA) and the

licensing of software engineers as professional engineers. UCITA would have made software

vendors liable for defective software and the licensing of software engineers would have

allowed developers to be personally sued. Further, publications such as the Software Quality
Journal were launched, and events such as the Annual Workshop on Software Metrics in

Oregon were held for many years. Cyclomatic complexity, the Halstead metrics, Source

lines of code (SLOC), Fagan Inspections, counting defects, predicting numbers of defects,

reliability estimation and modeling, and many other metric-oriented ideas were floated as

solutions to what was considered at that time as a software quality ‘quagmire’ that had to be

eradicated.

The 1980s and 1990s were also times when software testing tools were numerous, often

barely usable, and generally poor in quality themselves. This was a time when general-

purpose software, whether produced for a niche market or mass market, was rich in defects

and further offered little in terms of interoperability. And don't forget the musings back then

that paying customers were simply beta testers with no way to opt-out. Looking back,

promises of quality improvement in your software, “if you just do X”, were commonplace

and unfounded. Many competing ideas lacked usability, evidence of success, and a sound

scientific underpinning.

Today, you no longer hear of most of those metrics-based technologies and their associated

promises. Therefore, this virtual roundtable is, in part, a walk down memory lane. Our

position here is not cynicism or partisanship, but rather seeking a deeper understanding of

what happened, what went wrong (and right), and what survived and is still used today.

Further, is there an opportunity for better metrics or hybrid metrics that leverage past metrics

research1?

We asked a panel of 7 software metrics experts 11 questions to help explain the last 40 years

of software measurement and where they believe we stand today. Our experts are: (1) Taghi

Khoshgoftaar (Florida Atlantic University), (2) Edward F. Miller (Software Research, Inc.),

Disclaimer: Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST,
nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
Computer (Long Beach Calif). 2017 May ; 50(5): 88–98. doi:10.1109/MC.2017.144.N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript

(3) Vic Basili (University of Maryland, retired), (4) Jim Bieman (Colorado State University),

(5) Ram Chillarege (Chillarege, Inc.), (6) Adam Porter (Fraunhofer Institute), and (7) Alain

Abran (University of Quebec). We did not ask rhetorical questions, but rather questions that

we believe remain unanswered, and if answered, could form a foundation for improved or

new software metrics. We are strong supporters of software measurement, but we are equally

firm believers in the need for solid evidence of benefits, and not simply anecdotes of

successes for a particular metric or quality improvement approach.

1. If you could only recommend one static software metric and one

dynamic software metric, what would they be, and why?

Abran

In most fields of knowledge based on quantitative information, such as accounting, finance,

engineering and medicine, a very large number of quantitative ratios (or other formulae) are

recommended for various contexts and purposes; nobody in these fields would expect a

single measure or quantitative formula to be sufficient for analysis and decision making. All

of these industries have invested considerably in defining very strict standards for basic

measures and their various combinations, as well as in data collection and analysis to

establish multi-dimensional industry benchmarks against which to compare.

The software industry, by contrast, has mostly very unrealistic expectations that poorly

defined ‘metrics’ can provide solutions to complex problems at almost zero cost. This is

wishful thinking. From a more down-to-earth perspective, I recommend not one specific

metric but a full set of measurement standards, as documented and recommended by the

non-profit International Software Benchmarking Standards Group (see www.isbsg.org).

Bieman

There is no one static or dynamic metric for all organizations or purposes. Any

recommendation for a measure depends on context. To answer this question for a particular

organization, you need to know the goals for measurement and what questions that you want

to answer.

For static metrics: If you need to know how much software you have, a software size

metric is appropriate (see my answer to question 2). If you need to know something about

design structure, there are numerous ways to measure code properties like coupling,

cohesion, “complexity”, etc. If you need to know how testable your system is, you can

statically measure how many specified “test requirements” are contained in your system. For

example, knowing the number of statements or branches can indicate the difficulty of

achieving a particular level of statement or branch coverage during testing.

For dynamic metrics: Run time performance (time and space requirements) are clearly

important for many applications. Another important and useful dynamic metric is the test

coverage achieved for specified test criteria. Finally, the most important dynamic measure is

the number and frequency of defects discovered (or failures reported) in a system after

release.

Voas and Kuhn Page 2

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://www.isbsg.org

Basili

If you asked if I could recommend one physics metric what it would be? Is it mass, energy?

You would immediately tell me it is a ridiculous question. You should select measures based

on what it is you want to know and what you are going to do with that information. The

Goal Question Metric Approach (1984) set out to identify the relevant metrics by defining

your specific goals for the measurement. These goals suggested the kinds of questions or

models you want to use, and these define the metrics you need. The models you select

provide the framework for interpreting the metrics.

Defining goals involves specifying the objects you are measuring, e.g. a product, process, a

model, the focus of interest, e.g., cost, defect removal, change, reliability, user friendliness,

the purpose, e.g., to characterize, analyze, evaluate, predict, the perspective of the person

wanting the information, e.g., the manager, developer, organization, and the context, e.g., the

organization's characteristics and context variables. All of these help define what measures

you need and how you are going to interpret them.

Chillarege

It is hard to find commercial software organizations that have good metrics which are

regularly measured and reviewed. When you do find them, the two most commonly

recognized and understood metrics are the source lines of code and complexity. All said and

done, there is a greater understanding of source lines of code in spite of the high variance

that they display among programming languages. To a lesser degree complexity is

understood. If there are just two that I am asked to recommend, these would be the two.

Khoshgoftaar

Recommending one static or one dynamic software metric is akin to suggesting a one-size

fits-all solution, which is impossible in software engineering. Software systems development

and software engineering measurements have both evolved dramatically in the past two

decades, emphasizing a multi-faceted focal points of critical importance. Instead of focusing

on a one-size fits-all software metric, we should expand our knowledge on intelligent

methods for data wrangling and feature engineering toward best-exploiting the scores of

auto-and expert-defined software metrics recorded by data collection tools.

