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ABSTRACT

The proliferation of IoT devices heralds the emergence of intelligent embedded ecosys-

tems that can collectively learn and that interact with humans in a human-like fashion.

Recent advances in deep learning revolutionized related fields, such as vision and speech

recognition, but the existing techniques remain far from efficient for resource-constrained

embedded systems. This dissertation pioneers a broad research agenda on Deep Learning

for IoT. By bridging state-of-the-art IoT and deep learning concepts, I hope to enable a

future sensor-rich world that is smarter, more dependable, and more friendly, drawing on

foundations borrowed from areas as diverse as sensing, embedded systems, machine learning,

data mining, and real-time computing.

Collectively, this dissertation addresses five research questions related to architecture, per-

formance, predictability and implementation. First, are current deep neural networks fun-

damentally well-suited for learning from time-series data collected from physical processes,

characteristic to IoT applications? If not, what architectural solutions and foundational

building blocks are needed? Second, how to reduce the resource consumption of deep learn-

ing models such that they can be efficiently deployed on IoT devices or edge servers? Third,

how to minimize the human cost of employing deep learning (namely, the cost of data la-

beling in IoT applications)? Fourth, how to predict uncertainty in deep learning outputs?

Finally, how to design deep learning services that meet responsiveness and quality needed

for IoT systems?

This dissertation elaborates on these core problems and their emerging solutions to help

lay a foundation for building IoT systems enriched with effective, efficient, and reliable deep

learning models.
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CHAPTER 1: INTRODUCTION

The proliferation of internetworked mobile and embedded devices leads to visions of the

Internet of Things (IoT), giving rise to a sensor-rich world where physical things in our ev-

eryday environment are increasingly enriched with computing, sensing, and communication

capabilities. Such capabilities promise to revolutionize the interactions between humans and

physical objects.

Indeed, significant research efforts have been spent towards building smarter and more

user-friendly applications on mobile and embedded devices and sensors. At the same time,

recent advances in deep learning have greatly changed the way that computing devices pro-

cess human-centric content such as images, video, speech and audio. Applying deep neural

networks to IoT devices could thus bring about a generation of applications capable of

performing complex sensing and recognition tasks to support a new realm of interactions

between humans and their physical surroundings [1]. I discuss five key research questions

towards the architecture, performance, predictability and implementation of such novel in-

teractions between humans and (deep-)learning-enabled physical things, namely: First, are

current deep neural networks fundamentally well-suited for learning from time-series data

collected from physical processes, characteristic to IoT applications? If not, what architec-

tural solutions and foundational building blocks are needed? Second, how to reduce the

resource consumption of deep learning models such that they can be efficiently deployed on

IoT devices or edge servers? Third, how to minimize the human cost of employing deep

learning (namely, the cost of data labeling in IoT applications)? Fourth, how to predict

uncertainty in deep learning outputs? Finally, how to design deep learning services that

meet responsiveness and quality needed for IoT systems?

To elaborate on the above challenges, first, observe that IoT applications often depend

on collaboration among multiple sensors, which requires designing novel neural network for

multisensor data fusion collected from physical processes. The design of neural network

incorporates two main parts: 1) neural network structure: arranging deep learning compo-

nents to form an architecture that controls the data learning flow, and 2) fundamental neural

network building block: decoding the underlying physical process within input sensing data

that facilitates the learning process. Therefore, the structure should be able to model com-

plex interactions among multiple sensory inputs over time; the component should be able to

effectively encode features of sensory inputs with underlying physical processes that are per-

tinent to desired recognition and other tasks. We propose general deep learning architecture

and component for this purpose, called DeepSense [2] and STFNet respectively. DeepSense
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is a unified yet customizable deep learning network structure, customized specifically for

learning from multisensor time-series data. DeepSense exploits the nature of multi-sensor

measurements, and designs a local-global sensor fusion component that is able to model

complex interactions among multiple sensory inputs over time. It demonstrates that certain

combinations of deep neural network topologies are particularly well-suited for learning from

sensor data, outperforming traditional modeling techniques by a large margin. I also intro-

duced new fundamental neural network building blocks for IoT systems. Conventional neural

networks extract features well-suited for external perceptual tasks. In contrast, the internal

physical processes underlying sensor measurements in IoT systems have properties (such as

physical inertia, characteristics of wireless signal propagation, and signal resonance) that

depend more on signal frequency , motivating feature extraction in the frequency domain. It

is no coincidence that much of classical signal processing literature works by transforming

time-series data to the frequency domain first. To help capture signatures of internal phys-

ical processes the way a brain captures their externally perceived properties, I developed a

novel neural network structure, called Short-Time Fourier Neural Networks (STFNets), that

operates directly in the frequency domain. I demonstrated that it is not enough to simply

covert sensing signals into the frequency domain, and then apply conventional neural net-

works. Instead, STFNets make two key additional improvements. First, STFNets leverage

and preserve frequency domain semantics that encode time and frequency information. Sec-

ond, STFNets offer novel multi-resolution processing to circumvent the uncertainty principle

in time-frequency analysis. Extensive experiments demonstrated that STFNets bring signifi-

cant improvements for diverse sensing modalities, including motion sensor, WiFi, ultrasound,

and visible light.

Second, IoT devices are usually low-end systems with limited computational, energy, and

memory resources. One key impediment in deploying deep neural networks on IoT devices

therefore lies in the high resource demand of trained deep neural network models. While

existing neural network compression algorithms can effectively reduce the number of model

parameters, not all of these models lead to matrix representations that can be efficiently

implemented on commodity IoT devices. My study DeepIoT proposes a particularly effective

deep learning compression algorithm that can directly compress the structures of commonly

used deep neural networks [3]. DeepIoT compresses neural network structures into smaller

dense matrices (instead of large sparse matrices) by finding the minimum number of non-

redundant hidden elements, while keeping the performance of IoT applications almost the

same. Importantly, it does so using an approach that obtains a global view of parameter

redundancies with reinforcement learning, which is shown to produce superior compression.

My recent study FastDeepIoT further reveals that changing neural network size (or FLOPs)
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does not proportionally affect the neural network execution time [4]. Rather, extreme run-

time nonlinearities exist over the network configuration space. FastDeepIoT automatically

uncovers the non-linear relation between neural network structure and execution time, then

exploits that understanding to find network configurations that further significantly improve

the trade-off between execution time and accuracy on IoT devices.

Third, although IoT devices can generate a great amount of data, labeling data for learn-

ing purposes is time-consuming. One must teach sensing devices to recognize objects and

concepts without the benefit of (many) examples, where ground truth values for such ob-

jects and concepts are given. My work on SenseGAN describes a semi-supervised deep

learning framework that can leverage abundant unlabelled sensing data thereby minimizing

the need for labelling effort [5]. SenseGAN designs an adversarial game among three compo-

nents; a classifier, generator, and discriminator that can mutually boost their performance,

which helps the classifier learn to predict correct labels from unlabelled data. SenseGAN

effectively handles multimodal sensing inputs and easily stabilizes the adversarial training

process, which helps improve the performance of the classifier. SenseGAN demonstrates the

possibility of learning with limited labeled (and mostly unlabeled) samples, while approach-

ing the performance of learning from fully labeled data, for future almost self-learning IoT

applications.

Fourth, other than effectiveness and efficiency, reliability assurances are also important

in cyber-physical and IoT applications. The need for offering such assurances calls for well-

calibrated estimation of uncertainty associated with learning results. My work RDeepSense

proposes the first deep learning model that provides well-calibrated uncertainty estimations

for resource-constrained IoT device [6, 7]. RDeepSense estimates uncertainty by adopting a

tunable proper scoring rule as the training criterion and dropout as the implicit Bayesian

approximation, which theoretically proves its correctness. To reduce the computational

complexity, RDeepSense employs efficient dropout and predictive distribution estimation for

inference operations.

Finally, besides exploiting the efficiency of neural network models, we also explore the

design of the execution environment of deep learning services. With the growing desire

to endow everyday IoT devices with advanced interaction capabilities, a increasingly large

proportion of machine intelligences will be offloaded to cloud or edge servers. As a com-

plement to system-efficient deep neural network, my work RTDeepIoT proposes the first

real-time scheduling pipeline for deep neural networks, maintaining the responsiveness of

deep learning services on cloud or edge servers while maximizing service quality. For the

same deep learning service with different input samples, the complexities for achieving the

same-quality inference are different. RTDeepIoT exploits such data-dependent variance by

3



setting neural network execution depth as another scheduling parameter. RTDeepIoT pro-

poses a run-time scheduler for the server accordingly and prove an approximation bound in

terms of application-perceived service utility. The service is implemented on representative

device hardware and tested with a machine vision application illustrating the advantages of

our scheme.

I elaborate on these core problems and their emerging solutions to help lay a foundation

for building IoT systems enriched with effective, efficient, and reliable deep learning models.
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CHAPTER 2: RESEARCH OVERVIEW

In this section, we provide an overview of the challenges and our solutions in the path

of building the effective, efficient, reliable, and label-efficient deep learning models in IoT

systems.

2.1 DEEP LEARNING FOR SENSOR-RICH IOT SYSTEMS

A key research challenge towards the realization of learning-enabled IoT systems lies in

the design of deep neural network structures and basic building blocks that can effectively

estimate outputs of interest from noisy time-series multi-sensor measurements.

Despite the large variety of embedded and mobile computing tasks in IoT contexts, one

can generally categorize them into two common subtypes: estimation tasks and classification

tasks, depending on whether prediction results are continuous or categorical, respectively.

The question therefore becomes whether or not a general neural network architecture exists

that can effectively learn the structure of models needed for estimation and classification

tasks from sensor data. Such a general deep learning neural network architecture would, in

principle, overcome disadvantages of today’s approaches that are based on analytical model

simplifications or the use of hand-crafted engineered features.

Traditionally, for estimation-oriented problems, such as tracking and localization, sensor

inputs are processed based on the physical models of the phenomena involved. Sensors

generate measurements of physical quantities such as acceleration and angular velocity. From

these measurements, other physical quantities are derived (such as displacement through

double integration of acceleration over time). However, measurements of commodity sensors

are noisy. The noise in measurements is nonlinear and may be correlated over time, which

makes it hard to model. It is therefore challenging to separate signal from noise, leading to

estimation errors and bias.

For classification-oriented problems, such as activity and context recognition, a typical

approach is to compute appropriate features derived from raw sensor data. These hand-

crafted features are then fed into a classifier for training. Designing good hand-crafted

features can be time consuming; it requires extensive experiments to generalize well to

diverse settings such as different sensor noise patterns and heterogeneous user behaviors.

A general deep learning framework can effectively address both of the aforementioned

challenges by automatically adapting the learned neural network to complex correlated noise

patterns, while at the same time converging on the extraction of maximally robust signal
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features that are most suited for the task at hand. Our recent framework, called DeepSense,

demonstrates a case for feasibility of such a general solution. DeepSense integrates convo-

lutional neural networks (CNN) and recurrent neural networks (RNN). Sensory inputs are

aligned and divided into time intervals for processing time-series data. For each interval,

DeepSense first applies an individual CNN to each sensor, encoding relevant local features

within the sensor’s data stream. Then, a (global) CNN is applied on the respective outputs

to model interactions among multiple sensors for effective sensor fusion. Next, an RNN is

applied to extract temporal patterns. At last, either an affine transformation or a softmax

output is used, depending on whether we want to model an estimation or a classification

task.

This architecture solves the general problem of learning multi-sensor fusion tasks for pur-

poses of estimation or classification from time-series data. For estimation-oriented prob-

lems, DeepSense learns the physical system and noise models to yield outputs from noisy

sensor data directly. The neural network acts as an approximate transfer function. For

classification-oriented problems, the neural network acts as an automatic feature extractor

encoding local, global, and temporal information. As a unified model, DeepSense can be

easily customized for a specific IoT application. The application designer needs only to de-

cide on the number of sensory inputs, input/output dimensions, and the training objective

function.

Motivated by the needs of IoT applications, this dissertation also presents a principled

way of designing deep neural networks that learn (from IoT sensing signals) features in-

spired by the fundamental properties of the underlying domain of measurements; namely,

properties of physical signals. We refer by IoT applications to those where sensors measure

some physical quantities, generating (possibly complex and multi-dimentional) time-series

data, typically reflecting some underlying physical process. The human brain (whose wiring

inspires the structure of conventional neural networks) extracts features well-suited for ex-

ternal perceptual tasks, which explains the great success of such networks at those tasks.

In contrast, the internal physical processes underlying sensor measurements in IoT systems

have properties (such as physical intertia, characteristics of wireless signal propagation, and

signal resonance) that depend more on signal frequency , motivating feature extraction in

the frequency domain. It is no coincidence that much of classical signal processing litera-

ture works by transforming time-series data to the frequency domain first. To help capture

signatures of internal physical processes the way a brain captures their externally perceived

properties, we develop a new neural network block designed specifically for learning in the

frequency domain.

The design of neural network structures greatly influences efficiency of signal modelling
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and ease of extraction of hidden patterns. Convolutional neural networks (CNNs) for image

recognition, for example, align perfectly with biological studies of the visual cortex [8] and

with domain knowledge in digital image processing [9]. We thus ask a fundamental question:

what structures are well-suited for the domain of physical sensor measurements, which we

henceforth call the domain of IoT?

