
14 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

Programming
the World

COVER FEATURE GUEST EDITORS’ INTRODUCTION

 N O V E M B E R 2 0 1 7 15

Michael Beigl, Karlsruhe Institute of Technology

Florian Michahelles, Siemens Corporate Technology

Hide Tokuda, National Institute of Information and Communication Technology and Keio University

Steve Hodges, Microsoft Research

In the early days of computing,
there was a clear separation
between the “real” world,
in which people manipu-

lated physical objects, and
the “virtual” world, in which
computers dealt with digital
information. Any coupling
between these two worlds
was largely indirect and
manual, making the inter-
face simple to design, build,
and operate.

Today, things are differ-
ent. With the widespread pro-
liferation of embedded systems,
the advent of ubiquitous computing,
the growth of smartphones (yes, they
came later), and now the emergence of
augmented reality (AR) and the Inter-
net of Things (IoT), the interfaces are
no longer simple in any sense of the
word. Computer systems are increas-
ingly integrated with all manner of
physical devices in the real world; they
must sense, respond to, and control the
environment around them. This evo-
lution is set to continue: in the future,
potentially anything you can see in
the world—and even some things that
are too small to see—will contain or be
controlled by a computing device.

Going even further, it is possi-
ble that computationally controlled
materials could contain embedded
nanoscale computing elements as the
building blocks of future intelligent
devices and systems. Researchers are
exploring these ideas, with examples
including CMU’s Claytronics project

and MIT Media Lab’s Radical Atoms
Initiative. Not only do these smart
materials come in many physical
forms, but they also provide a new type
of computational fabric consisting of
a mesh of somewhat independently
controllable processing elements,
providing an even tighter integration
between the real and virtual worlds
than ever before.

As with the first computers, these
new computing devices are fundamen-
tally programmable. But to program
these new materials is to program the
world around us. The processors pow-
ering embedded systems, ubiquitous
computing applications, AR environ-
ments, and the IoT are increasingly
taking the form of a computational
fabric that we all interact with on a
daily basis. Understanding how best to

go about developing and controlling
these systems—akin to program-

ming the world we live in—is the
primary inspiration for this

special issue of Computer.
 And who will be the pro-

grammers of the future?
Today, the vast majority of
computer systems are pro-
grammed by IT specialists

and professional program-
mers. But this model might

not be viable in the future.
People from all walks of life will

naturally want to customize their
digitally controlled environments—

to suit their mood, the occasion, and
individual needs—just as they have
always done in more traditional envi-
ronments. Sometimes human motiva-
tions are clear, practical, and predict-
able, and other times they are innate,
emotional, or even irrational. So the
systems that control the world around
us must be programmed to respond
well to very personal experiences. This
naturally suggests that the end users
themselves will increasingly become
the programmers. However, we can-
not expect everyone to develop profes-
sional programming skills simply to
survive in and enjoy their own “smart”
environments.

 We have already seen a significant
uptake of simplified, end-user–directed
programming methods. Today they
are often used in somewhat “playful”
application areas where simple event-
based automation tasks are scripted,
although they have also enjoyed much

Computing

evolution has brought about

multiple paradigm shifts in how

we use technologies. In the living

laboratory that is modern life, our ability

to design and control the computers

and computing power of the future

will require an ability to program

systems and applications in

situ and in vivo.

16 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

success as a way of introducing pro-
gramming to children. Although end
user programming schemes can lag
behind professional programming
tools and environments in terms of
sophistication, we expect the para-
digm to become increasingly dominant
in terms of both acquired ability and
widespread adoption. Simplified pro-
gramming methods for the web and IoT
services based on trigger-action pro-
gramming (TAP) methods are already
plentiful. These include IFTTT, Atooma,
Bipio, itDuzzit, and Tasker. Educational
programming environments like MIT’s
Scratch, Microsoft’s MakeCode, and
Google’s Blockly are being adopted
in classrooms around the world. And
many of these systems combine an intu-
itive programming environment that
exposes basic functionality—the “low
floor” coined by Seymour Papert—with
support for a wide variety and com-
plexity of applications—a “high ceil-
ing.” When used in conjunction with
one of the many physical computing
platforms designed to support tangi-
ble interaction, environmental sensing
and real-world actuation, such as Ardu-
ino, Raspberry Pi, or the micro:bit, they
become eminently capable of program-
ming the world.