Miller

Static—On the static side, the general understanding is that the more complex a piece of

software is, the harder it is to get right. So first off, I'd choose code size…using source lines

of code (SLOC) is probably the simplest way to think about things. Simple as it is, the value

of this is limited. I've seen VERY complex chunks of code that are very solid and reliable.

And I have seen some collections of little components that you would think would work out

of the box but which fail miserably when put through a test suite.

Dynamic

On the dynamic side of the question, if you're concerned about end-user quality, then test

coverage metrics are the way to go. In the 1990's there was a LOT of discussion about which

Voas and Kuhn Page 3

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

coverage metric was best. We recommended the “branch coverage” metric, but there were

many fans of statement coverage, which was a lot easier to measure.

Porter

It really depends on what you want to use the metrics for. If you asked a construction worker

to name their two most useful tools, they might think of tape measures and carpenter's levels

as being indispensable for some jobs, but they'd swear by plumb lines and speed squares for

other jobs. The job defines which tools are right, not the other way around.

Similarly, organizations don't have to just take the metrics that someone else defines. They

can create their own. In many cases, that's a better way to go, because the user of the metrics

knows best what they are trying to understand and do with the metric. Collecting data just

because it is available does not yield insights. You must have a goal in mind to improve or

understand your software development in some way, then define the data you want to collect

based on that.

Having said this though, I find that counting Source Lines of Code often provides a valuable,

easy to compute static metric for volume of work to be done. Similarly, I often look at line

coverage percentage as a simple, easy to understand dynamic metric of testing effort.

2. There was once a common belief that all static code metrics essentially

boiled down to Source Lines of Code (SLOC). Was that true? If so, is it still

true. If not true, why?

Abran

The research findings from the late 1970s and early 1980s did indeed point to the overall

conclusion that the various static code metrics had very strong dependencies on SLOC. Not

much more research has been conducted since then to negate that conclusion. Personally, I

am not a big fan of metrics based on SLOC because they are too dependent on technologies

(e.g., programming languages, programming styles and local coding standards) and their

different implementations by tool vendors or researchers, thereby inhibiting the

reproducibility and interpretation of values from analysis models across technologies, tools

and contexts.

Bieman

Many questions can only be answered if you know how much code there is in a software

system, subsystem, or version. The short answer to the question is “yes”, the most useful

static software metric still is the number of source lines of code (LOC). A key advantage of

LOC is that developers generally understand how LOC is measured, and it intuitively

indicates how much source code is contained in a method, class, function, etc. LOC is

regularly used as the denominator in derived measures such as defects discovered per
KLOC.

Voas and Kuhn Page 4

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Of course, there are many limitations to LOC. Different programming and layout styles, as

well as different counting protocols (do we count comments, declarations, etc.) can affect

LOC.

Basili

Certainly SLOC is a reasonable static metric if you want to know how big something is, but

of course it depends on context and purpose. Why are you using the metric? Are you using it

to characterize your products? If so make sure you put like things in the same bucket, i.e.,

you have to make sure the context is the same, e.g., the programing language, possibly the

application domain, etc. If you are within the same context, are you using it to evaluate, e.g.,

what process give the smallest product or to predict, e.g., what will most likely be the

amount of resources needed to build the new product?

Chillarege

For a long time the function point community maintained a steady following among

practitioners. However, the function point definition works best for classical business

applications and poorly for many other scenarios. Regardless, it was the business app

community that endorsed it and a successful practice for a long time. They are manual to

capture and limited in applicability. Gradually they faded away. In addition, the back-firing

tables that convert function points to source lines of code, always made me wonder, why

using one would be much different from the other.

Thus, source lines of code, for all their perceived faults remain the core size metric of the

day. Most current static code analyzers spit out the number. Thus, it is more visible in

today's Agile teams, although the practice of using the metric successfully in projects may or

may not be there.

Khoshgoftaar

Studies have shown the defect prediction capability of static code metrics, including SLOC.

During the earlier times of software metrics research, limited availability of software metrics

data and/or lack of good data collection tools influenced the general direction of research.

But to say all static code metrics were being essentially equated to SLOC is not true in my

opinion. However, one could argue that SLOC are more related to some similarly-simple

metrics, such as Basic Halstead metrics, and there have been case studies showing different

predictive powers of SLOC and complexity-based metrics, such as Cyclomatic Complexity.

The answer lies in feature engineering with software metrics, as well as examining

correlation between software metrics.

Miller

As far as I could see, SLOC was highly correlated with every other metric. Here I'm thinking

of the Halstead metrics. So if they were all correlated, why not just use the simplest one to

measure?

Voas and Kuhn Page 5

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Source code obfuscation creates a lot of problems. For example, in JavaScript so much is

lost in removal of the context that is contained in the comments and the source expansion

tricks didn't work well. At the end of the day, SLOC came to dominate people's thinking.

Porter

In the late 1980s and early 1990s, a lot of software metrics research was focused on defining

metrics that could assess the quality of existing software and/or predict quantities such as

expected development effort or the number of latent faults in a code base. Comparative

studies of these different metrics, however, generally failed to show that these metrics were

significantly and repeatedly better than using just lines of code. In this sense, it's reasonable

to say that all these metrics were no better than just using lines of code.

However, metrics can be defined over lots of different software development artifacts,

available at different times, and used for lots of different purposes. So simply saying all

static metrics boil down lines of code is too simplistic.

3. Back then many organizations were sold on the idea of process metrics

such as the Capability Maturity Model (CMM). The US DoD invested heavily

in that idea, and some have argued that this added significant financial

burdens to military IT and software systems. Did it work? And where is

CMM today?

Abran

Organizations without well-managed processes are unpredictable in terms of cost, duration,

quality, functionality delivered, etc. All of these uncertainties lead to very poor quality, very

high costs often due to extensive reworking within projects, and considerable waste when

projects fail.