Previous research on customizing deep learning models to the needs of IoT applica-

tions [1, 2, 10] mainly focused on designing neural network structures that integrate con-

ventional deep learning components, such as convolutional and recurrent layers, to extract

spatial and temporal properties of inputs. On the other hand, since the physics of mea-

sured phenomena are best expressed in the frequency domain, decades of research on signal

processing developed powerful techniques for time-frequency analysis of signals, including

motion sensor signals [11, 12], radio frequency signals [13, 14], acoustic signals [15, 16], and

visible light signals [17]. A popular transform that maps time-series measurements to the

frequency domain is the Short-Time Fourier Transform (STFT). We, therefore, propose a

new neural network model, namely, Short-Time Fourier Neural Networks (STFNets) that

operate directly in the frequency domain.

One potential approach for learning in the frequency domain might simply be to convert

sensing signals into the frequency domain first, and then apply conventional neural network

components, possibly extending them to support operations on complex-numbers so they can

represent frequency-domain quantities [18]. These approaches miss two key opportunities

for improvement, described below, that we take advantage of in this work. As a result, our

work leads to more accurate results, as shown in the evaluation section. The two reasons

that account for our improvements are as follows.

First, different from traditional neural networks, where the internal representations con-

stitute features with no physical meaning, the internal representations in STFNet leverage

frequency domain semantics that encode time and frequency information. All operations and

learnable parameters we propose are explicitly made compatible with the basic properties of

spectral data, and align corresponding frequency and time components. In our design, we

categorize spectral manipulations into three main types: filtering, convolution, and pooling.

Filtering refers to the general spectral filtering and global template matching operation;

convolution refers to the local motif detection including shift detection and local template

detection; and pooling refers to dimension reduction over the frequency domain. We then

design the spectral-compatible parameters and operating rules for these three manipulation

categories respectively, which have shown superior performance in evaluations compared to

the application of conventional neural networks in the domain of complex-numbers.

Second, transforming signals to the frequency domain is governed by the uncertainty prin-
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ciple [19]. The transformed representation cannot achieve both a high frequency resolution

and a high time resolution at the same time. In STFT, the time-frequency resolution is

controlled by the length of the sliding window (the length of the part of the time-series

being converted at a time). With a longer window, we can obtain a finer-grained frequency

representation. However, we then cannot achieve a time resolution smaller than the window

size. The uncertainty principle causes a dilemma in traditional time-frequency analysis. One

often needs to guess the best time-frequency resolution using trial and error. In STFNet, we

circumvent this dilemma by simultaneously computing multiple STFTs with different time-

frequency resolutions. The representations with different time-frequency resolutions are then

mutually enhanced in a data-driven manner. The network then automatically learns the best

resolution or resolutions, where the most useful features are present. STFNet defines a for-

mal way to extract features from multiple time-frequency transformations with the same set

of spectral-compatible operations and parameters, which greatly reduces model complexity

while improving accuracy.

Broadly speaking, the main contributions of STFNet to the general research landscape of

deep learning and IoT are twofold:

1. STFNet presents a principled way of designing neural networks that reveal the key

properties of physical processes underlying the sensing signals from the time-frequency

perspective.

2. STFNet unveils the benefit of incorporating domain-specific analytic modelling and

transformation techniques into the neural network design.

2.2 DEEP LEARNING FOR RESOURCE-CONSTRAINED IOT SYSTEMS

Resource constraints of IoT devices remain an important impediment towards deploying

deep learning models. A key question is therefore whether or not it is possible to compress

deep neural networks, such as those described in the previous section, to a point where they

fit comfortably on low-end embedded devives, enabling real-time “intelligent” interactions

with their environment. Can a unified approach compress commonly used deep learning

structures, including fully-connected, convolutional, and recurrent neural networks, as well as

their combinations? To what degree does the resulting compression reduce energy, execution

time, and memory needs in practice?

We prosed such a compression framework, called DeepIoT, that compresses commonly

used deep neural network structures for sensing applications through deciding the minimum
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number of elements in each layer. Previous illuminating studies on neural network com-

pression sparsify large dense parameter matrices into large sparse matrices [20]. In contrast,

DeepIoT minimizes the number of elements in each layer, which results in converting param-

eters into a set of small dense matrices. A small dense matrix does not require additional

storage for element indices and is efficiently optimized for processing. DeepIoT greatly re-

duces the effort of designing efficient neural structures for sensing applications by deciding

the number of elements in each layer in a manner informed by the topology of the neural

network.

DeepIoT borrows the idea of dropping hidden elements from a widely-used deep learning

regularization method called dropout . The dropout operation gives each hidden element a

dropout probability. During the dropout process, hidden elements can be pruned according

to their dropout probabilities. A “thinned” network structure can thus be generated. The

challenge is to set these dropout probabilities in an informed manner to generate the optimal

slim network structure that preserves the accuracy of sensing applications while maximally

reducing their resource consumption. An important purpose of DeepIoT is thus to find the

optimal dropout probability for each hidden element in the neural network.

To obtain the optimal dropout probabilities for nodes in the neural network, DeepIoT

exploits the network parameters themselves. From the perspective of model compression,

an element that is more redundant should have a higher probability to be dropped. A

contribution of DeepIoT lies in exploiting a novel compressor neural network to solve this

problem. It takes model parameters of each layer as input, learns parameter redundancies,

and generates the dropout probabilities accordingly. The compressor neural network is

optimized jointly with the original neural network to be compressed in an iterative manner

that tries to minimize the loss function of the original IoT application.

DeepIoT greatly reduces the size of model parameters, and speeds up the execution time by

getting rid of the inefficient sparse matrix multiplication. However, a formal way to explore

the neural network structure design and underlying system efficiency is still unclear. Most

manually designed time-efficient neural network structures for mobile devices use parameter

size or FLOPs (floating point operations) as the indicator of model execution time [21–

23]. Even the official TensorFlow website recommends to use the total number of floating

number operations (FLOPs) of neural networks “to make rule-of-thumb estimates of how

fast they will run on different devices”.1 However, in practice, counting the number of neural

network parameters and the total FLOPs does not lead to good estimates of execution time

because the relation between these predictors and execution time is not proportional. We

1https://www.tensorflow.org/versions/r1.5/mobile/optimizing
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therefore design FastDeepIoT [4], showing how a better understanding of the non-linear

relation between neural network structure and performance can further improve execution

time and energy consumption without impacting accuracy.

2.3 DEEP LEARNING FOR LABEL-LIMITED IOT SYSTEMS

Labelling data is always time-consuming. This laborious process has become one key

factor that hinders researchers and engineers from applying neural networks to sensing and

recognition tasks on IoT devices. IoT applications with a large amount of sensing data

therefore call for a semi -supervised deep learning framework to solve the challenge of limited

labelled data.

In attacking this problem, we propose SenseGAN, a semi-supervised deep learning frame-

work for IoT applications [5]. One core feature of SenseGAN is its capability to leverage unla-

belled data for training deep learning networks. SenseGAN can run on resource-constrained

IoT devices without additional time or energy consumption compared with its supervised

counterpart after training on workstations. Specifically, we adopt the idea of enabling a

discriminator to differentiate the joint data/label distributions between the real data/label

samples and the partially generated data/label samples made by either the generator or the

classifier. Such design can easily decouple the functionalities of discriminator and classifier

into two separate neural networks. For an IoT application, users can design their own neural

network structure for classification and replace the classifier in the SenseGAN framework

with users’ own design for the purpose of semi-supervised learning. The adversarial game

among the discriminator, generator, and classifier mutually enhances the performance of all

automatically.

In order to stabilize the semi-supervised learning process of SenseGAN, on one hand, we

use the Wasserstein metric, also called Earth mover’s distance, as the objective function

of the discriminator instead of the Jensen-Shannon divergence that may cause numerical

instability [24]. On the other hand, we use the Gumbel-Softmax function for categorical

representations to eliminate the non-differentiable problem of traditional categorical vari-

ables [25]. These two changes greatly improve training stability as well as the final pre-

dictive performance. In addition, we also design the specific neural network structures for

the discriminator and generator that are suitable for multimodal sensor inputs from IoT

applications.
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2.4 DEEP LEARNING FOR RELIABLE IOT SYSTEMS

The next problem concerns the reliability of deep learning models. In particular, how

to offer principled uncertainty estimates that can faithfully reflect the correctness of model

predictions? Principled uncertainty estimation is critical when deep learning is used to

support IoT application that require quantified reliability assurances.

Recent work focused on two related challenges. First, how to develop methods that provide

accurate uncertainty estimates in prediction results obtained from deep learning models?

Second, how to develop resource-efficient solutions for the uncertainty estimation problem,

such that they can be implemented on resource-limited IoT devices?

In this section, we introduce a simple, well-calibrated, and efficient uncertainty estima-

tion algorithm for a multilayer perceptron (MLP), called RDeepSense. RDeepSense enables

uncertainty estimation with theoretically proven error bounds for IoT applications.

There are only two steps in computing uncertainty for an arbitrary fully-connected neural

network. First, insert dropout operations to each fully-connected layer. Second, adopt a

proper scoring rule as the loss function and emit a distribution estimate instead of a point

estimate at the output layer.

Intuitively speaking, the dropout operations convert a traditional (deterministic) neural

network with parameters into a random Bayesian neural network model with random vari-

ables, which equates a neural network to a statistical model. Proper scoring rules (based on

the loss function) then measure the accuracy of probabilistic predictions.

The loss function has a large effect on the final results. Taking a regression problem as

an example, using the mean square error as the loss function tends to underestimate the

uncertainties. This is so because the training process is focused on predicting an accurate

mean value without concerning itself with the variance. At the same time, using negative

log-likelihood as the loss function tends to overestimate the uncertainties. The reason is

that, during the early phase of training a neural network with log-likelihood loss, it is rela-

tively hard to generate an accurate estimate of the mean. Increasing the value of estimated

variance can consistently decrease the negative log-likelihood loss with a high probability.

Therefore, the predicted uncertainty tends to favor a larger variance that overestimates the

true uncertainty.

RDeepSense applies a tuneable function, based on a weighted sum of negative log-likelihood

and mean square error, as the loss function. The underestimation effect of mean square er-

ror and the overestimation effect of negative log-likelihood are thus balanced by tuning the

weighted sum. RDeepSense was shown to generate well-calibrated uncertainty estimates.

Regarding resource efficiency, since RDeepSense emits a distribution estimate instead of
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a point estimate at the output layer, it can do the uncertainty estimation in a single run.

Compared with sampling-based and ensemble-based methods that require running a model

k times for k samples, RDeepSense results in much reduced execution time and energy

consumption.

2.5 DEEP LEARNING SERVICES ON EDGE/CLOUD

We envision a novel type of IoT services motivated by the proliferation of internetworked

embedded sensing devices (the “things”) and the desire to endow them with capabilities

to perform timely and intelligent interactions with their environment. Examples include

speech recognition, vision, and gesture understanding. The disparity between the resource-

constrained nature of such devices and the computational needs of the aforementioned in-

teractions suggest that data processing will be increasingly offloaded to external servers.

Today, precursors of such offloading include speech recognition for home controllers (e.g.,

Amazon Echo) and language translation for mobile phones, both done in the cloud. Soft

time-constraints arise from the need to ensure an appropriate interaction response time.

Future services will conceivably support multiple classes of service that differ in their server-

side latency guarantees. Note that, with the increasing popularity of edge computing , the

external server will likely move closer to the client. A business, such as a shopping mall, for

example, might host it’s own edge servers to satisfy the needs of its local embedded devices

(such as all the surveillance cameras). Hence, in the rest of this dissertation when referring

to “cloud”, we mean either cloud or edge.

The intelligent cloud services that offer farms of machine learning algorithms, such as

classifiers or predictors. For simplicity, we shall henceforth call them classifiers . These

algorithms can be trained with users’ data (or may come pre-trained) to do a myriad of

common recognition tasks based on visual inputs, speech, or gestures. Such services will en-

dow mobile and embedded devices with human-like capabilities, thereby revolutionizing our

interactions with the physical world. Recently, deep learning has emerged as the state-of-the-

art computational intelligence solution for a large spectrum of IoT applications [1]. Besides

breakthroughs in processing images and speech using deep learning techniques [26,27], spe-

cific neural network structures have been designed to fuse multiple sensing modularities and

extract temporal relationships [2]. The increasing number of studies on applying deep learn-

ing in the area of cyber-physical systems (CPS) and IoT [2, 3, 6], motivate us to consider a

deep-learning based back-end service; hence, the term deep intelligence (as a service). Since

timeliness of interactions is important and may be related to quality-of-service agreements

of different classes of users, a natural step from a real-time perspective is to investigate the
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challenges that the design of such services imposes on the underlying scheduler.

Consider a service that offers classifiers (or other machine learning algorithms) trained

using deep learning solutions. Such algorithms have a layered structure. External inputs,

such as images or sound clips, are applied to the first layer. The output of one layer is then

the input to the next. The total number of layers is called neural network depth. More

complex inputs need more layers, making the needed depth data-dependent . For example, in

an image recognition task, simple images (e.g., a picture of an empty blue sky) might need

a smaller number of layers to yield a high quality classification result compared to complex

cluttered images. Hence, the scheduled depth of neural network processing becomes another

scheduling parameter (besides end-to-end deadlines derived from desired interaction latency

for the given user class). Since task complexity is data dependent, this parameter is not

known a priori , making for an interesting problem.