IN THIS ISSUE
We believe that more of these “stan-
dard” building blocks are needed, for
both software and hardware. Today
the world of Internet-enabled “things”
is heterogeneous in every regard—
devices, software, services, commu-
nication protocols, and standards.
Fast, flexible, and accessible program-
ming relies on intuitive, seamless,
and robust interoperability between
these elements. Given the huge range
of application areas we envision—such
as smart appliances, smart homes and

buildings, smart cars, industrial smart
transportation, industrial automa-
tion, and responsive environments—
there are a great many challenges.
Three articles in this special issue
present some of the latest ideas and
developments in this area.

 In “A Semantic Web Approach to
Simplifying Trigger-Action Program-
ming in the IoT,” Fulvio Corno, Luigi
De Russis, and Alberto Monge Rof-
farello report on EUPont. EUPont pro-
vides trigger-action programming,
much like IFTTT, but based on an
underlying ontological structure. This
allows the entities expressed by the pro-
grammer to be abstracted, leaving it to
the system to implement the rule itself.
The result is a highly expressive pro-
gramming approach that hides techni-
cal details from the programmer. The
authors investigated how many of the
rules in a typical IFTTT scenario are no
longer needed when using this method,
and showed that nearly 40 percent could
become redundant.

 In “Semantic Development and Inte-
gration of Standards for Adoption and
Interoperability,” Jack Hodges, Kimberly
García, and Steven Ray address a specific
problem: with so many formal and ad
hoc standards relevant to programma-
ble devices and systems, it can be hard to
ensure interoperability. As a result, cre-
ating a complete system is more about
programming single devices and build-
ing lots of conversion modules than
“programming the world.” The authors
aspire to solve this problem with an
ontological approach. They show how
information formats, communications,
and applications like automation and
smart buildings can be implemented
using technologies such as the Web
Ontology Language (OWL).

 Finally, in “meSchup: A Platform
for Programming Interconnected

GUEST EDITORS’ INTRODUCTION

 N O V E M B E R 2 0 1 7 17

Smart Things,” Thomas Kubitza and
Albrecht Schmidt present a playful
platform for programming the IoT.
Their approach tackles two main prob-
lems: first, the complexity of network-
ing a heterogeneity of systems and sec-
ond, the problem of programming. To
address heterogeneity and complexity,
the meSchup IoT platform provides a
technical framework that readily inte-
grates the prevalent technologies in
this space. The system includes a code
editor that embodies two new program-
ming concepts: referencing by manipu-
lation (RBM) and sampling by demon-
stration (SBD). RBM and SBD bridge the
gap between the code and the physical-
ity of sensors and their properties. For
the end user, TouchCompozr allows

simplified trigger-action program-
ming. By manipulating the relevant
physical objects, parts of the rules are
inferred automatically.

These three papers only scratch
the surface of the tremendous
research challenges associated

with building programmable systems
in more accessible and intuitive ways.
We are excited to see how this field of
research continues to develop. Ulti-
mately, we imagine a future in which
everyone is empowered to design, con-
struct, and control a computational
system, no matter what their back-
ground may be—a future in which we
are all programming the world.

ABOUT THE AUTHORS
MICHAEL BEIGL is a professor at Karlsruhe Institute of Technology. His

research interests include ubiquitous, pervasive, and wearable computing, and

the Internet of Things (IoT). Beigl received a PhD in computer science from the

University of Karlsruhe. Contact him at michael.beigl@kit.edu.

FLORIAN MICHAHELLES heads the Siemens Corporate Technology WoT research

group. His research interests center on the IoT. Michahelles received a PhD in com-

puter science from ETH Zürich. Contact him at florian.michahelles@siemens.com.

HIDE TOKUDA is president of the National Institute of Information and Com-

munication Technology in Japan, and a visiting professor at Keio University.

His research interests include ubiquitous and pervasive computing, the IoT,

cyber-physical systems, and smart cities. Tokuda received a PhD in computer sci-

ence from the University of Waterloo. Contact him at hxt@ht.sfc.keio.ac.jp.

STEVE HODGES leads the Sensors and Devices research group at Microsoft

Research Cambridge. His research interests include connected devices, novel

sensing and displays, power-aware design, and rapid prototyping. Hodges

received a PhD in robotics and computer vision from Cambridge University.

Contact him at steve.hodges@microsoft.com.