Process improvement models have been designed and adopted primarily to manage the risks

and uncertainties associated with out-of-control development processes. Organizations that

properly manage their software processes achieve significantly more predictability and

reduce their overall project risks and costs. The organizations I have observed that have

implemented these management concepts are successful and well managed, whether or not

they had adopted the CMM model.

Bieman

A number of government agencies and companies require organizations to achieve specified

CMMI levels before they can bid on a software development project. A CMMI evaluation

makes the development process visible through the measurement of numerous process

attributes. According to the CMMI Institute (http://cmmiinstitute.com/), organizations in 98

countries make use of CMMI. Approximately 14,000 CMMI appraisals were conducted

during the past 10 years. Most (76%) of the appraised groups had fewer than 100 employees,

and more than 70% of the appraised organizations use an agile development process. The

Voas and Kuhn Page 6

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://cmmiinstitute.com/

number of appraisals has been increasing at a rate of nearly 20% per year, with the greatest

increases in China, United States, India, and Mexico.

Chillarege

Watts Humphrey explained to me that “the software engineering metrics were not at a point

where they could measure the quality of software that was acquired by the government. And

thus, contractually there was no realistic way to enforce an acceptable criteria for software.

Therefore, he strongly felt that the only way forwards was to ensure that the processes of the

suppliers was acceptable. Which, in turn would result in good software being delivered.

At its core, the CMM is predicated on the premise that the process is far more measurable

and controllable than the work product – namely, the software code. This set in motion the

management of software for the next couple decades. India, in the late 90's, aspired to get

into the software business, and the CMM provided and excellent vehicle to systematically

gain process skills and establish credibility in the market. The interest in the US was muted,

for a variety of reasons.

Software being an intellectual activity defied many of the classical techniques of process

control used in manufacturing. There have always been attempts to make a conceptual

mapping, and the few positive results amplified. Yet, although the premise was mostly

unproven, it gave management a clear framework to direct work and a ready assessment of

achievement.

Basili

The concept of capability maturity was based upon the original idea of Philip Crosby and

was used to assess the maturity of an organization. He never meant it as a prescription for

building a mature organization but as a mechanism for finding out weaknesses in the

organization. So the goal was not to keep adding process until you get to level 3 and then

start dropping or refining them. That process takes you through too many culture changes

and can get quite expensive before you shrink process back at level five.

Khoshgoftaar

The original CMM, formulated by SEI, and its successors have been put to pasture since

their initial introduction and use. This was largely due to lack of deep integration of CMM

into an organization's processes. Investment by US DoD did lead to acceptance of CMM by

large military defense contractors. However, in many cases significant maturity success was

achieved only after incorporating CMMI, the CMM Integrated project approach. One could

deduce that CMMI was a result of lessons learned from the stand-alone practice of CMM by

organizations.

Miller

Yes, but only indirectly. There were many papers at QW/QWE that pivoted off the basic

CMM idea, bending it to fit into the needs of “quality assurance and testing” organizations.

The key notion was “maturity” -- both of the internal process used and of the technical

maturity of the team of programmers/developers/testers involved.

Voas and Kuhn Page 7

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Going back to the day of Harlan Mills' “Chief Programmer Teams” from the early 1970's,

everyone pretty clearly understood that democracy in programming work was no virtue. But

not everyone could fill the shoes of a Mills-like “chief programmer” and the compromise

seems to have been to develop metrics for the entire team. Which then led to the CMM and

all that followed it. Why it worked is, to me, pretty simple: it forced people to think in

process terms and pay attention to outcomes.

Porter

The CMM is not a set of process metrics, but rather a set of key processes areas that, when

implemented effectively, should help companies improve the quality of their software while

controlling cost. One of the goals of a CMM organization is to define and implement process

metrics that capture quality drivers specific to that organization.

CMM is based on well-studied notions of statistical process control and continuous process

improvement. The general idea was that if you can measure a process, then you may be able

to repeat it. If you can repeat it, then you may be able to improve it. If you can improve it,

then you may be able to fine tune it, and so on. In essence, first get consistency and control,

then you'll be able to go for improvement.

The CMM framework assumed that in order to go through these steps, organizations needed

certain capabilities, such as configuration management, etc. This makes a lot of sense and

I've seen companies improve vastly by working through this framework.

However, none of this meant that a company with a given level of capabilities would always

and automatically produce a better product, faster, and at lower cost than companies with

lower CMM levels. It really depends on what the company is doing with these capabilities

and whether and how fast the underlying development requirements were changing. Once

specific CMM levels became prerequisites for getting contracts with DoD, some companies

were only interested in getting the credential, not interested in using their capabilities to get

better. Additionally, the process itself became more heavyweight, hard to adjust, document-

focused, and costly, ultimately becoming less cost-effective for many practitioners.

4. The software metrics of the early 1990s were mainly static, however the

behavior of software is dynamic. Do we have newer static metrics that

better reveal software behavior and semantics than only software syntax?

Abran

I am very puzzled by this view of static versus dynamic metrics of software code, as if

coding was the only software development artifact to monitor and control. For instance, the

quality and size of requirements is the foremost artifact underlying the whole development

process; ambiguous and incomplete requirements specifications lead to major problems,

including continuous reworking throughout all subsequent development stages, improper

planning and monitoring and, of course, incomplete or inaccurate definitions of testing

artifacts. I have not seen significant advances in SLOC-related metrics since the early 1990s;

however, there have been significant advances in requirements specification and

Voas and Kuhn Page 8

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

architectural measurement that can be extended throughout the full lifecycle to ensure

traceability in later project phases and normalization of various technology-dependent ratios.

Bieman

I am often interested in the design structure at an intermediate level of abstraction. For

example, you can analyze a software design (and implementation) in terms of the existence

and number of realizations of various design patterns and the connection between design

pattern realizations. Another measure that can be very useful in analyzing the testability of a

system is to count the number of test requirements that must be covered by test cases to

achieve particular test coverage criteria. We can also understand more about a design by

categorizing and counting design pattern realizations.