A related challenge lies in the lack of well-defined output utility metrics and utility func-

tions to serve as a foundation for deciding on the best neural network depth. Indeed,

quantification of utility has always been a challenge in most research aiming at optimizing

application-perceived quality metrics. In contrast to assumptions made in much prior work

(e.g., on imprecise computations), our utility curve (that offers a measure of output quality

versus computation time) is in general not available ahead of time, because it depends on

individual input (e.g., image) complexity.

In this dissertation, we solve the utility metric challenge by proposing confidence in results

as the utility measure. Confidence in results is independent of what the results are used for,

making it a widely applicable metric across a variety of machine learning algorithms and

applications. The utility function can then be computed using solutions proposed in recent

literature that estimate probabilistic confidence in output results of deep learning systems

(e.g., confidence in correctness of classifer output) [6]. As we show in this chapter, the

computed confidence can be updated dynamically, as partial processing is done on inputs.

Hence, better estimates of “utility” are computed over time as processing occurs, leading to

refinement in utility-maximizing schedules. We then compute a bound on the efficacy of the

resulting schedule at global utility maximization subject to real-time deadline constraints.

To this end, we propose RTDeepIoT, the first real-time scheduling pipeline for deep neural

networks. RTDeepIoT consists of three main modules, each of which separates and solves

one major challenge.

• Confidence calibration: calibrates estimates of confidence in neural network outputs,

thus producing an unbiased estimator of output quality.

• Dynamic confidence curve update: dynamically refines utility curves to help estimate
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needed neural network depth.

• Scheduler: determines the depth and sequence of neural network executions that offers

an approximation bound on global utility maximization.

The uncertainty calibration module lays the foundation for the whole pipeline by pro-

ducing an unbiased output utility estimator. The dynamic confidence curve update module

refines confidence in outputs progressively, given input data and results of partial process-

ing. The scheduling algorithm determines the order and depth of neural network executions

based on the updated confidence curves and task deadlines using submodular maximization.

Furthermore, we design an efficient approximation of the scheduling algorithm to reduce

the scheduling overhead. We implement a user space scheduling framework to verify the

effectiveness of RTDeepIoT.
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CHAPTER 3: DEEP LEARNING FOR SENSOR-RICH IOT SYSTEMS

In this section, we will first introduce the technical details of the DeepSense framework,

a general deep learning architecture for multi-sensor fusion problem. Next, we present the

design of STFNet, a novel building block of neural networks for IoT sensing signals.
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Figure 3.1: Main architecture of the DeepSense framework.

3.1 THE DESIGN OF DEEPSENSE FRAMEWORK

We further separate our description of DeepSense framework into three parts. The

first two parts, convolutional layers and recurrent layers, are the main building blocks for

DeepSense, which are the same for all applications. The third part, the output layer, is the

specific layer for two different types of applications; regression-oriented and classification-

oriented.

For the rest of this dissertation, all vectors are denoted by bold lower-case letters (e.g., x

and y), while matrices and tensors are represented by bold upper-case letters (e.g., X and

Y). For a vector x, the jth element is denoted by x[j]. For a tensor X, the tth matrix along

the third axis is denoted by X··t, and other slicing denotations are defined similarly. We use

calligraphic letters to denote sets (e.g., X and Y). For any set X , |X | denotes the cardinality

of X .
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For a particular application, we assume that there are K different types of input sensors

S = {Sk}, k ∈ {1, · · · , K}. Take a sensor Sk as an example. It generates a series of

measurements over time. The measurements can be represented by a d(k) × n(k) matrix

V for measured values and n(k)-dimensional vector u for time stamps, where d(k) is the

dimension for each measurement (e.g., measurements along x, y, and z axes for motion

sensors) and n(k) is the number of measurements. We split the input measurements V and

u along time (i.e., columns for V) to generate a series of non-overlapping time intervals with

width τ , W = {(V(k)
t ,u

(k)
t )}, where |W| = T . Note that, τ can be different for different

intervals, but here we assume a fixed time interval width for succinctness. We then apply

Fourier transform to each element inW , because the frequency domain contains better local

frequency patterns that are independent of how time-series data is organized in the time

domain. We stack these outputs into a d(k) × 2f × T tensor X(k), where f is the dimension

of frequency domain containing f magnitude and phase pairs. The set of resulting tensors

for each sensor, X = {X(k)}, is the input of DeepSense.

As shown in Fig. 3.1, DeepSense has three major components; the convolutional layers,

the recurrent layers, and the output layer, stacked from bottom to top. In the following

subsections, we detail these components, respectively.

3.1.1 Convolutional Layers

The convolutional layers can be further separated into two parts: an individual convolu-

tional subnet for each input sensor tensor X(k), and a single merge convolutional subnet for

the output of K individual convolutional subnets’ outputs.

Since the structures of individual convolutional subnet for different sensors are the same,

we focus on one individual convolutional subnet with input tensor X(k). Recall that X(k) ∈
Rd(k)×2f×T , where d(k) is the sensor measurement dimension, f is the dimension of fre-

quency domain, and T is the number of time intervals. For each time interval t, the matrix

X
(k)
··t will be fed into a CNN architecture (with three layers). There are two kinds of fea-

tures/relationships embedded in X
(k)
··t we want to extract. The relationships within the

frequency domain and across sensor measurement dimension. The frequency domain usually

contains lots of local patterns in some neighbouring frequencies. And the interaction among

sensor measurement usually including all dimensions. Therefore, we first apply 2d filters

with shape (d(k), cov1) to X
(k)
··t to learn interaction among sensor measurement dimensions

and local patterns in frequency domain, with the output X
(k,1)
··t . Then we apply 1d filters

with shape (1, cov2) and (1, cov3) hierarchically to learn high-level relationships, X
(k,2)
··t and

X
(k,3)
··t .
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Then we flatten matrix X
(k,3)
··t into vector x

(k,3)
··t and concat all K vectors {x(k,3)

··t } into a

K-row matrix X
(3)
··t , which is the input of the merge convolutional subnet. The architecture

of the merge convolutional subnet is similar as the individual convolutional subnet. We first

apply 2d filters with shape (K, cov4) to learn the interactions among all K sensors, with

output X
(4)
··t , and then apply 1d filters with shape (1, cov5) and (1, cov6) hierarchically to

learn high-level relationships, X
(5)
··t and X

(6)
··t .

For each convolutional layer, DeepSense learns 64 filters, and uses ReLU as the activation

function. In addition, batch normalization [28] is applied at each layer to reduce internal

covariate shift. We do not use residual net structures [29], because we want to simplify the

network architecture for mobile applications. Then we flatten the final output X
(6)
··t into

vector x
(f)
··t ; concatenate x

(f)
··t and time interval width, [τ ], together into x

(c)
t as inputs of

recurrent layers.

3.1.2 Recurrent Layers

Recurrent neural networks are powerful architectures that can approximate function and

learn meaningful features for sequences. Original RNNs fall short of learning long-term

dependencies. Two extended models are Long Short-Term Memory (LSTM) [30] and Gated

Recurrent Unit (GRU) [31]. In this design, we choose GRU, because GRUs show similar

performance as LSTMs on various tasks [31], while having a more concise expression, which

reduces network complexity for mobile applications.

DeepSense chooses a stacked GRU structure (with two layers). Compared with standard

(single-layer) GRUs, stacked GRUs are a more efficient way to increase model capacity [32].

Compared to bidirectional GRUs [33], which contain two time flows from start to end and

from end to start, stacked GRUs can run incrementally, when there is a new time interval,

resulting in faster processing of stream data. In contrast, we cannot run bidirectional GRUs

until data from all time intervals are ready, which is infeasible for applications such as

tracking. We apply dropout to the connections between GRU layers [34] for regularization

and apply recurrent batch normalization [35] to reduce internal covariate shift among time

steps. Inputs {x(c)
t } for t = 1, · · · , T from previous convolutional layers are fed into stacked

GRU and generate outputs {x(r)
t } for t = 1, · · · , T as inputs of the final output layer.

3.1.3 Output Layer

The output of recurrent layer is a series of vectors {x(r)
t } for t = 1, · · · , T . For the

regression-oriented task, since the value of each element in vector x
(r)
t is within ±1, x

(r)
t
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encodes the output physical quantities at the end of time interval t. In the output layer,

we want to learn a dictionary Wout with a bias term bout to decode x
(r)
t into ŷt, such that

ŷt = Wout · x(r)
t + bout. Therefore, the output layer is a fully connected layer on the top of

each interval with sharing parameter Wout and bout.

For the classification task, x
(r)
t is the feature vector at time interval t. The output layer first

needs to compose {x(r)
t } into a fixed-length feature vector for further processing. Averaging

features over time is one choice. More sophisticated methods can also be applied to generate

the final feature, such as the attention model [36], which has illustrated its effectiveness in

various learning tasks recently. The attention model can be viewed as weighted averaging

of features over time, but the weights are learnt by neural networks through context. In

this design, we still use averaging features over time to generate the final feature, x(r) =

(
∑T

t=1 x
(r)
t )/T . Then we feed x(r) into a softmax layer to generate the predicted category

probability ŷ.

3.1.4 Task-Specific Customization

In this section, we first describe how to trivially customize the DeepSense framework to

different mobile sensing and computing tasks. Next, we instantiate the solution with three

specific tasks used in our evaluation.

General Customization Process

In general, we need to customize a few parameters of the main architecture of DeepSense,

shown in Section 3.1, for specific mobile sensing and computing tasks. Our general DeepSense

customization process is as follows:

1. Identify the number of sensor inputs, K. Pre-process the sensor inputs into a set of

tensors X = {X(k)} as input.

2. Identify the type of the task. Whether the application is regression or classification-

oriented. Select one of the two types of output layer according to the type of task.

3. Design a customized cost function or choose the default cost function (namely, mean

square error for regression-oriented tasks and cross-entropy error for classification-

oriented tasks).

Therefore, if opt for the default DeepSense configuration, we need only to set the number

of inputs, K, preprocess the input sensor measurements, and identify the type of task (i.e.,

regression-oriented versus classification-oriented).
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The pre-processing is simple, as stated at the beginning of Section 3.1. We just need to

align and chunk the sensor measurements, and apply Fourier transform to each sensor chunk.

For each sensor, we stack these frequency domain outputs into d(k) × 2f × T tensor X(k),

where d(k) is the sensor measurement dimension, f is the frequency domain dimension, and

T is the number of time intervals.

To identify the number of sensor inputs K, we usually set K to be the number of different

sensing modalities available. If there exist two or more sensors of the same modality (e.g., two

accelerometers or three microphones), we just treat them as one multi-dimensional sensor

and set its measurement dimension accordingly.

For the cost function, we can design our own cost function other than the default one. We

denote our DeepSense model as function F(·), and a single training sample pair as (X ,y).

We can express the cost function as:

L = `(F(X ),y) +
∑
j

λjPj (3.1)

where `(·) is the loss function, Pj is the penalty or regularization function, and λj controls

the importance of the penalty or regularization term.

Customize Mobile Sensing Tasks

In this section, we provide three instances of customizing DeepSense for specific IoT ap-

plications used in our evaluation.

Car tracking with motion sensors (CarTrack): In this task, we apply accelerator, gy-

roscope, and magnetometer to track the trajectory of a car without initial speed. Therefore,

according to our general customization process, carTrack is a regression-oriented problem

with K = 3 (i.e. accelerometer, gyroscope, and magnetometer). Instead of applying default

mean square error loss function, we design our own cost function according to Equation (3.1).

During the training step, the ground-truth 2D displacement of car in each time interval,

y, is obtained by GPS signal, where y[t] denotes the 2D displacement in time interval t. Yet

a problem is that GPS signal also contains noise. Training the DeepSense model to recover

the displacement obtained from by GPS signal will generate sub-optimal results. We apply

Kalman filter to covert displacement y[t] into a 2D Gaussian distribution Y[t](·) with mean

value y(t) in time interval t. Therefore, we use negative log likelihood as loss function `(·)
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with additional penalty terms:

L = − log
(
Y[t]

(
F(X )[t]

))
+

T∑
t=1

λ ·max
(
0, cos(θ)− Sc

(
F(X )[t],y

(t)
))

(3.2)

where Sc(·, ·) denotes the cosine similarity, the first term is the negative log likelihood loss

function, and the second term is a penalty term controlled by parameter λ. If the angle

between our predicted displacement F(X )[t] and y(t) is larger than a pre-defined margin

θ ∈ [0, π), the cost function will get a penalty. We introduce the penalty, because we find

that predicting a correct direction is more important during the experiment, as described in

Section 3.2.4.

Heterogeneous human activity recognition (HHAR): In this task, we perform leave-

one-user-out cross-validation on human activity recognition task with accelerometer and

gyroscope measurements. Therefore, according to our general customization process, HHAR

is a classification-oriented problem with K = 2 (accelerometer and gyroscope). We use the

default cross-entropy cost function as the training objective.

L = H(y,F(X )) (3.3)

where H(·, ·) is the cross entropy for two distributions.

