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Abstract

The security of encrypted data depends not only on the theoretical properties of cryptographic 

primitives but also on the robustness of their implementations in software and hardware. Threshold 

cryptography introduces a computational paradigm that enables higher assurance for such 

implementations.

Protecting sensitive information from unauthorized disclosure has always been challenging. 

“Two may keep counsel, putting one away,” William Shakespeare wrote in Romeo and Juliet 
(1597). Later, in Poor Richard’s Almanack (1735), Benjamin Franklin wryly observed that 

“Three may keep a secret, if two of them are dead.”

Today, cryptography is a primary means of protecting digital information. In modern 

cryptography the algorithms are well-known; only the keys are secret. Thus, the 

effectiveness of encrypting data hinges on maintaining the keys’ secrecy. However, this is 

difficult in conventional cryptographic implementations, as keys are usually stored in one 

place on a single device, and used there to run the algorithm. This has led to the perception 

that cryptographic keys are often the Achilles’ heel of cryptography.

For example, the internal state of a conventional implementation might be compromised 

through a bug such as Heartbleed (https://nvd.nist.gov/vuln/detail/CVE-2014-0160), which 

lets an attacker read the application’s private memory, including any secret keys contained 

therein. Another example is the cold-boot attack,1 which allows recovery of keys from 

DRAM even seconds to minutes after it has been removed from the device.
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Other attacks inject faults into the computation (for example, by changing the supply 

voltage), or obtain information through a side channel, such as the execution time, the 

amount of energy it consumes, or the electromagnetic emanations it produces. Many of these 

fall into the category of noninvasive attacks, which can be performed without direct physical 

contact with components within the device. Attacks that exploit leakage of key-dependent 

information can lead to disastrous scenarios in which the master key to encrypt and 

authenticate device firmware becomes compromised.2

To counter the inherent security risks of handling secret keys in conventional 

implementations of cryptographic algorithms, technical approaches have emerged that split 

the secret key into two or more shares. Each share independently processes data in such a 

way that the computation is correct as if the data had been processed by a classic algorithm 

with the original secret key. However, the compromise of one (or more, but not all) of the 

shares doesn’t reveal information about the original key.

Splitting a key into shares combined with independent processing of the shares can 

significantly increase the confidentiality of secret keys in cryptographic implementations. 

However, it also presents challenges to ensure the correctness of the outputs that the user 

receives, and the continued availability of the overall system.

In this article, we focus on threshold cryptography: threshold schemes applied to 

cryptographic primitives and usually based on secret-sharing techniques. Threshold schemes 

also exist in other flavors, depending on the security aspects they address and the techniques 

used. They are related to the fields of secure multiparty computation, intrusion-tolerant 

protocols, and fault-tolerant and side-channel-resistant implementations.

Security considerations for cryptographic implementations

The basic security model for conventional cryptographic algorithms assumes an ideal black 

box, in which the cryptographic computations are correct and all internal states, including 

keys, are kept secret. Such ideal constructs have no side channels that could leak secret 

information. Under this assumption, one can reduce the problem of evaluating the 

algorithm’s security properties to the complexity of the best-known attack against this 

model. For example, one can define the security strength, which can also be expressed as bit 

strength, of different classes of cryptographic algorithms based on the amount of work 

needed to perform a brute-force search of the key in a large space related to the key size.

When the algorithms are implemented in real hardware and software, the black-box 

assumption can break down in several ways. For example, bugs in the implementation can 

lead to side effects that compromise the secret key, as with Heartbleed. Also, the material 

and electromagnetic characteristics of the platforms on which the algorithms run can cause 

side-channel information to leak and allow attackers to recover the secret key.

The distinction of ideal versus real implementations can yield useful insights into the 

assessment of threshold schemes for cryptographic primitives. What are the security 

advantages and disadvantages of performing separate computations on shares of a key, 

compared to conventional implementations that use a single secret key? How can threshold 
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cryptography mitigate the potentially disastrous consequences that a coding error or a side-

channel leak could have on a conventional implementation?

Example threshold computation on secret shares

Secret sharing is based on splitting the key into multiple shares. For example, to split key K 
into three shares K1, K2, and K3, we randomly select shares K1 and K2 from the same key 

space as K, and let the third share K3 = K1 ⊕ K2 ⊕ K be the one-time pad encryption of K, 

where ⊕ is the exclusive OR operation if the keys are bit-strings. No two shares provide any 

information about the secret key — all shares are required to recover K.

Now let’s construct a threshold scheme for digital signatures. First, we recall the RSA 

(Rivest-Shamir-Adleman) signature scheme, which defines the public key as (N,e) and the 

private key as d, such that ed = 1 mod ϕ(N). Here, the modulus N is a product of two large 

secret primes and ϕ is Euler’s totient function. Then, the RSA signature for a (possibly 

hashed) message m is defined as s = md mod N. Anyone possessing the public key can 

verify the signature by checking se = med = m mod N.

To obtain a threshold variant of this signature scheme, we split the private key d into three 

shares d1, d2, and d3, such that d1 + d2 + d3 = d mod ϕ(N). Now, without reconstructing d, 

it’s possible to first process the message independently using each of the shares: , 

 and ; and then compute the signature s = s1s2s3. Note that this is indeed a 

valid RSA signature, as  mod N.