Basili

There were lots of dynamic metrics in the 1990s, e.g., reliability, performance. It is not clear

a static metric can provide insight into the dynamic behavior of software, unless you look at

the variation of that metric over time. Reliability and performance metrics are in common

use in many organizations, e.g., look at the more recent work of Elaine Weyuker and Tom

Ostrand at their work applying reliability models at AT&T.

Khoshgoftaar

Software development is a complex process, with many variable attributes including

development methodology and project objectives. Therefore, it is difficult to determine a

consistently good software metric to predicting software behavior. Case studies have shown

SLOC and other simpler metrics are good defect predictors for some project, while not so

for other projects. Likewise, newer metrics, both static and dynamic, are shown to be of

varying effectiveness at predicting software behavior for different projects. Current focus on

software metrics has tended to a combination of syntax descriptors and dynamic software

attributes. In general, the novelty of newer static metrics will vary from expert to expert;

however, the discussion should also include feature selection for optimal metrics' selection

based on modeling goals.

Miller

A lot of research effort in the software testing community has been put into trying to

extrapolate beyond the structural metrics, but I've not seen much that really reveals anything

particularly valuable in terms of predicting trouble spots.

In a different arena, you will find that there are bunches of patents and patent applications

dealing with manipulation of a webpage DOM and extraction of user oriented metrics that

can be extracted from delivered web pages. Which is very neat and sophisticated, even if the

importance and application are not fully clear. Even so, there are some very big companies

that collect such things as “DOM settling time” from remote machines all over the world in

spite of the fact that that's not really a significance performance bottleneck for all but the

hairiest web pages.

Voas and Kuhn Page 9

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Porter

One very interesting trend in modern software development is model-driven software

engineering. Models are increasingly being used, especially for embedded, cyberphysical

systems, to specify requirements, analyze prototype implementations, and even generate

system code.

Metrics defined on models rather than on source code are currently being developed. These

metrics have many desirable properties. For instance, they are defined at the requirements or

behavioral level which is often more understandable to the end customer than source code/

implementation level metrics are.

5. Structural metrics measuring dynamic behavior have been around for

decades. The most commonly cited are statement coverage, branch

coverage, and modified condition decision coverage, plus a few module-

level coverage metrics for object oriented code. What percentage of

developers in your industry or profession that use one or more of these

metrics? Are there other dynamic metrics that are used?

Bieman

I don't have concrete, quantitative information concerning the use of coverage tools in

industry. Anecdotal evidence from discussions with industry practitioners and the wide

availability of coverage tools suggests that the coverage achieved during testing is

commonly measured.

Basili

Coverage metrics have been in use for decades and have been refined for newer development

paradigms and languages such as object-oriented design. There primary use has been to

identify the quality of the tests that have been run. Of more importance is requirement

coverage, to assure that all requirements are appropriately covered and checking the

requirements coverage vis-à-vis the various code coverage metrics. Coverage metrics don't

measure the dynamic behavior of the software product but the quality of the test suite. They

are still being used quite commonly to cover unit test as well as system test.

Khoshgoftaar

A look at the PROMISE software project repository provides a good indication of the large

extent of organizational use of structural code metrics to model software project behaviors,

including dynamic. Researchers have used execution-based metrics, such as computational

time, to model dynamic behavior. More recent studies have categorized dynamic software

metrics, as cohesion-based dynamic metrics, coupling-based dynamic metrics, and execution

traces' based metrics. Some studies have shown the superior power of such metric over

traditional structural metrics for different predictive studies.

Voas and Kuhn Page 10

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Miller

This brings to mind the software coverage metrics war -- begun in the 1970's (I had a part in

that) and continuing into the early 1990s. Statement coverage was easy to measure, but gave

you a false sense of security. MCDC was harder to achieve, and because of that got far less

traction. The harder coverage measure, path or verification condition coverage, was very

hard to measure, and got almost no traction.

The discussions were fascinating, building the tools to make the measurements was exciting,

but in reality only a small number of developers, it seems to me, ever had the resources to

use these tools they way they were intended. Besides, when a budget crunch hit, coverage

testing was one of the first steps to toss out. So, probably overall usage of test coverage

metrics was < 1%, very sad to say.

But it may be worth mentioning the modern practice of delivering a “new version” of a

product -- possibly fully instrumented as well -- to a subset of your user community and

waiting for the complaints to roll in. A kind of “involuntary crowd-testing” process. It's

sneaky, but very effective at ironing out goof-ups inexpensively!

Porter

While I don't have a well-validated percentage to report, I would say that the use of simple

test coverage metrics has increased substantially in recent years. One reason for this is that

use of automated testing tools and environments have exploded in the last decade. It's

increasingly easy to build large test suites, execute those test suites and capture test coverage

information as a nearly free by-product. However, coverage usually isn't sufficient -- you

need to evaluate the quality and quantity of the test cases as well. A single test case that

executes all the lines of a system is not very useful.

6. Software reliability modeling and theory played a role then and now.

What is the state of software reliability models today; specifically, what

percentage of developers in your industry or profession that use reliability

modeling? And is there one or two you recommend over others?

Bieman

I don't have good information about the use of software reliability models. Actually, I don't

know that they are commonly used in most organizations.

Basili

Then and now the most effective use of reliability measurement is when the system is

operational and to predict how the system will perform in practice. See my answer to

question 4.

Chillarege

Software reliability is probably one of the more extensive uses of software metrics. This is

“software reliability” in the broadest possible definition and not the specific academic

Voas and Kuhn Page 11

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

definition of the term. By that token, defect rates, backlog, closer time, customer

satisfaction, first time fix, re-create, criticality, pervasiveness, trigger, etc. are all terms that

would come under the umbrella of software reliability.