User identification with motion analysis (UserID): In this task, we perform user

identification with biometric motion analysis. We classify users’ identity according to ac-

celerometer and gyroscope measurements. Similarly, according to our general customization

process, UserID is a classification-oriented problem with K = 2 (accelerometer and gyro-

scope). Similarly as above, we use the default cross-entropy cost function as the training

objective.

3.2 THE EVALUATION OF DEEPSENSE

In this section, we evaluate DeepSense on three mobile computing tasks. We first in-

troduce the experimental setup for each, including datasets and baseline algorithms. We

then evaluate the three tasks based on accuracy, energy, and latency. We use the abbre-

viations, CarTrack (Car Tracking with Motion Sensors), HHAR (Heterogeneous Human

Activity Recognition), and UserID (User Identification with Motion Analysis) for the three

tasks.
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3.2.1 Data Collection and Datasets

For the CarTrack task, we collect 17,500 phone-miles worth of driving data. Namely, we

collect around 500 driving hours in total using three cars fitted with 20 mobile phones in

the Urbana-Champaign area. Mobile devices include Nexus 5, Nexus 4, Galaxy Nexus, and

Nexus S. Each mobile device collects measures of accelerometer, gyroscope, magnetometer,

and GPS. GPS measurements are collected roughly every second. Collection rates of other

sensors are set to their highest frequency. After obtaining the raw sensor measurements, we

first segment them into data samples. Each data sample is a zero-speed to zero-speed journey,

where the start and termination are detected when there are at least three consecutive zero

GPS speed readings. Each data sample is then separated into time intervals according to

the GPS measurements. Hence, every GPS measurement is an indicator of the end of a

time interval. In addition, each data sample contains one additional time interval with zero

speed at the beginning. Furthermore, for each time interval, GPS latitude and longitude are

converted into map coordinates, where the origin of coordinates is the position at the first

time interval. Fourier transform is applied to each sensor measurement in each time interval

to obtain the frequency response of the three sensing axes. The frequency responses of the

accelerator, gyroscope, and magnetometer at each time interval are then composed into the

tensors as DeepSense inputs. At last, for evaluation purposes, we apply a Kalman filter to

coordinates obtained by the GPS signal, and generate the displacement distribution of each

time interval. The results serve as ground truth for training.

For both the HHAR and UserID tasks, we use the dataset collected by Allan et al. [11].

This dataset contains readings from two motion sensors (accelerometer and gyroscope).

Readings were recorded when users executed activities scripted in no specific order, while

carrying smartwatches and smartphones. The dataset contains 9 users, 6 activities (bik-

ing, sitting, standing, walking, climbStair-up, and climbStair-down), and 6 types of mobile

devices. For both tasks, accelerometer and gyroscope measurements are model inputs. How-

ever, for HHAR, activities are used as labels, and for UserID, users’ unique IDs are used as

labels. We segment raw measurements into 5-second samples. For DeepSense, each sample

is further divided into time intervals of length τ , as shown in Figure 3.1. We take τ = 0.25

s. Then we calculate the frequency response of sensors for each time interval, and compose

results from different time intervals into tensors as inputs.
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3.2.2 Evaluation Platforms

Our evaluation experiments are conducted on two platforms: Nexus 5 with Qualcomm

Snapdragon 800 SoC [37] and Intel Edison Compute Module [38]. We train DeepSense on

Desktop with GPU. And trained DeepSense models are run solely on mobile with CPU:

quad core 2.3 GHz Krait 400 CPU on Nexus 5 and dual-core 500 MHz Atom processor on

Intel Edison. Here, we do not exploit the additional computation power of mobile GPU and

DSP units [39].

3.2.3 Baseline Algorithms

We evaluate our DeepSense model and compare it with other competitive algorithms in

three tasks. There are three global baselines, which are the variants of DeepSense model

by removing one design component in the architecture. The other baselines are specifically

designed for each single task.

DS-singleGRU: This model replaces the 2-layer stacked GRU with a single-layer GRU

with larger dimension, while keeping the number of parameters. This baseline algorithm is

used to verify the efficiency of increasing model capacity by staked recurrent layer.

DS-noIndvConv: In this mode, there are no individual convolutional subnets for each

sensor input. Instead, we concatenate the input tensors along the first axis (i.e., the input

measurement dimension). Then, for each time interval, we have a single matrix as the input

to the merge convolutional subnet directly.

DS-noMergeConv: In this variant, there are no merge convolutional subnets at each

time interval. Instead, we flatten the output of each individual convolutional subnet and

concatenate them into a single vector as the input of the recurrent layers.

CarTrack Baseline:

• GPS: This is a baseline measurement that is specific to the CarTrack problem. It

can be viewed as the ground truth for the task, as we do not have other means of more

accurately acquiring cars’ locations. In the following experiments, we use the GPS module

in Qualcomm Snapdragon 800 SoC.

• Sensor-fusion: This is a sensor fusion based algorithm. It combines gyroscope and

accelerometer measurements to obtain the pure acceleration without gravity. It uses ac-

celerometer, gyroscope, and magnetometer to obtain absolute rotation calibration. Android

phones have proprietary solutions for these two functions [40]. The algorithm then applies

double integration on pure acceleration with absolute rotation calibration to obtain the

displacement.
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• eNav (w/o GPS): eNav is a map-aided car tracking algorithm [41]. This algorithm

constrains the car movement path according to a digital map, and computes moving distance

along the path using double integration of acceleration derived using principal component

analysis that removes gravity. The original eNav uses GPS when it believes that dead-

reckoning error is high. For fairness, we modified eNav to disable GPS.

HHAR Baselines:

• HAR-RF: This algorithm [11] selects all popular time-domain and frequency domain

features from [42] and ECDF features from [43], and uses random forest as classifier.

• HAR-SVM: Feature selection of this model is same as the HAR-RF model. But this

model uses support vector machine as classifier [11].

• HRA-RBM: This model is based on stacked restricted Boltzmann machines with fre-

quency domain representations as inputs [44].

• HRA-MultiRBM: For each sensor input, the model processes it with a single stacked

restricted Boltzmann machine. Then it uses another stacked restricted Boltzmann machine

to merge the results for activity recognition [45].

UserID Baselines:

• GaitID: This model extracts the gait template and identifies user through template

matching with support vector machine [46].

• IDNet: This model first extracts the gait template, and extracts template features

with convolutional neural networks. Then this model identifies user through support vector

machine and integrates multiple verifications with Wald’s probability ratio test [47].
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Figure 3.2: Histogram of Driving Distance.
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3.2.4 Car Tracking with Motion Sensors

We use 253 zero-speed to zero-speed car driving examples to evaluate the CarTrack task.

The histogram of evaluation data driving distance is illustrated in Fig. 3.2.

During the whole evaluation, we regard filtered GPS signal as ground truth. CarTrack is

a regression problem. Therefore, we first evaluate all algorithms with mean absolute error

(MAE) between predicted and true final displacements with 95% confidence interval except

for the eNav (w/o GPS) algorithm, which is a map-aided algorithm without tracking real

trajectories. The results about mean absolute errors are illustrated in the second column of

Table 3.1.

Compared with senior-fusion algorithm, DeepSense reduces the tracking error by an or-

der of magnitude, which is mainly attributed to its capability to learn the composition of

noise model and physical laws. Then, we compare our DeepSense model with three variants

as mentioned before. The results show the effectiveness of each designing component of

our DeepSense model. The individual and merge convolutional subnets learn the interac-

tion within and among sensor measurements respectively. The stacked recurrent structure

increases the capacity of model more efficiently. Removing any component will cause per-

formance degradation.

DeepSense model achieves 40.43±5.24m mean absolute error. This is almost equivalent to

half of traditional city blocks (80m× 80m), which means that, with the aid of map and the

assumption that car is driving on roads, DeepSense model has a high probability to provide

accurate trajectory tracking. Therefore, we propose a naive map-aided track method here.

For each segment of original tracking trajectory, we assign them to the most probable road

segment on map (i.e., the nearest road segment on map). We then compare the resulted

trajectory with ground truth. If all the trajectory segments are the same as the ground

truth, we regard it as a successful tracking trajectory. Finally, we compute the percentage

of successful tracking trajectories as accuracy. eNav (w/o GPS) is a map-aided algorithm,

so we directly compare the trajectory segments. Sensor-fusion algorithm generates tracking

errors that are comparable to driving distances, so we exclude it from the comparison. We

show the accuracy of map-aided versions of algorithms in the third column of Table 3.1.

DeepSense outperforms eNav (w/o GPS) with a large margin, because eNav (w/o GPS)

intrinsically depends on occasional on-demand GPS samples to correct tracking error.

We next examine how tracking performance is affected by driving distances. We first sort

all evaluation samples according to driving distance. Then we separate them into 10 groups

with 200m step size. Finally, we compute mean absolute error and accuracy of map-aided

track for DeepSense algorithm separately for each group. We illustrate the results in Fig. 3.3.
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Table 3.1: CarTrack Task Accuracy

MAE (meter) Map-Aided Accuracy
DeepSense 40.43± 5.24 93.8%

DS-SingleGRU 44.97± 5.80 90.2%
DS-noIndvConv 52.15± 6.24 88.3%

DS-noMergeConv 53.06± 6.59 87.5%
Sensor-fusion 606.59± 56.57

eNav (w/o GPS) 6.7%
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Figure 3.3: Performance over driving distance.

For the mean absolute error metric, driving longer distance generally results in large error,

but the error does not accumulate linearly over distance. There are mainly two reasons for

this phenomenon. On one hand, we observe that the error of our predicted trajectory usually

occurs during the beginning of the driving, where uncertainty in predicting driving direction

is the major cause. This is also the motivation that we add the penalty term for cost function

in Section 3.1.4. On the other hand, longer-driving cases in our testing samples are more

stable, because we extract the trajectory from zero-speed to zero-speed. For the map-aided

track, longer driving distances even yields slightly better accuracy. This is because long-

distance trajectory usually contains long trajectory segments, which can help to find the

ground truth on the map.
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Figure 3.4: Performance metrics of HHAR task. Figure 3.5: Confusion matrix of HHAR task.

3.2.5 Heterogeneous Human Activity Recognition

For HHAR task, we perform leave-one-user-out evaluation (i.e., leaving the whole data

from one user as testing data) on datasets consisting of 9 users, which are labelled from a

to i. We illustrate the result of evaluations according to three metrics: accuracy, macro F1

score, and micro F1 score with 95% confidence interval in Fig. 3.4.

The DeepSense based algorithms (including DeepSense and three variants) outperform

other baseline algorithms with a large margin (i.e., at least 10%). Compared with two hand-

crafted feature based algorithms HAR-RF and HAR-SVM, DeepSense model can automati-

cally extract more robust features, which generalize better to the user who does not appear

in the training set. Compared with a deep model, such as HAR-RBM and HAR-MultiRBM,

DeepSense model exploit local structures within sensor measurements, dependency along

time, and relationships among multiple sensors to generate better and more robust features

from data. Compared with three variants, DeepSense still achieves the best performance

(accuracy: 0.942 ± 0.032, macro F1: 0.931 ± 0.041, and micro F1: 0.942 ± 0.032). This

reinforces the effectiveness of our design components in DeepSense model.

Then we illustrate the confusion matrix of best-performing DeepSense model in Fig. 3.5.

Predicting Sit as Stand is the largest error. It is hard to classify these two, because two

activities should have similar motion sensor measurements by nature, especially when we

have no prior information about testing users. In addition, the algorithm has a minor error

about misclassification between ClimbStair-up and ClimbStair-down.

3.2.6 User Identification with Motion Analysis

This task focuses on user identification with biometric motion analysis. We evaluate all

algorithms with 10-fold cross validation. We illustrate the result of evaluations according to

26



Accuracy Macro F1 Micro F1
0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

(a) 5 time intervals: 1.25s
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(b) 20 time intervals: 5s

Figure 3.6: Performance metrics of UserID task.
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Figure 3.7: Accuracy over input measurement length of
UserID task.

Figure 3.8: Confusion matrix of
UserID task.

three metrics: accuracy, macro F1 score, and micro F1 score with 95% confidence interval

in Fig. 3.6. Specifically, Fig. 3.6a shows the results when algorithms observe 1.25 seconds of

evaluation data, Fig. 3.6b shows the results when algorithms observe 5 seconds of evaluation

data.

DeepSense and three variants outperform other baseline algorithms with a large margin

again (i.e. at least 20%). Compared with the template extraction and matching method,

GaitID, DeepSense model can automatically extract distinct features from data, which fit

well to not only walking but also all other kinds of activities. Compared with method that

first extracts templates and then apply neural network to learn features, IDNet, DeepSense

solves the whole task in the end-to-end fashion. We eliminate the manually processing

part and exploit local, global, and temporal relationships through our architecture, which

results better performance. In this task, although the performance of different variants is
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similar when observing data with 5 seconds, DeepSense still achieves the best performance

(accuracy: 0.997± 0.001, macro F1: 0.997± 0.001, and micro F1: 0.997± 0.001).