This simple threshold RSA signature scheme mitigates the risk of exposing the potentially 

high-value private key d, which doesn’t appear in any of the three shares that are used in the 

actual computations. Thus, compromising any one of the shares, and even two of them, 

poses no threat of exposing d. Moreover, frequent updates to the key shares (d1, d2, and d3) 

would reduce the window of opportunity for attacks and thereby further reduce the risk. The 

refresh can even occur after every signature.

For this scheme to work, all three shares must be present. This might be impractical in 

situations where one or more of the shares become unavailable. For such cases, a k-out-of-n 
threshold scheme could be used when at least k shares are available. Such secret-sharing 

schemes were independently developed by Adi Shamir and George Blakley in 1979. For 

RSA signatures, one can define a two-out-of-three secret-sharing scheme, and a 

corresponding threshold variant of RSA.3

Threshold cryptography against single points of failure

Conventional cryptographic implementations are susceptible to single points of failure, as 

shown by the Heartbleed and cold-boot attacks. But what do we gain by using threshold 

cryptography? For the example of a two-out-of-three threshold RSA signature scheme, 

consider the case of one share being irrecoverably lost or breached. Here the private 

signature key d remains intact, available, and not breached. This means that one can 

continue to use the same public key to verify the signature’s correctness. In contrast, when a 
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conventional implementation is breached, the corresponding public/private key pair would 

have to be revoked and a new pair issued, which typically requires an external certification 

of the public key by a certificate authority and propagating it to all relying parties.

In addition, a two-out-of-three threshold signature scheme becomes more resilient to future 

share loses if it continuously refreshes the key shares, provided that at most one is 

compromised at any given time. Interestingly, not all two-out-of-three threshold schemes are 

born alike. In a scheme composed of three separate conventional RSA implementations with 

independent keys, refreshing would require updating the public/private key pairs with all 

entailing inconveniences. Ensuring correctness might be more difficult for other 

cryptographic operations, such as encryption, but such issues have been addressed in the 

literature.

The secrecy of keys can also be compromised by the leaking of key-dependent information 

during computations. This is possible even without direct physical contact with components 

within the device. For example, the time taken, the power consumed, and the 

electromagnetic radiation emanated by a device can be measured without penetrating the 

device enclosure. In some cases, threshold cryptography can reformulate the side-channel 

leaks, making them more difficult or infeasible to exploit.

Consider, for example, an attack using power leakages, which requires obtaining traces of 

power across an algorithm’s execution time. In differential power analysis (DPA), one 

collects power traces corresponding to a finite number p of statistical distributions of the 

power consumption, denoted as a p-th order attack. Security against p-th order DPA could be 

obtained if the attacker can recover at most p < n shares — a (p + 1)-out-of-n threshold 

scheme would suffice.4

Under some reasonable assumptions on the statistical distributions of side-channel 

information, DPA requires collecting a number of traces that is exponential in the number of 

shares.5 Therefore, the attack becomes infeasible if the number of shares is sufficiently high, 

and is further thwarted when the shares are refreshed before the attacker can collect enough 

traces.

Other attacks could inject a fault into the computation — for example, by applying a strong 

external electromagnetic field. If the threshold scheme doesn’t require all shares to be 

present, it can resist transient and permanent faults in parts of the computation, thereby 

providing resistance against a wide range of fault attacks.

It might be that the threshold cryptographic implementation is insecure, perhaps due to a 

human error or an unsafe optimization by the tools used to compile or synthesize the 

implementation. It’s important to ensure that the algorithms behind threshold cryptography 

are secure and well-analyzed, and to verify that they’ve been implemented correctly. These 

issues fall into the field of standardization and validation.
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Implications for standardization and validation

Governments recognize cryptography’s important role in protecting sensitive information 

from unauthorized disclosure or modification and tend to select algorithms with well-

established theoretical security properties. For example, US and Canadian federal agencies 

must use NIST-defined cryptographic algorithm standards to protect sensitive data in 

computer and telecommunications systems.6 They must also use only validated 

cryptographic implementations, typically referred to as modules.

As we’ve pointed out in this article, the correct and bug-free implementation of a 

cryptographic algorithm and the environment in which it executes are also very important 

for security. To assess security aspects related to real hardware and software 

implementations, NIST established the Cryptographic Module Validation Program (CMVP; 

https://csrc.nist.gov/projects/cryptographic-module-validation-program) in 1995 to validate 

cryptographic modules against the security requirements in Federal Information Processing 
Standard (FIPS) Publication 140-2.7 The CMVP leverages independent third-party testing 

laboratories to test commercial-off-the-shelf cryptographic modules supplied by industry 

vendors.

As technology progresses and cryptography becomes ubiquitous in the federal information 

infrastructure, the number and complexity of modules to be validated increases. This makes 

it increasingly difficult to detect at validation stage all possible defects that might 

compromise security. This is one more reason to consider the potential of threshold 

cryptography in avoiding single points of failure in real implementations. The definition of 

guidelines would help to develop a structured process of formulating and validating security 

assertions about threshold cryptographic implementations. One additional challenge is to 

enable ways to validate those assertions in an automated fashion.

As the use of cryptographic algorithms increases, threshold cryptography becomes 

increasingly relevant in addressing obstacles arising from differences between ideal and real 

implementations. A major issue is the protection of secret keys, which cryptographic 

security relies on. Threshold cryptography enables secure modes of operation even when 

some components are compromised, but they also present new challenges for the 

standardization and validation of security assertions.
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