Some of these terms and measures are commonplace in the industry, whereas they may still

be unheard of in academic articles. On the other hand, there are numerous academic articles

that discuss various nuances of software reliability that will be foreign to the most

experienced software engineers in industry. This is a chasm that is not unusual, but one that

has been bridged, just barely, in the past 20 years. As a consequence, the industry hobbles

along without being able to leverage a fairly large community of academic researchers. In

spite of this, if one takes this broader perspective, software reliability metrics are probably

the most widely used software engineering metrics. Far more than the metrics that have to

do with size, complexity or productivity.

Miller

John Musa's work was seminal in this area, but there is that nagging issue about it that there

is no “wear out” phenomena to drive the model. That always struck me as a fundamental

stumbling block. Without some underlying “theory”, a statistical analysis is meaningful only

for one methodology and one team. Change anything and the numbers could go anywhere.

It was not something we ever put any stock in because we always fixed (or at least

documented) every error we could find, as fast as we could. Zero outstanding critical errors

was the continuous goal.

Porter

Back in the 80s and early 90s software reliability growth models were heavily investigated.

In more recent years, however, there's been relatively little new reliability research appearing

in the main academic software engineering conferences.

However, as cluster and grid computing models became more popular in the late 90s and

early 2000s, practical measurements and applications of reliability (and availability) metrics

were and continue to be used and improved. Descendants of these concepts are used in

today's cloud computing infrastructures.

As far as recommending reliability models, you should fit the model to the data, not the

other way around. Unfortunately, there is a lack of simple, out-of-the-box reliability

modeling software packages for software developers to experiment with. Reliability

modeling also generally requires that your testing environment accurately reflects your

operational environment, which is difficult or impossible to do in many cases (think of

cloud-based services or mobile computing).

Voas and Kuhn Page 12

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

7. Software testing techniques and tools are often based on metrics, such

as SLOC, code complexity, logic complexity, etc. What do you see as the

relationship(s) today between metrics and testing?

Abran

Metrics per se are only inputs into quantitative models looking for relationships across a

number of variables. The challenge is that such relationships have been inadequately

investigated to figure out which threshold values are meaningful in various contexts,

including the very specific context of the software programs being tested.

Most of these code complexity and logic complexity metrics correspond to algorithms that

capture only some of the targeted aspects—none of which directly represent what needs to

be tested. By contrast any functionality measured by a Function Points method represents

what functions must be tested under various sets of conditions; therefore, the identification

of these for measurement purposes can be reused directly as functional scenarios for testing

purposes from both the developer and user perspectives and their quantitative information

can be used for various analyses.

Bieman

A developer can use one of the readily available coverage tools to determine whether

coverage goals are met. However, testers know that their goal is not to achieve 100%

coverage. Rather it is to find 100% of the faults. Unfortunately, no tool can tell you that.

Basili

I believe the most common metrics for testing are coverage metrics.

Chillarege

Software testing can potentially be one of the beneficiaries of good metrics.

Especially given the numerous research ideas on methods to better test software. However,

this is hardly the case in industry. The testing community at best has traceability between

stated requirements and test cases. Statement coverage is the next step-up, on rare occasions.

Anything beyond that is unusual.

To put it in perspective, one needs to recognize that software testing continues to be one of

the least advanced methods in the software development process. The product groups are

most often better than their cousins in IT. Most testing is manual. Test automation tends to

be the high watermark for many organizations. While there is a broad recognition of the

value of automated testing, its penetraiton in the practice is still relatively low. It is also the

case, that building a completely automated test environment is non-trivial. DevOps and

Agile have paved the way to encourage CICD and with it a focus on automation. The good

news is that it has picked up a lot more these past couple years that it has in the last decade.

The software testing services that are sold are often time and materials contracts. And most

testing vendors are reluctant to automate since they perceive it as a net loss of revenue. The

Voas and Kuhn Page 13

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

leading edge vendors do take a longer term perspective and see automated testing as a long

term win-win.

Khoshgoftaar

Software testing techniques and tools are not limited to guidance provided by different

software metrics, including static code metrics and dynamic metrics. It is known that the

software testing phase often suffers due to compressed deployment time frames, prompting

the output of metrics-based predictive models to guide software testing. However,

considerable portion of testing is also guided by test cases' planning and test case code

coverage. The criticality of the project influences its software testing emphasis. But in

today's general agile development environment software development and testing are

iterated in a compressed time frame. Towards that the emphasis on guidance by metrics on

software testing and testing tools tends to become higher.

Miller

The are some more modern metrics, oriented to web pages, that I've noticed. One of these is

a “heat map” generated based on users' recorded GUI activity on a web page front. At least a

couple of vendors are offering heat maps based on data consolidated across many users, in

some cases even without the users' permissions. What is attractive is that you get a cleaner

picture of what the users think is important. With that kind of data, you know better where to

focus testing -- right where the users really were looking.

But thinking historically, I have to admit I'm a skeptic about whether actual testing was or

wasn't guided by any metric other than “what's important right now.” I mean, test teams

focused on the latest additions to an application -- rightly enough -- but I don't recall any

teams that systematically measured and then tested in response to a metric of any kind.

Porter

Software is designed to execute in particular ways. Software testing metrics try to capture

how many of those ways are exercised by the testing process. Popular testing metrics do a

reasonable and generally cost-effective job of helping developers understand how thoroughly

they are testing their software. I would also point out that rather than viewing 100%

coverage as an overriding goal, developers often use coverage information to point out

where their test suites are inadequate. For this reason and because even complex code

coverage metrics can be prohibitively expensive to collect (especially for very large

systems), lighter-weight dynamic test coverage metrics will an interesting research topic in

the near future.

Voas and Kuhn Page 14

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

8. Process improvement was meant to suggest that a better process and

better organization would produce better software. Did that ultimately

occur, and can you suggest examples?