We further compare DeepSense with three variants by changing the number of evaluation

time intervals from 5 to 20, which corresponds to around 1 to 5 seconds. We compute the

accuracy for each case. The results illustrated in Fig. 3.7 suggest that DeepSense performs

better than all the other variants with a relatively large margin when algorithms observe

sensing data with shorter time. This indicates the effectiveness of design components in

DeepSense.

Then we illustrate the confusion matrix of best-performing DeepSense model when ob-

serving sensing data with 5 seconds in Fig. 3.8. It shows that the algorithm gives a pretty

good result. On average, only about two misclassifications appear during each testing.

3.2.7 Latency and Energy

Final, we examine the computation latency and energy consumption of DeepSense—

stereotypical deep learning models are traditionally power hungry and time consuming—we

illustrate, through our careful measurements in all three example application scenarios, the

feasibility of directly implementing and deploying DeepSense on mobile devices without any

additional optimization.
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Figure 3.9: Power and Latency of carTrack solutions on Nexus 5
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(b) Latency

Figure 3.10: Energy and Latency of HHAR solutions on Nexus 5

28



0

100

200

300

400

500

600

En
er

gy
 (m

J)

 

 

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

(a) Energy

0

20

40

60

80

100

La
te

nc
y 

(m
S)

 

 

DeepSense
DS−singleGRU
DS−noIndvConv
DS−noMergeConv
IDNet
GaitID

(b) Latency

Figure 3.11: Energy and Latency of UserID solutions on Nexus 5
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Figure 3.12: Power and Latency of carTrack solutions on Edison
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Figure 3.13: Energy and Latency of HHAR solutions on Edison
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(b) Latency

Figure 3.14: Energy and Latency of UserID solutions on Edison

Experiments measure the whole process on smart devices including reading the raw sensor

inputs and are conducted on two kinds of devices: Nexus 5 and Intel Edison. The energy

consumption of applications on Nexus 5 is measured by PowerTutor [48], while the energy

consumption of Intel Edison is measured by an external power monitor. The evaluations
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of energy and latency on Nexus 5 are shown in Fig. 3.9, 3.10, and 3.11, and Intel Edison

Fig. 3.12, 3.13, and 3.14. Since algorithms for carTrack are designed to report position

every second, we show the power consumption in Fig. 3.9a and 3.12a. Other two tasks are

not periodical tasks by nature. Therefore, we show the per-inference energy consumption

in Fig. 3.10a, 3.13a, 3.11a, and 3.14a. For experiments on Intel Edison, notice that we

measured total energy consumption, containing 419mW idle-mode power consumption.

For the carTrack task, all DeepSense based models consume a bit less energy compared

with 1-Hz GPS samplings on Nexus 5. The running times are measured in the order of

microsecond on both platforms, which meets the requirement of per-second measurement.

For the HHAR task, all DeepSense based models take moderate energy and low latency

to obtain one classification prediction on two platforms. An interesting observation is that

HHAR-RF, a random forest model, has a relatively longer latency. This is due to the fact

that random forest is an ensemble method, which involves combining a bag of individual

decision tree classifiers.

For the UserID task, except for the IDNet baseline, all other algorithms show similar

running time and energy consumption on two platforms. IDNet contains both a multi-stage

pre-processing process and a relative large CNN, which takes longer time and more energy

to compute in total.

3.3 THE DESIGN OF STFNET

We introduce the technical details of STFNets in this section. We separate the technical

descriptions into six parts. In the first two subsections, we provide some background followed

by a high-level overview of STFNet components, including (i) hologram interleaving, (ii)

STFNet-filtering, (iii) STFNet-convolution, and (iv) STFNet-pooling. In the remaining four

subsections, we describe the technical details of each of these components, respectively.

3.3.1 Background and STFNet Overview

IoT devices sample the physical environment generating time-series data. Discrete Fourier

Transform (DFT) is a mathematical tool that converts n samples over time (with a sampling

rate of fs) into a n components in frequency (with a frequency step of fs/n). The more

samples are selected, the finer the component resolution is in frequency. We can always

transform the whole sequence of data with DFT, achieving a high frequency resolution.

However, we then lose information on signal evolution over time, or the time resolution. In

order to solve this problem, Short-Time Fourier Transform (STFT) divides a longer time
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Figure 3.15: Data Flow within a Block of STFNet.

signal into shorter segments of equal length and computes DTF separately on each shorter

segment. By losing a certain degree of frequency resolution, STFT helps us regain the time

resolution to some extent. In choosing n, there arises a fundamental trade-off between the

attainable time and frequency resolution, which is called the uncertainty principle [19]. For

the purposes of learning to pedict a given output, the optimal trade-off point depends on

the time and frequency granularity of the features that best determine the outputs we want

to reproduce. The goal of STFNets is thus to learn frequency domain features that predict

the output, while at the same time learn the best resolution trade-off point in which the

relevant features exist.

The building component of an STFNet is an STFNet block , shown in Figure 3.16. An

STFNet block is the layer-equivalent in our neural network. The larger network would

normally be composed by stacking such layers. Within each block, STFNet circumvents

the uncertainty principle by computing multiple STFT representations with different time-

frequency resolutions. Collectively, these representations constitute what we call the time-

frequency hologram. And we call an individual time-frequency signal representation, a holo-

gram representation. They are then used to mutually enhance each other by filling-in missing

frequency components in each.

Candidate frequency-domain features are then extracted from these enhanced representa-

tions via general spectral manipulations that come in two flavors; filtering and convolution.

They represent global and local feature extraction operations, respectively. The filtering

and convolution kernels are learnable, making each STFNet layer a building block for spec-

31



tral manipulation and learnable frequency domain feature extraction. In addition, we also

design a new mechanism, called pooling, for frequency domain dimensionality reduction

in STFNets. Combinations of features extracted using the above manipulations then pass

through activation functions and an inverse STFT transform to produce (filtered) outputs in

the time domain. Stacking STFNet blocks has the effect of producing progressively sharper

(i.e., higher order) filters to shape the frequency domain signal representation into more

relevant and more fine-tuned features.

Figure 3.15 gives an example of an SFTNet block that accepts as input a two-dimensional

time-series signal (e.g., 2D accelerometers data). Each dimension is then transformed to

the frequency domain at four different resolutions using STFT, generating four different

internal nodes, each representing the signal in the frequency domain at a different time-

frequency resolution. Collectively, the four representations constitute the hologram. In the

next step, mutual enhancements are done improving all representations. Each representation

then undergoes a variety of alternative spectral manipulations (called “filters” in the figure).

Two filters are shown in the figure for each dimension. The parameters of these filters are

the weights multiplied by the frequency components of the filter input; a different weight

per component. These parameters are what the network learns. Note that, a filter does

not change the time-frequency resolution of the corresponding input. Filter outputs of

the same time-frequency resolution are then combined additively across all dimensions and

passed through a non-linear activation function (as in a conventional convolutional neural

network). An inverse STFT brings each such combined output back to the time domain,

where it becomes an input to the next STFNet block. (Alternatively, the inverse STFT

can be applied after dimension combination and before the activation function.) Hence,

each output time-series is produced by applying spectral manipulation and fusion to one

particular time-frequency resolution of all input time-series. Once converted to the time

domain, however, the output time-series can be resampled in the next block at different

time-frequency resolutions again. The goal of STFNet is to learn the weighting of different

frequency components within each filter in each block such that features are produced that

best predict final network outputs.

3.3.2 STFNet Block Fundamentals

In this subsection, we introduce the formulation of our design elements wihin each STFNet

block.

We denote the input to the STFNet block as X ∈ RT×D, where we divide the input D-

dimension time-series into windows of size T samples. We call T the signal length and D
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the signal dimension. Since we concentrate on sensing signals, we assume that all the raw

and internal-manipulated sensing signals are real-valued in time domain.

As shown in Figure 3.16, the input signal X first goes through a multi-resolution short-

time Fourier transform (Multi STFT), which is a compound traditional short-time Fourier

transform (STFT), to provide a time-frequency hologram of the signal. STFT breaks the

original signal up into chunks with a sliding window, where sliding window W(t) with width

τ only has non-zero values for 1 ≤ t ≤ τ . Then each chunk is Discrete-Fourier transformed,

STFT(τ,s)(X)[m,k,d] =

T∑
t=1

X[t,d] ·W(t− s ·m) · e−j
2πk
τ

(t−s·m), (3.4)

where STFT(τ,s)(X) ∈ CM×K×D denotes the short-time Fourier transform with width τ and

sliding step s. M denotes the number of time chunks. K denotes the number of frequency

components. Since input signal X is real-valued, its discrete Fourier transform is conjugate

symmetric. Therefore, we only need the bτ/2c + 1 frequency components to represent the

signal, i.e., K = bτ/2c+ 1. In this dissertation, we focus on sliding chunks with rectangular

window and no overlaps to simplify the formulation, i.e., s = τ and M = T/τ . We therefore

denote of short-time Fourier transform as STFT(τ)(X).
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The Multi STFT operation is composed of multiple short-time Fourier transform with

different window widths T = {τi}. The window width, τi, determines the time-frequency

resolution of STFT. Larger τi provides better frequency resolution, while smaller τi provides

better time resolution. In this dissertation, we set the window widths to be powers of 2, i.e.,

τi = 2pi ∀pi ∈ Z+
0 , to simplify the design later. We can thus formulate Multi STFT as:

Multi STFT(T ){X} =
{
STFT(τi)(X)

}
for 2pi ∈ T . (3.5)

Next, according to Figure 3.16, the multi-resolution representations go into the hologram

interleaving component, which enables the representations to compensate and balance their

time-frequency resolutions with each other. The technical details of the hologram interleav-

ing component are introduced in Section 3.3.3.

The STFNet block then manipulates multiple hologram representations with the same set

of spectral-compatible operation(s), including STFNet-filtering, STFNet-convolution, and

STFNet-pooling. We will formulate these operations in Section 3.3.4, 3.3.5, and 3.3.6, re-

spectively.

Finally, the STFNet block converts the manipulated frequency representations back into

the time domain with the inverse short-time Fourier transform. The resulting representations

from different views of the hologram are weighted and merged as the input “signal” for the

next block. Since we merge the output representations from different views of the hologram,

we reduce the output feature dimension of STFNet-filtering and convolution operations by

the factor of 1/|T | to prevent the dimension explosion.

3.3.3 STFNet Hologram Interleaving

In this subsection, we introduce the formulation of hologram interleaving. Due to the

Fourier uncertainty principle, the representations in time-frequency hologram either have

high time resolution or high frequency resolution. The hologram interleaving tires to use

representations with high time resolution to instruct the representations with low time res-

olution to highlight the important components over time. This is done by two steps:

1. Revealing the mathematical relationship of aligned time-frequency components among

different representations in the time-frequency hologram.

2. Updating the original relationship in a data-driven manner through neural-network

attention components.

We start from the definition of time-frequency hologram, generated by Multi STFT defined

in (3.5). Note that, the window width set T is defined as {2pi}, ∀pi ∈ Z+
0 . Without loss of
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Figure 3.17: The design of hologram interleaving.

generality, an illustration of multi-resolution short-time Fourier transformed representations

with input signal having length 16 and signal dimension 3 as well as T = {4, 8, 16} are

illustrated in Figure 3.17.

In order to find out the relationship of aligned time-frequency components, we start with

the frequency-component dimension. Since different representations only change the window

width τi of STFT but not the sampling frequency fs of input signal, these frequency com-

ponents represent frequencies from 0 to fs/2 (Nyquist frequency) with step fs/τi. Then we

can first obtain the relationship of frequency ranging steps among different representations,

∀pi > pj ,
fs/τj
fs/τi

= 2pi−pj ∈ Z+
0 . (3.6)

Therefore, a low frequency-resolution representation (with window width 2pj) can find

their frequency-equivalent counterparts for every 2pi−pj frequency components in a high

frequency-resolution representation (with window width 2pi). The upper part of Figure 3.17

provides a simple illustration of such relationship. In the following analysis, we will use the

original index k and corresponding frequency k ·fs/τi interchangeably to recall the frequency

component from the time-frequency hologram STFT(τ)(X)[m,k,d].

Next, we analyze the relationship over the time-chunk dimension, when two represen-

tations have frequency-equivalent components. Note that time chunks in STFT(τ)(X) are

generated by sliding rectangular window without overlap. Based on (3.4), for representations

having window widths τi = 2pi and τj = 2pj (pi > pj),
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STFT(τi)(X)[m,2pi−pj k,d] =

2pi (m+1)∑
t=2pim+1

X[t,d] · e−j
2π2

pi−pj k
2pi

(t−m·2pi ),

=

2pi−pj (m+1)−1∑
mj=2pi−pjm

2pj (mj+1)∑
t=mj+1

X[t,d] · e
−j 2πk

2
pj

(t−m·2pj )
,

=

2pi−pj (m+1)−1∑
mj=2pi−pjm

STFT(τj)(X)[mj ,k,d].

(3.7)

Therefore, given the equivalent frequency component, a time component in low time-

resolution representation (with window width 2pi) is the sum of 2pi−pj aligned time compo-

nents of the high time-resolution representation (with window width 2pj). As a toy example

in Figure 3.17, the first row of the middle tensor is equal to the sum of first two rows of the

left tensor for frequencies 0, fs/4, and fs/2. The row of the right tensor is equal to the sum

of four rows of the left tensor for frequencies 0, fs/4, and fs/2. The row of the right tensor

is equal to the sum of two rows of the middle tensor for frequencies fs/8 and 3fs/8, etc.

According to the analysis above, the high frequency-resolution representations lose their

fine-grained time resolutions at certain frequencies by summing the corresponding frequency

components up over a range of time. However, the high time-resolution representations

preserve these information.

The idea of hologram interleaving is to replace the sum operation in high frequency-

resolution representation with a weighted merge operation to highlight the important in-

formation over time. For a certain frequency component, the weight of merging is learnt

through the most fine-grained information preserved in the time-frequency hologram. In

this dissertation, we implement the weighted merge operation as a simple attention module.

For a merging input z ∈ CS×1, where S is the number of elements to be merged, the merge

operation is formulated as:

a = softmax(|Wmz|),

y = S × aᵀz,
(3.8)

where |·| is the piece-wise magnitude operation for complex-number vector; and Wm ∈ CS×S

is the learnable weight matrix. Notice that the final merged result is rescaled by the factor

S to imitate the “sum” property of Fourier transform.

3.3.4 STFNet-Filtering Operation

Starting from this subsection, we will introduce our three spectral-compatible operations

in STFNet. In each subsection, the introduction includes two main parts: 1) the basic
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Figure 3.18: The STFNet-filtering operation.

formulation of proposed spectral-compatible operation, and 2) extending a single operation

to multi-resolution data.

Spectral filtering is a widely-used operation in time-frequency analysis. The STFNet-

filtering operation replaces the traditional manually designed spectral filter with a learn-

able weight that can update during the training process. Although the spectral filtering is

equivalent to the time-domain convolution according to convolution theorem 1, the filtering

operation helps to handle the multi-resolution time-frequency analysis, and facilitates the

parameterization and modelling. We denote the input tensor as X ∈ CM×K×D, where M is

the number of time chunk, K frequency component number, and D input feature dimension.

The STFNet-filtering operation is formulated as:

Y[m,k,·] = X[m,k,·]Wf [k,·,·], (3.9)

where Wf ∈ CK×D×O is the learnable weight matrix, O the output feature dimension, and

Y ∈ CM×K×O the output representation.

The function of STFNet-filtering operation is providing a set of learnable global frequency

template matchings over the time. However, it is not straightforward to extend the matching

operation to the representations with different time-frequency resolutions. Although we can

create multiple Wf with different frequency resolutions K, it can introduce unnecessary

complexity and redundancy.

STFNet-filtering solves this problem by interpolating the frequency components in weight

matrix. As we mentioned in Section 3.3.3, data in hologram with different frequency reso-

lutions have the same frequency range (from 0 to fs/2) but different frequency steps (fs/τ).

Therefore, STFNet-filtering operation only has one weight matrix Wf with K = bτ/2c+ 1

frequency components. When the operation input has K ′ = bτ ′/2c + 1 frequency compo-

1https://en.wikipedia.org/wiki/Convolution_theorem
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nents with K ′ < K, we can subsample the frequency components in Wf . When K ′ > K,

we interpolate the frequency components of Wf . STFNet provides two kind of interpolation

methods: 1) linear interpolation and 2) spectral interpolation.

The linear interpolation generates the missing frequency components in extended weight

matrix W′
f ∈ CK′×D×O from the two neighbouring frequency components in Wf :

kl =
⌊
k′
τ

τ ′

⌋
kr = kl + 1,

W′
f [k′,·,·] = Wf [kl,·,·]

(
kr − k′

τ

τ ′

)
+ Wf [kr,·,·]

(
k′
τ

τ ′
− kl

)
.

(3.10)

The spectral interpolation utilizes the relationship between discrete-time Fourier transform

(DTFT) and discrete Fourier transform (DFT). For a time-limited signal (with length τ),

DTFT regards it as a infinite-length data with zeros outside the time-limited range, while

DFT regards it as a τ -periodic data. As a result, DTFT generates a continuous function

over the frequency domain, while DFT generates a discrete function. Therefore, DFT can

be regarded as a sampling of DTFT with step fs/τ . In order to increase the frequency

resolution of Wf , we can increase the sampling step from fs/τ to fs/τ
′, which is called

spectral interpolation. Spectral interpolation can be done through zero padding in the time

domain [19],

W′
f [·,d,o] = DFT

(
ZeroPadτ ′−τIDFT

(
Wf [·,d,o]

))
, (3.11)

where ZeroPadt denotes padding t zeros at the end of sequence, and IDFT(·) denotes the

inverse discrete Fourier transform. Please note that, if we pad infinite zeros to the IDFT

result, then DFT turns into DTFT. An simple illustration of STFNet-filtering operation is

shown in Figure 3.18.

3.3.5 STFNet-Convolution Operation

In this subsection, we introduce our design of STFNet-convolution operation. Other

than filtering operation that handles global pattern matching, we still need the convolution

operation to deal with local motifs in the frequency domain. We denote the input tensor as

X ∈ CM×K×D, where M is the number of time chunk, K number of frequency component,

and D input feature dimension. The convolution operation involves two steps: 1) padding

the input data, and 2) convolving with kernel weight matrix Wc ∈ C1×S×D×O, where S is

the kernel size along the frequency axis and O is still the output feature dimension.

Without the padding step, the output of convolution operation will shrink the number

of frequency components, which may break the underlying structure and information in
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Figure 3.19: The STFNet-convolution operation with dilated configuration.

the frequency domain. Therefore, we need to pad extra “frequency component” to keep

the shape of output tensor unchanged compared to that of the input data. In the deep

learning research, padding zeros is a common practice. Zero padding is reasonable for inputs

such as images and signal in the time domain, meaning no additional information in the

padding range. However, padding zero-valued frequency component introduces additional

information in the frequency domain.

Therefore, STFNet-convolution operation proposes the spectral padding for time-frequency

analysis. According to the definition of DFT, transformed data is periodic within the fre-

quency domain. In addition, if the original signal is real-valued, then the transformed data

is conjugate symmetric within each period. Previously, we cut the number of frequency

components of a τ -length signal to K = bτ/2c + 1 for reducing the redundancy. In the

spectral padding, we add these frequency components back according to the rule

X[·,τ−k,·] = X[·,−k,·] = X∗[·,k,·], (3.12)

where X∗ denotes complex conjugation. In addition, the number of padding before and after

the input tensor is same as the previous padding techniques.

Then we can define the basic convolution operation in STFNet

Y = SpectralPad(X) ~ Wc, (3.13)

where SpectralPad(·) denotes our spectral padding operation, and ~ denotes the convolu-

tion operation.

Next, we discuss the way to share the kernel weight matrix Wc with multi-resolution data.

Other than interpolating the kernel weight matrix as shown in (3.10) and (3.11), we propose
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Figure 3.20: The low-pass STFNet-pooling operation.

another solution for the STFNet-convolution operation. The convolution operation concerns

more about the pattern of relative positions on the frequency domain. Therefore, instead of

providing additional kernel details on fine-grained frequency resolution, we can just ensure

that the convolution kernel is applied with the same frequency spacing on representations

with different frequency resolutions. Such idea can be implemented with the dilated convo-

lution [49]. If Wc is applied to a input tensor with K = bτ/2c + 1 frequency components,

for a input tensor with K ′ = bτ ′/2c+ 1 frequency components (τ ′ > τ), the dilated rate r is

set to τ ′/τ − 1. An simple illustration of STFNet-convolution with dilated configuration is

shown in Figure 3.19.

3.3.6 STFNet-Pooling Operation

In order to provide a dimension reduction method for sensing series within STNet, we

introduce the STFNet-pooling operation. STFNet-pooling truncates the spectral informa-

tion over time with a pre-defined frequency pattern. As a widely-used processing technique,

filtering zeroes unwanted frequency components in the signal. Various filtering techniques

have been designed, including low-pass filtering, high-pass filtering, and band-pass filtering,

which serve as templates for our STFNet-pooling. Instead of zeroing unwanted frequency

components, STFNet-pooling removes unwanted components and then concatenates the left

pieces. For applications with domain knowledge about signal-to-noise ratio over the fre-

quency domain, specific pooling strategy can be designed. In this dissertation, we focus on

low-pass STFNet-pooling as an illustrative example.

To extend the STFNet-pooling operation to multiple resolutions and preserving spectral

information, we make sure that all representations have the same cut-off frequency according

to their own frequency resolutions. A simple example of low-pass STFNet-pooling operation

is shown in Figure 3.20. We can see that our three tensors are truncated according to the

same cut-off frequency, fs/4.
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3.4 THE EVALUATION OF STFNET

In this section, we evaluate the STFNet with diverse sensing modularities. We focus

on the device-based and device-free human activity recognitions with motion sensors (ac-

celerometer and gyroscope), WiFi, ultrasound, and visible light. We first introduce the

experimental setting, including data collection and baseline algorithms. Next, we show the

performance metrics of leave-one-user-out evaluation of human activity recognition with dif-

ferent modularities. Finally, we analyze the effectiveness of STFNet through several ablation

studies.

3.4.1 Experimental Settings

In this subsection, we first introduce detailed information of the dataset we used or

collected for each evaluation task. Then we specify the way to test the performance of

evaluation task.

Motion Sensor: In this experiment, we recognize human activity with motion sensors

on smart devices. We use the dataset collected by Allan et al. [11]. This dataset contains

readings from two motion sensors (accelerometer and gyroscope). Readings were recorded

when users executed activities scripted in no specific order, while carrying smartwatches

and smartphones. The dataset contains 9 volunteers, 6 activities (biking, sitting, standing,

walking, climbStair-up, and climbStair-down). The raw data of two sensor readings with

sampling rate that approximates to 100Hz. We align two sensor readings, linear interpolate

two readings by 100Hz, and segment them into non-overlapping data samples with time

interval 5.12s. Therefore, each data sample is a 512 × 6 matrix, where both accelerometer

and gyroscope have readings on x, y, and z axis.

WiFi: In this experiment, we make use of Channel State Information (CSI) to analyze

human activities. CSI refers to the known channel properties of a communication link, which

can be affected by the presence of humans and their activities. We employ 11 volunteers

(including both men and women) as the subjects and collect CSI data from 6 different rooms

in two different buildings. In particular, we build a WiFi infrastructure, which includes

a transmitter (a wireless router) and two receivers. We choose to use the Intel Wireless

Link 5300 NIC to collect the CSI data, and the transmission rate is set to 200 packets per

second. We use the tool to report CSI values of 30 OFDM subcarriers [50]. The experiment

contains 6 activities (wiping the whiteboard, walking, moving a suitcase, rotating the chair.

sitting, as well as standing up and sitting down). We linearly interpolate the CSI data

with a uniform sampling period, and down-sample the measurements into 100Hz. Then we
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segment the down-sampled CSI data into non-overlapping data samples with time interval

5.12s. Therefore, each data sample is a 512× 30 matrix, where each CSI measurement has

readings from 30 subcarriers.

Ultrasound: In this experiment, we conduct human activity recognition based on ultra-

sound. We employ 12 volunteers (including both men and women) as the subjects to conduct

the 6 different activities (wiping the whiteboard, walking, moving a suitcase, rotating the

chair, sitting, as well as standing up and sitting down). The activity data are collected from

6 different rooms in two different buildings. The transmitter is an iPad on which an ultra-

sound generator app is installed, and it can emit an ultrasound signal of approximately 19

KHz. The receiver is a smartphone and we use the installed recorder app to collect the sound

waves. We demodulate the received signal with carrier frequency 19KHz, and down-sample

the measurement into 100Hz. Then we segment the down-sampled ultrasound data into

non-overlapping data samples with time interval 5.12s. Therefore, each sample is a 512× 1

matrix.

Visible light: In this experiment, we capture the human activity in the visible light

system. We build an optical system using photoresistors to capture the in-air body gesture,

which can detect the illuminance change (lux) caused by the body interaction. Specifically,

we employ the cadmiumsulfide (CdS) cells, which are basically resistors that change their

resistive value in ohms depending on the amount of light which is shining onto the squiggly

face. In the experiment, there are three light conditions (natural mode, warm mode, and

cool mode) and 4 hand gestures (drawing an anticlockwise circle, drawing a clockwise circle,

drawing a cross, and shaking hand side to side). We employ 6 volunteers (including both

men and women) as the subjects and each of them performs 20 trials of every gesture under

a given lighting condition. We linearly interpolate and down-sample the measurements into

25Hz. Then we segment the data into non-overlapping data samples with time interval 5.12s.

Therefore, each sample is a 128× 6 matrix, where each measurement contains readings from

6 CdS cells.

Testing: In the whole evaluation, to illustrate the generalization ability of STFNet and

other baseline models, we perform leave-one-user-out cross validation for every task. For

each time, we choose the data from one user as testing data with the left as training data.

We then compare the performance of models according to their accuracy and F1 score with

95% confidence interval.
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Table 3.2: Illustration of models with two sensor inputs.