Abran

In organizations where I have seen sound and continuous process improvement, I have

observed considerable improvement in the developer's credibility, from all perspectives:

quantity of functional requirements delivered (quantified objectively using ISO recognized

measurement methods), quality delivered and predictability, as well as significant reductions

in the number of failed projects, i.e., projects are abandoned in a timely manner where

appropriate. In addition, I have noted higher maturity levels (also leading to a better

understanding of process capability) and more realistic expectations (instead of inflated

claims of delivery within an impossible schedule and unrealistic budgets).

Bieman

I believe that paying careful attention to the development process and organization will lead

to better software. Currently, many, if not most, software development organizations are

using some form of an agile process (e.g., Scrum). Following a well-defined process can

only improve the quality an always evolving process produces.

Basili

Sure it has. The best example I have is the work in the NASA Software Engineering

Laboratory in the 1980's and 1990's where we were able to show how various methods were

able to reduce cost and improve quality (as measured in resources expended and defects

delivered). The improvement came from evolving the processes to meet the particular

context based upon measurement and feedback. More recently, look at the work of Lionel

Briand and his Software Validation and Verification Laboratory.

Chillarege

When process improvements are successfully implemented the gains are phenomenal. But

the instances where there is continuous improvement are rare. In our work, we have seen

improvements that are so explosive that the numbers are embarrassing. At IBM one of the

process improvements where ODC was at the foundation for the insights and guidance,

yielded savings of over $100M. The same technology when applied at Nortel yielded similar

results, as quoted by their executives at ISSRE Keynotes. In each instance, senior

management understood the methods used, and was the primary sponsor. The work was

executed by a small technical team that had access and influence in the organization. In both

instances, the work spanned between 1-3 years. When process improvements are attempted

by an organization without the guidance of experienced people, they often fail due to poor

implementation and lack of skill.

This may not seem as a surprise to anyone. However, what stands out after 20 years of

implementing process improvements across the globe, as to how few organizations support

and implement them successfully. The outsourcing of software, which is often billed as a

Voas and Kuhn Page 15

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

time and materials contract as opposed to fixed-price does not encourage process

improvement. This places the responsibility on contract negotiation which often has the

business and vendor management that are unable to find and leverage the necessary software

engineering knowledge to successfully build process improvement into the contract.

Khoshgoftaar

To a certain extent, yes, an improved focus on better process and better organization has

resulted in less faulty software. The CMMI Institute and the SEI maintain reports of

software development organizations that have measurably benefited from improving their

development and organizational process, where the ratings of organizations have improved

in the CMMI models. However, those examples typically come from high-assurance and/or

mission-critical software projects which have much to lose due to poor software.

Miller

Again, I hate to be pessimistic, but no, I don't think that in general the process improvement

movement made many inroads. Which is, in a way, quite sad. Because having a better

process almost certainly improves the quality of the product that's generated. The real world

jumps in here. Programmer/developers chase bug reports more than doing something

systematic.

Porter

As long as you don't read the word “better” to necessarily mean more detailed, more formal,

more rigid, etc., then I would say yes. Better organizations using better processes (as defined

by them) will produce better software. For a concrete example, we worked for many years

with a local company called Keymind. They decided to follow the CMMI approach,

investing heavily in measuring their performance and improving their skills and tooling.

Their investments ultimately paid off and they became a truly excellent organization and

were recognized widely for their innovative products.

But process improvement is not just CMMI-type approaches. I know many organizations,

for instance, that swear by their adoption of agile methods. After adopting and

institutionalizing these practices, they now produce better, more cost-effective software than

they did before the switch. I know other organizations that invested strategically in building

specialized domain knowledge within their development team. Again, they now produce

better software than they used to and are more effective in their specific customer markets.

9. Once COTS products became the standard for software distribution, and

source code was no longer available to customers, where did metrics fit

into this new software distribution model?

Abran

Indeed, SLOC-based metrics are almost irrelevant overall in a COTS context. Industry in

general has not used new software metrics, even though they could have used Function

Points to manage a number of COTS implementation and maintenance issues, including

Voas and Kuhn Page 16

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

normalization of data collection to facilitate internal and external benchmarking for portfolio

management and to objectively verify claimed productivity improvements with COTS.

Bieman

Customers can (and do) still measure the size of COTS products in terms of the number of

bytes of storage (both RAM and disk). Dynamic measurements can still be used.

Basili

Good question. This changed the game for source code metrics and forced whole new

processes to be developed to take COTS into the equation. It provides a good example of

why metrics need to be defined for the context.

Chillarege

The COTS and metrics connection is at best remote. It is poorly understood by government

and academia. It's a failure, that has gotten away in front of our eyes. In any mature

engineering discipline, customers are protected against the failures of that engineering

discipline, in one form or another. Software has managed to skirt this issues all along. No

engineering method which has matured (and 50 years later, Software has certainly matured)

can be allowed to deliver a service in society and claim it is not accountable on key

parameters that affect society: Reliability, Injury, Productivity, Safety, etc. Yet, the software

industry has managed to escape all of these. It is only today, that the threat of software

security (or lack of it) has finally caught attention. The initial run up on security was

accepted after several embarrassing disclosures by large firms. Today, with its impact on

politics, it has finally garnered more attention.Yet, the focus is mainly on protection and

damage control and not on the fundamentals of the technical area or the technology.

There is enough blame to go around all the stake holders. But, the largest one should be

showered on the Academic community. For years, the technical communities that wielded

the influence, such as programming languages, were critical of software engineering

disciplines such as metrics and reliability that focused on behavioral aspects of

programming. The consequence is that funding and generations of students and researchers

were guided with priorities that ignored these very industry relevant areas. Today, those very

purist disciplines that wielded influence have been commoditized and we have a dearth of

technical effort in needed software engineering areas. I founded and headed the Center for

Software Engineering at IBM Research and thus understand these dynamics only too well.