STFNet-Filter/Conv DeepSense/ComplexNet

Sensor Data 1 Sensor Data 2
Chunked Chunked

Sensor Data 1 Sensor Data 2

STFNet1-1 STFNet1-2 Conv Layer1-1 Conv Layer1-2

STFNet2-1 STFNet2-2 Conv Layer2-1 Conv Layer2-2

STFNet3-1 STFNet3-2 Conv Layer3-1 Conv Layer3-2

STFNet-pooling Max pooling

STFNet4 Conv Layer4

STFNet5 Conv Layer5

STFNet6 Conv Layer6

Averaging GRU

Softmax Softmax

3.4.2 Models in Comparison

In order to evaluate, when compared to conventional deep learning components (i.e.,

convolutional and recurrent layers), whether our proposed STFNet component is better at

decoding information and extracting features from sensing inputs, we substitute components

in the state-of-the-art neural network structure for IoT applications with STFNet. In the

whole evaluation, we choose DeepSense as the state-of-the-art structure, which has shown

signifiant improvements on various sensing tasks [2]. The illustration of structures of five

comparing models with two sensor inputs are shown in Table 3.2. Detailed information of

our comparing models are listed as follows,

1. STFNet-Filter: This model integrates the proposed STFNet component and the

DeepSense structure. Within the STFNet component, we use the STFNet-filtering

operation designed in Section 3.3.4. The intuition of DeepSense structure is to first

perform local processing within each sensor and then perform global sensor fusion over

multiple sensors. In this model, we replace all convolutional layers used in local/global

sensor data processing with our time-frequency analyzing component, STFNet. Since

our model has already incorporated time-domain analysis within the STFNet compo-

nent through multi-resolution processing, we replace the Gated Recurrent Units (GRU)

with simple feature averaging time at last.

2. STFNet-Conv: This model is almost the same as the STFNet-Filter, except that

we use the STFNet-convolution operation designed in Section 3.3.5.

3. DeepSense-Freq: This model is the original DeepSense [2]. It divides the input

sensing data into chunks, and processes each chunk with DFT. It treats the real and
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imagery parts of discrete Fourier transformed time chunks as the additional feature

dimensions. This is the state-of-the-art deep learning model for sensing data modelling

and IoT applications.

4. DeepSense-Time: This model is almost the same as the DeepSense-Freq, except

that it directly takes the chunked raw sensing data without DFT as input.

5. ComplexNet: This model is a complex-value neural network [18] that can operate on

complex-value inputs. Instead of using simple CNN and RNN structure as originally

proposed [18], we cheat in their favor by using the DeepSense structure, which improves

the performance in all tasks. The network inputs are chunked sensing data with DFT.

3.4.3 Effectiveness

In this section, we discuss about the effectiveness of our proposed STFNet based on

extensive experiments and diverse sensing modalities, compared with other state-of-the-art

deep learning models.

As we mentioned in Section 3.4.1, all models are evaluated through leave-one-user-out

cross validation with accuracy and F1 score accompanied by the 95% confidence interval.

STFNet-based models (STFNet-Filter and STFNet-Conv) take a sliding window set for

multi-resolution short-time Fourier transform. We choose the set to be {16, 32, 64, 128}
for activity recognition with motion sensors, WiFi, and ultrasound; and choose set to be

{8, 16, 32, 64} for activity recognition with visible light. DeepSense-based models (DeepSense-

Freq and DeepSense-Time) need a sliding window for chunking input signals. In the evalua-

tion, we cheat in their favor by choosing the best-performing window size from {8, 16, 32, 64, 128}
according to the accuracy metric. In addition, we consistently configure STFNet-filtering op-

eration with linear interpolation, and STFNet-convolution operation with spectral padding.

We will show further evaluations on multi-resolution operations and the effects of diverse

operation settings in Section 3.4.4.

Motion Sensors

For device-based activity recognition with motion sensors, there are 9 users. The accu-

racy and F1 score with the 95% confidence interval for leave-one-user-out cross validation

are illustrated in Figure 3.21. STFNet based models, i.e., STFNet-Filter and STFNet-

Conv, outperform all other baseline models with a large margin. The confidence interval

lower bound of STNet-Filter and STFNet-Conv is even better than the confidence interval
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Figure 3.21: The accuracy and F1 score with 95% confidence interval for motion sensors.
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Figure 3.22: The accuracy and F1 score with 95% confidence interval for WiFi.

upper bound of DeepSense-Freq and DeepSense-Time. STFNet-Filter performs better than

STFNet-Conv in this experiment, indicating that different activities have distinct global pro-

filing patterns with motion sensor readings in the frequency domain, even among different

users. STFNet-Filter is able to learn the accurate global frequency profiling, which makes

it the top-performance model in this task. In addition, compared to ComplexNet, STFNet

based models show clear improvements. Therefore, using just complex-value neural network

for sensing signal is far from enough. The multi-resolution processing and operations that

are spectral-compatible are all crucial designs.
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Figure 3.23: The accuracy and F1 score with 95% confidence interval for Ultrasound.
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Figure 3.24: The accuracy and F1 score with 95% confidence interval for Visible light.

WiFi

For device-free activity recognition with WiFi signal, there are 11 users. The accuracy

and F1 score with the 95% confidence interval for leave-one-user-out cross validation are

illustrated in Figure 3.22. STFNet based models still outperform all others with a clear

margin, illustrating the effectiveness of principled design of STFNet from time-frequency

perspective. DeepSense-Freq outperforms DeepSense-Time in this experiment, which means

that even having time-frequency transformation as pre-processing can help. The complex-

value network, ComplexNet, performs worse than its real-value counterpart, DeepSense-Freq.

This indicates that blindly processing time-frequency representations without preserving

their physical meanings can even hurt the final performance. STNet-Conv performs better
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than STNet-Filter in the WiFi experiment, indicating that local shiftings in the frequency

domain are more representative for diverse activities profiled with WiFi CSI.

Ultrasound

There are 12 users in device-free activity recognition with ultrasound experiment. The

accuracy and F1 score with the 95% confidence interval for leave-one-user-out cross validation

are illustrated in Figure 3.23. STFNet based models still significantly outperforms all other

baselines. An interesting observation is that ComplexNet performs even worse than both

DeepSense-Freq and DeepSene-Time, which again validates the importance of designing

neural networks for sensing signal with multi-resolution processing as well as preserving the

time and frequency information.

Visible Light

There are 6 users in the experiment of device-free activity recognition with visible light.

The accuracy and F1 score with the 95% confidence interval are illustrated in Figure 3.24.

Except for the DeepSense-Time, all other models can can achieve an accuracy of approx-

imately 90% or higher. STFNet based models still do the best. There is no significant

difference between STFNet-Filter and STFNet-Conv, which indicates that measured visible

light readings have quite clean representations in the frequency domain.

3.4.4 Ablation Studies

In the previous section, we illustrate the performance of STFNet compared to other state-

of-the-art baselines. In this section, we focus mainly on the STFNet design. We conduct

several ablation studies by deleting one designing feature from STFNet at a time.

Multi-Resolution v.s. Single-Resolution

First, we validate the effectiveness of our design of multi-resolution processing in STFNet

block. As shown in Figure 3.16, this includes multi-resolution STFT, hologram interleav-

ing, and weights sharing techniques in STFNet-Filtering and STFNet-Convolution oper-

ations. In this experiment, we add two more baseline models, STFNet-Single-Filter and

STFNet-Single-Conv, generated by deleting the multi-resolution processing in STFNet-Filter

and STFNet-Conv respectively. These two models pick the best-performing window size
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(a) Accuracy with 95% confidence interval.
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Figure 3.25: Multi-Resolution v.s. Single-Resolution

from {8, 16, 32, 64, 128} according to the accuracy metric. The results for all four tasks

are illustrated in Figure 3.25, where DeepSense-Freq severs as a decent performance low-

bound. The design of multi-resolution processing significantly impacts the performance of

STFNet. STFNet-Single-Filter and STFNet-Single-Conv show clear performance degrada-

tion compared to their multi-resolution counterparts. In addition, STFNet-Single-Filter and

STFNet-Single-Conv still consistently outperform DeepSense-Freq with a clear margin. This

is because our other designed operations, including STFNet-Filtering, STFNet-Convolution,

STFNet-Pooling still facilitate the learning in time-frequency domain.
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Figure 3.26: Spectral Padding v.s. Zero Padding

Spectral Padding v.s. Zero Padding

Next, we validate our design of spectral padding in the STFNet-Convolution operation as

shown in Figure 3.19. In this experiment, we add a new baseline algorithm, STFNet-Conv-

zPad, by replacing spectral padding with traditional zero padding in the STFNet-Conv. The

accuracy and F1 score of all four tasks are shown in Figure 3.26. Here, DeepSense-Freq is

still treated as a performance low-bound. By comparing STFNet-Conv-zPad and STFNet-

Conv, we can see that spectral padding consistently helps improving the model performance.

In most cases, the improvement is limited. However, in the case of visible light, spectral

padding significantly improves both accuracy and F1 score. Therefore, designing neural
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Figure 3.27: Linear Interpolation v.s. Spectral Interpolation

network by preserving the time-frequency semantics of sensing signal is an important rule

to follow.

Linear Interpolation v.s. Spectral Interpolation

Then, we compare our two designs of weight interpolation method in the STFNet-Filtering

operation, linear interpolation and spectral interpolation, as shown in Figure 3.18. The

STFNet-Filter defined in Section 3.4.2 uses linear interpolation, so we rename it as STFNet-

Filter-LinearInpt in this experiment. We add a new baseline model called STFNet-Filter-
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Figure 3.28: STFNet Pooling v.s. Mean/Max Pooling

SpectralInpt by using spectral interpolation instead of linear interpolation in STFNet-Filter.

The results of all four tasks are illustrated in Figure 3.27. In general, the performance of two

design choices are almost the same. At most of time, linear interpolation performs slightly

better. In addition, since the implementation of linear interpolation is easier, we recommend

using it to improve the time efficiency.

STFNet Pooling v.s. Mean/Max Pooling

Finally, we validate our design of STFNet-Pooling (low-pass deisgn) as shown in Fig-

ure 3.20. In this experiment, we add two new baseline algorithms, STFNet-Filter-mPad
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and STFNet-Conv-mPad, by replacing STFNet-Pooling in STFNet-Filter and STFNet-Conv

with traditional max/mean pooling in the time domain (through choosing the one has bet-

ter accuracy). The results are illustrated in Figure 3.28. In all settings, STFNet-Pooling

shows better performance. In some cases, the improvement are significant. We believe that

STFNet-Pooling can achieve even better performance if given the detailed signal-to-noise

ratio over the frequency domain for each specific sensor. Then we can employ other pooling

strategies instead of the low-pass design.
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CHAPTER 4: DEEP LEARNING FOR RESOURCE-CONSTRAINED IOT
SYSTEMS

In this section, we first introduce the technical details of the DeeoIoT framework, a neural

network structure compression framework for resource-constrained IoT systems. Then, we

present the design of FastDeepIoT, a framework for understanding and minimizing neural

network execution time on mobile and embedded devices.

Dropout Layer2

Dropout Layer1
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eter2
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Fully-Connected2
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Fully-Connected3

RNN

RNN

Compressor Neural Network

Original Neural Network

DeepIoT

W(2)

W(1)

p(2)

p(1)

Figure 4.1: Overall DeepIoT system framework. Orange boxes represent dropout operations.
Green boxes represent parameters of the original neural network.

4.1 THE DESIGN OF DEEPIOT FRAMEWORK

Without loss of generality, before introducing the technical details, we first use an ex-

ample of compressing a 3-layer fully-connected neural network structure to illustrate the

overall pipeline of DeepIoT. The detailed illustration is shown in Figure 4.1. The basic

steps of compressing neural network structures for sensing applications with DeepIoT can

be summarized as follows.

1. Insert operations that randomly zeroing out hidden elements with probabilities p(l)

called dropout (red boxes in Figure 4.1) into internal layers of the original neural

network. The internal layers exclude input layers and output layers that have the

fixed dimension for a sensing application. This step will be detailed in Section 4.1.1.
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2. Construct the compressor neural network. It takes the weight matrices W(l) (green

boxes in Figure 4.1) from the layers to be compressed in the original neural network

as inputs, learns and shares the parameter redundancies among different layers, and

generates optimal dropout probabilities p(l), which is then fed back to the dropout

operations in the original neural network. This step will be detailed in Section 4.1.2.

3. Iteratively optimize the compressor neural network and the original neural network

with the compressor-critic framework. The compressor neural network is optimized

to produce better dropout probabilities that can generate a more efficient network

structure for the original neural network. The original neural network is optimized to

achieve a better performance with the more efficient structure for a sensing application.

This step will be detailed in Section 4.1.3.

4.1.1 Dropout Operations in the Original Neural Network

Dropout is commonly used as a regularization method that prevents feature co-adapting

and model overfitting. The term “dropout” refers to dropping out units (hidden and visible)

in a neural network. Since DeepIoT is a structure compression framework, we focus mainly

on dropping out hidden units. The definitions of hidden units are distinct in different types of

neural networks, and we will describe them in detail. The basic idea is that we regard neural

networks with dropout operations as bayesian neural networks with Bernoulli variational

distributions [51–53].

For the fully-connected neural networks, the fully-connected operation with dropout can

be formulated as

z
(l)
[j] ∼ Bernoulli(p

(l)
[j]),

W̃(l) = W(l)diag
(
z(l)
)
,

Y(l) = X(l)W̃(l) + b(l),

X(l+1) = f
(
Y(l)

)
.