The Center was unique in its day, and while it lived in the midst of the largest Computer

Science department in the world it worked directly across the 50,000 software engineers

sprawled that built products across IBM. My predictions, then was that Software

Engineering, at large, will be sorry for the disposition that was held by the software

technical community. Although a minority opinion then, IBM had the wisdom to let my

opinion be heard, albeit without the needed follow through of investment and action. Now,

20 years later we are witnessing the consequences, that we, the collective technical society,

chose. It could have been different. And it will be different in the future.

Voas and Kuhn Page 17

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Khoshgoftaar

Since source code is not available for COTS software, the evaluation metrics tend to fall

under categories of cost, return-on-investment, reliability, availability, and general black-box

testing metrics. Often the development organization may rely on quality certifying entities

that conduct independent testing on COTS products and maintain data on the products

quality and related features for acquisition teams to review. A development organization that

relies heavily on COTS, for example, may maintain an internal quality check list against

which all COTS products are measured.

Porter

Metrics are not restricted to source code. In fact, organizations can and do define metrics

over non-source code development artifacts, including requirements, user-visible display

screens, system resource files and more. The example of COTS is a good one. In some work

we're doing for a large government organization, we've been very interested in metrics to

help understand how much COTS customization this organization will need to perform.

We looked at many measures and identified that you need to look at the COTS development

processes/activities, not just development of the glue-ware and integration of COTS

components. For example, you also need to consider what it takes to learn the capabilities of

the COTS products, to configure COTS components to satisfy requirements, to resolve

issues with other interfacing development teams, and to enhance individual COTS products.

Each of these activities requires significant effort, can cause great difficulty for a project,

and are usually not fully planned and allocated the effort needed to develop a project.

10. If you were to recommend 3 references to students or practitioners on

the fundamentals of software metrics, what would they be?

• Abran, Software Metrics and Software Metrology, John Wiley & Sons, 2010.

John Wiley & Sons, 2010. (Abran, Bieman, Khoshgoftaar)

• ISO 15939: Software Measurement Process (Abran)

• ISBSG, Data collection questionnaire of the International Software

Benchmarking Standards Group (www.isbsg.org) and related. (Abran)

• D.W. Hubbard, How to Measure Anything: Finding the Value of Intangibles in
Business, John Wiley & Sons, 2010 (Bieman)

• N. Fenton and M. Neil, Risk Assessment and Decision Analysis with Bayesian
Networks, CRC Press, 2012. (Bieman)

• N. Fenton, J. Bieman. Software metrics: a rigorous and practical approach. CRC

Press, 2014. (Khoshgoftaar)

• J. Musa, Software Reliability, 1988 (Miller)

• M. H. Halstead, “Elements of Software Science,” May 1977 (Miller)

Voas and Kuhn Page 18

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

http://www.isbsg.org

• H. Hecht, “A Survey of Software Tools Usage,” NBS 500-82 (NIST), 1981

(Miller)

• W. Humphrey, “Introduction to the Personal Software Process.” Addison-Wesley,

1996. (Porter)

• R. B. Grady and D. L. Caswell, Software Metrics: Establishing a Company-Wide
Program. Prentice-Hall, 1987. (Porter)

• T. Ball, Jung-min Kim, A.A. Porter and H.P. Siy, “If Your Version Control

System Could Talk…”, ICSE '97 Workshop on Modeling and Empirical Studies
of Software Engineering, May 1997. (Porter)

• van Solingen & Berghout, The Goal/Question/Metric Method, McGraw Hill,

1999. (Basili)

• V. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R. Pajerski,

Special Report: SEL Software Process-Improvement Program IEEE Software,

vol. 12(6): 83-87, November 1995 (Basili)

11. Are current metrics cost effective? What aspects of software

development are not being adequately addressed by metrics today, but

could be? What are some fruitful areas for metrics research?

Abran

The key issue with software metrics is not cost, but whether or not they support decision

making. There are many software metrics for the whole lifecycle, and many software tools

for automated measurement, but metrics with terrible designs should be quickly dropped as

measurement methods when the next generation of better-designed metrics becomes

available.

‘Metrics’ without analysis models or meaningful, context-specific data thresholds are

useless. Individual organizations and industries must invest in building analysis models

relevant to their contexts, and must collect historical data to bootstrap their own models and

threshold values for decision making. The professional practices of metrics tool vendors, as

well, need to improve considerably. At present, whatever metrics they propose in their tools

are subject to their own interpretation, without any traceability to well-documented

benchmarks or international standards.

In my opinion, a considerable amount of research on software metrics is wrong-headed. I

have seen too many research papers where researchers collect a large number of metrics on

the sole basis that they are easily automated. Then, using whatever open-source data they

can put their hands on, without verifying the underlying quality, they try to figure out which

ones might lead to more accurate outcomes for whatever purpose. This all-too-common

approach is more closely related to random searches than a sound and proven research

methodology.

Voas and Kuhn Page 19

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Bieman

Most of the metrics used are relatively cheap to apply. However, misuse of metrics can add

costs due to misdirecting developers. I'd like to see more research in two areas:

Evaluations of the measurable benefits and costs of applying common design advice and

process advice in terms of time to market, delivered faults, and maintainability. Evaluating

maintainability may be the most difficult kind of study, as maintainability depends on

external requests for repairs and new features.

The use of Bayesian networks to build causal models for decision making under the inherent

uncertainty involved in software development. Such models have the potential to evaluate

alternative software process arrangements and observe likely outcomes in terms of delivered

functionality, time to deliver, and product quality.

Chillarege

Orthogonal Defect Classification is a concept I invented more than 25 years ago. It's based

on a simple research finding that has deep consequences to all of software engineering

metrics. It confounded me that the basic premise of software failures (and faults), were that

they were treated as homogenous. I also did not understand just what they were counting. So

I went up to the IBM Poughkeepsie lab, that was just up the road, and started studying the

defect stream. Most of what I saw would not quite map itself into the models, and that got

me thinking. I started fooling around with the data and discovered that sub-populations

would behave very differently.

ODC extracts the semantics contained in defects into four principal groups, and within each,

it bins them into independent categories. This multi-dimensional categorical data behaves

like eigenvalues in the software development process space, thus creating a new

measurement system. A dozen different process measurements and evaluations can be

performed with ODC data. It has changed how one performs root-cause-analysis, reducing

the effort required by two orders of magnitude.

Khoshgoftaar

In the larger scheme of things, current software metrics are generally cost effective.

However, their extent of usage and role is dictated by project and organizational goals. An

area of software development that could use further insight via measurements is human

impact of software quality. Currently, this is generally measured via defects metrics and

process metrics. An interdisciplinary focus between software engineering and psychology

may yield useful insights. Another area that is beginning to be looked at is influence of Big

Data analysis on existing software development practices.

Porter

Cost-effectiveness is really context dependent. For many projects, for example, measuring

line coverage during nightly automated testing is a no-brainer. However, I was recently

talking with someone about an ultra large scale system they worked on for which capturing

even basic line coverage information was actually infeasible. In addition, metrics will be

Voas and Kuhn Page 20

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

more cost effective if the definition of the metrics and the process to gather these metrics are

carefully designed so as to be cost effective. Unfortunately, many companies put together an

ad hoc measurement plan and most do not take advantage of data automatically captured by

development/test tools nor plan for automated preprocessing/compilation of related data for

easier analyses.

As for fruitful areas not fully studied today, I think there's a lot of room for defining and

validating metrics over development models. Model-driven development approaches are

increasingly finding their way into standard practice. As this trend continues, there'll be a

need for metrics defined over these models.

Summary

We hope this retrospective was thought provoking. The diversities and similarities in

opinions from the panelists made it more interesting. For example, we had near consensus

that it's not possible to pick a useful single metric. Our panelists argued for matching metrics

to goals and the need for strict metric definitions. And we had rough consensus that SLOC is

weakly correlated with several metrics, but not sufficient as a metric by itself. Our panelists

were generally supportive of CMM, and they surprised us when none of them discussed the

use of structural coverage metrics as a check on the quality of requirements-derived tests.

We thank them for sharing their expertise and for their candor. So what do you think: were

software metrics relevant back then, and if so, are they still relevant? And if they are, what's

the best way to incorporate software measurement into modern day software development,

and into software product and services delivery? After all, that is their purpose.

References

1. Voas J, Laplante P. A Perspective on Standard Confusion and Harmonization. IEEE Computer. Jul.
2007

Voas and Kuhn Page 21

Computer (Long Beach Calif). Author manuscript; available in PMC 2017 August 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

	1. If you could only recommend one static software metric and one dynamic software metric, what would they be, and why?
	Abran
	Bieman
	For static metrics: If you need to know how much software you have, a software size metric is appropriate (see my answer to question 2). If you need to know something about design structure, there are numerous ways to measure code properties like coupling, cohesion, “complexity”, etc. If you need to know how testable your system is, you can statically measure how many specified “test requirements” are contained in your system. For example, knowing the number of statements or branches can indicate the difficulty of achieving a particular level of statement or branch coverage during testing.For dynamic metrics: Run time performance (time and space requirements) are clearly important for many applications. Another important and useful dynamic metric is the test coverage achieved for specified test criteria. Finally, the most important dynamic measure is the number and frequency of defects discovered (or failures reported) in a system after release.
	For static metrics
	For dynamic metrics

	Basili
	Chillarege
	Khoshgoftaar
	Miller
	Static

	Dynamic
	Porter

	2. There was once a common belief that all static code metrics essentially boiled down to Source Lines of Code (SLOC). Was that true? If so, is it still true. If not true, why?
	Abran
	Bieman
	Basili
	Chillarege
	Khoshgoftaar
	Miller
	Porter

	3. Back then many organizations were sold on the idea of process metrics such as the Capability Maturity Model (CMM). The US DoD invested heavily in that idea, and some have argued that this added significant financial burdens to military IT and software systems. Did it work? And where is CMM today?
	Abran
	Bieman
	Chillarege
	Basili
	Khoshgoftaar
	Miller
	Porter

	4. The software metrics of the early 1990s were mainly static, however the behavior of software is dynamic. Do we have newer static metrics that better reveal software behavior and semantics than only software syntax?
	Abran
	Bieman
	Basili
	Khoshgoftaar
	Miller
	Porter

	5. Structural metrics measuring dynamic behavior have been around for decades. The most commonly cited are statement coverage, branch coverage, and modified condition decision coverage, plus a few module-level coverage metrics for object oriented code. What percentage of developers in your industry or profession that use one or more of these metrics? Are there other dynamic metrics that are used?
	Bieman
	Basili
	Khoshgoftaar
	Miller
	Porter

	6. Software reliability modeling and theory played a role then and now. What is the state of software reliability models today; specifically, what percentage of developers in your industry or profession that use reliability modeling? And is there one or two you recommend over others?
	Bieman
	Basili
	Chillarege
	Miller
	Porter

	7. Software testing techniques and tools are often based on metrics, such as SLOC, code complexity, logic complexity, etc. What do you see as the relationship(s) today between metrics and testing?
	Abran
	Bieman
	Basili
	Chillarege
	Khoshgoftaar
	Miller
	Porter

	8. Process improvement was meant to suggest that a better process and better organization would produce better software. Did that ultimately occur, and can you suggest examples?
	Abran
	Bieman
	Basili
	Chillarege
	Khoshgoftaar
	Miller
	Porter

	9. Once COTS products became the standard for software distribution, and source code was no longer available to customers, where did metrics fit into this new software distribution model?
	Abran
	Bieman
	Basili
	Chillarege
	Khoshgoftaar
	Porter

	10. If you were to recommend 3 references to students or practitioners on the fundamentals of software metrics, what would they be?
	11. Are current metrics cost effective? What aspects of software development are not being adequately addressed by metrics today, but could be? What are some fruitful areas for metrics research?
	Abran
	Bieman
	Chillarege
	Khoshgoftaar
	Porter

	Summary
	References