(4.1)

Refer to (4.1). The notation l = 1, · · · , L is the layer number in the fully-connected neural

network. For any layer l, the weight matrix is denoted as W(l) ∈ Rd(l−1)×d(l) ; the bias vector

is denoted as b(l) ∈ Rd(l) ; and the input is denoted as X(l) ∈ R1×d(l−1)
. In addition, f(·) is a

nonlinear activation function.

As shown in (4.1), each hidden unit is controlled by a Bernoulli random variable. In the

original dropout method, the success probabilities of p
(l)
[j] can be set to the same constant p for

all hidden units [53], but DeepIoT uses the Bernoulli random variable with individual success
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probabilities for different hidden units in order to compress the neural network structure in

a finer granularity.

For the convolutional neural networks, the basic fully-connected operation is replaced by

the convolution operation [51]. However, the convolution can be reformulated as a linear

operation as shown in (4.1). For any layer l, we denote K(l) =
{
K

(l)
k

}
for k = 1, · · · , c(l) as

the set of convolutional neural network (CNN)’s kernels, where K
(l)
k ∈ Rh(l)×w(l)×c(l−1)

is the

kernel of CNN with height h(l), width w(l), and channel c(l−1). The input tensor of layer l is

denoted as X̂(l) ∈ Rĥ(l−1)×ŵ(l−1)×c(l−1)
with height ĥ(l−1), width ŵ(l−1), and channel c(l−1).

Next, we convert convolving the kernels with the input into performing matrix product.

We extract h(l) × w(l) × c(l−1) dimensional patches from the input X̂(l) with stride s and

vectorize them. Collect these vectorized n patches to be the rows of our new input represen-

tation X(l) ∈ Rn×(h(l)w(l)c(l−1)). The vectorized kernels form the columns of the weight matrix

W(l) ∈ R(h(l)w(l)c(l−1))×c(l) .

With this transformation, dropout operations can be applied to convolutional neural net-

works according to (4.1). The composition of pooling and activation functions can be re-

garded as the nonlinear function f(·) in (4.1). Instead of dropping out hidden elements in

each layer, we drop out convolutional kernels in each layer. From the perspective of structure

compression, DeepIoT tries to prune the number of kernels used in the convolutional neural

networks.

For the recurrent neural network, we take a multi-layer Long Short Term Memory network

(LSTM) as an example. The LSTM operation with dropout can be formulated as

z
(l)
[j] ∼ Bernoulli(p

(l)
[j]),

i

f

o

g

 =


sigm

sigm

sigm

tanh

W(l)

(
h

(l−1)
t � z(l−1)

h
(l)
t−1 � z(l)

)
,

c
(l)
t = f � c

(l)
t−1 + i� g,

h
(l)
t = o� tanh

(
c

(l)
t

)
.

(4.2)

The notation l = 1, · · · , L is the layer number and t = 1, · · · , T is the step number in the

recurrent neural network. Element-wise multiplication is denoted by �. Operators sigm and

tanh denote sigmoid function and hyperbolic tangent respectively. The vector h
(l)
t ∈ Rn(l)

is the output of step t at layer l. The vector h
(0)
t = xt is the input for the whole neural

network at step t. The matrix W(l) ∈ R4n(l)×(n(l−1)+n(l)) is the weight matrix at layer l. We

let p
(0)
[j] = 1, since DeepIoT only drops hidden elements.

As shown in (4.2), DeepIoT uses the same vector of Bernoulli random variables z(l) to
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control the dropping operations among different time steps in each layer, while individual

Bernoulli random variables are used for different steps in the original LSTM dropout [34].

From the perspective of structure compression, DeepIoT tries to prune the number of hidden

dimensions used in LSTM blocks. The dropout operation of other recurrent neural network

architectures, such as Gated Recurrent Unit (GRU), can be designed similarly.

4.1.2 Compressor Neural Network

Now we introduce the architecture of the compressor neural network. A hidden element

in the original neural network that is connected to redundant model parameters should have

a higher probability to be dropped. Therefore we design the compressor neural network

to take the weights of an original neural network {W(l)} as inputs, learn the redundancies

among these weights, and generate dropout probabilities {p(l)} for hidden elements that can

be eventually used to compress the original neural network structure.

A straightforward solution is to train an individual fully-connected neural network for

each layer in the original neural network. However, since there are interconnections among

weight redundancies in different layers, DeepIoT uses a variant LSTM as the structure of

compressor to share and use the parameter redundancy information among different layers.

According to the description in Section 4.1.1, the weight in layer l of fully-connected,

convolutional, or recurrent neural network can all be represented as a single matrix W(l) ∈
Rd

(l)
f ×d

(l)
drop , where d

(l)
drop denotes the dimension that dropout operation is applied and d

(l)
f

denotes the dimension of features within each dropout element. Here, we need to notice

that the weight matrix of LSTM at layer l can be reshaped as W(l) ∈ R4·(n(l−1)+n(l))×n(l)
,

where d
(l)
drop = n(l) and d

(l)
f = 4 · (n(l−1) + n(l)). Hence, we take weights from the original

network layer by layer, W =
{
W(l)

}
with l = 1, · · · , L, as the input of the compressor

neural network. Instead of using a vanilla LSTM as the structure of compressor, we apply a
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variant l-step LSTM model shown as
vᵀ
i

vᵀ
f

vᵀ
o

vᵀ
g

 = W(l)
c W(l)W

(l)
i ,


ui

uf

uo

ug

 = Whhl−1,


i

f

o

g

 =


sigm

sigm

sigm

tanh




vi

vf

vo

vg

+


ui

uf

uo

ug


 ,

cl = f � cl−1 + i� g,

hl = o� tanh
(
cl
)
,

p(l) = pt = sigm
(
W(l)

o hl
)
,

z
(l)
[j] ∼ Bernoulli(p

(l)
[j]).

(4.3)

Refer to (4.3), we denote dc as the dimension of the variant LSTM hidden state. Then

W(l) ∈ Rd
(l)
f ×d

(l)
drop , W

(l)
c ∈ R4×d(l)f , W

(l)
i ∈ Rd

(l)
drop×dc , Wh ∈ R4dc×dc , and W

(l)
o ∈ Rd

(l)
drop×dc .

The set of training parameters of the compressor neural network is denoted as φ, where

φ =
{
W

(l)
c ,W

(l)
i ,Wh,W

(l)
o

}
. The matrix W(l) is the input matrix for step l in the compressor

neural network, which is also the lth layer’s parameters of the original neural network in (4.1)

or (4.2).

Compared with the vanilla LSTM that requires vectorizing the original weight matrix as

inputs, the variant LSTM model preserves the structure of original weight matrix and uses

less learning parameters to extract the redundancy information among the dropout elements.

In addition, W
(l)
c and W

(l)
i convert original weight matrix W(l) with different sizes into fixed-

size representations. The binary vector z(l) is the dropout mask and probability p(l) is the

dropout probabilities for the lth layer in the original neural network used in (4.1) and (4.2),

which is also the stochastic dropout policy learnt through observing the weight redundancies

of the original neural network.

4.1.3 Compressor-Critic Framework

In Section 4.1.1 and Section 4.1.2, we have introduced customized dropout operations

applied on the original neural networks that need to be compressed and the structure of

compressor neural network used to learn dropout probabilities based on parameter redundan-

cies. In this subsection, we will discuss the detail of compressor-critic compressing process.

It optimizes the original neural network and the compressor neural network in an iterative
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manner and enables the compressor neural network to gradually compress the original neural

network with soft deletion.

We denote the original neural network as FW(x|z), and we call it critic. It takes x as

inputs and generates predictions based on binary dropout masks z and model parameters

W that refer to a set of weights W = {W(l)} . We assume that FW(x|z) is a pre-trained

model. We denote the compressor neural network by z ∼ µφ(W). It takes the weights of

the critic as inputs and generates the probability distribution of the mask vector z based on

its own parameters φ. In order to optimize the compressor to drop out hidden elements in

the critic, DeepIoT follows the objective function

L = Ez∼µφ
[
L
(
y, FW(x|z)

)]
=

∑
z∼{0,1}|z|

µφ(W) · L
(
y, FW(x|z)

)
, (4.4)

where L(·, ·) is the objective function of the critic. The objective function can be interpreted

as the expected loss of the original neural network over the dropout probabilities generated

by the compressor.

DeepIoT optimizes the compressor and critic in an iterative manner. It reduces the ex-

pected loss as defined in (4.4) by applying the gradient descent method on compressor and

critic iteratively. However, since there are discrete sampling operations, i.e., dropout opera-

tions, within the computational graph, backpropagation is not directly applicable. Therefore

we apply an unbiased likelihood-ratio estimator to calculate the gradient over φ [54, 55]:

∇φL =
∑
z

∇φµφ(W) · L
(
y, FW(x|z)

)
=
∑
z

µφ(W)∇φ logµφ(W) · L
(
y, FW(x|z)

)
= Ez∼µφ

[
∇φ logµφ(W) · L

(
y, FW(x|z)

)]
.

(4.5)

Therefore an unbiased estimator for (4.5) can be

∇̂φL = ∇φ logµφ(W) · L
(
y, FW(x|z)

)
z ∼ µφ. (4.6)

The gradient over W(l) ∈ W is

∇W(l)L =
∑
z

µφ(W) · ∇W(l)L
(
y, FW(x|z)

)
= Ez∼µφ

[
∇W(l)L

(
y, FW(x|z)

)]
.

(4.7)

Similarly, an unbiased estimator for (4.7) can be

∇̂W(l)L = ∇W(l)L
(
y, FW(x|z)

)
z ∼ µφ. (4.8)
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Now we provide more details of ∇̂φL in (4.6). Although the estimator (4.6) is an unbiased

estimator, it tends to have a higher variance. A higher variance of estimator can make the

convergence slower. Therefore, variance reduction techniques are typically required to make

the optimization feasible in practice [56, 57].

One variance reduction technique is to subtract a constant c from learning signal L
(
y, FW(x|z)

)
in (4.5), which still keeps the expectation of the gradient unchanged [56]. Therefore, we keep

track of the moving average of the learning signal L
(
y, FW(x|z)

)
denoted by c, and subtract

c from the gradient estimator (4.6).

The other variance reduction technique is keeping track of the moving average of the signal

variance v, and divides the learning signal by max(1,
√
v) [57].

Combing the aforementioned two variance reduction techniques, the final estimator (4.6)

for gradient over φ becomes

∇̂φL = ∇φ logµφ(W) ·
L
(
y, FW(x|z)

)
− c

max(1,
√
v)

z ∼ µφ, (4.9)

where c and v are the moving average of mean and the moving average of variance of learning

signal L
(
y, FW(x|z)

)
respectively.

After introducing the basic optimization process in DeepIoT, now we are ready to deliver

the details of the compressing process. Compared with previous compressing algorithms

that gradually delete weights without rehabilitation [58], DeepIoT applies “soft” deletion

by gradually suppressing the dropout probabilities of hidden elements with a decay factor

γ ∈ (0, 1). During the experiments in Section 4.2, we set γ as the default value 0.5. Since

it is impossible to make the optimal compression decisions from the beginning, suppressing

the dropout probabilities instead of deleting the hidden elements directly can provide the

“deleted” hidden elements changes to recover. This less aggressive compression process

reduces the potential risk of irretrievable network damage and learning inefficiency.

During the compressing process, DeepIoT gradually increases the threshold of dropout

probability τ from 0 with step ∆. The hidden elements with dropout probability, p
(l)
[j] that

is less than the threshold τ will be given decay on dropout probability, i.e., p̂
(l)
[j] ← γ · p(l)

[j] .

Therefore, the operation in compressor (4.3) can be updated as

z
(l)
[j] ∼ Bernoulli

(
p

(l)
[j] · γ

1p
(l)
[j]
≤τ
)
, (4.10)

where 1 is the indicator function; γ ∈ (0, 1) is the decay factor; and τ ∈ [0, 1) is the threshold.

Since the operation of suppressing dropout probability with the pre-defined decay factor γ is

differentiable, we can still optimize the original and the compressor neural network through

(4.8) and (4.9). The compression process will stop when the percentage of left number of

parameters in FW(x|z) is smaller than a user-defined value α ∈ (0, 1).
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Algorithm 4.1. Compressor-predictor compressing process

1: Input: pre-trained predictor FW(x|z)
2: Initialize: compressor µφ(W) with parameter φ, moving average c, moving average of variance v
3: while µφ(W) is not convergent do
4: z ∼ µφ(W)
5: c← movingAvg

(
L
(
y, FW(x|z)

))
6: v ← movingVar

(
L
(
y, FW(x|z)

))
7: φ← φ− β · ∇φ logµφ(W) ·

(
L
(
y, FW(x|z)

)
− c
)
/max(1,

√
v)

8: end while
9: τ = 0

10: while the percentage of left number of parameters in FW(x|z) is larger than α do
11: z ∼ µφ(W)
12: c← movingAvg

(
L
(
y, FW(x|z)

))
13: v ← movingVar

(
L
(
y, FW(x|z)

))
14: φ← φ− β · ∇φ logµφ(W) ·

(
L
(
y, FW(x|z)

)
− c
)
/max(1,

√
v)

15: W ←W − β · ∇WL
(
y, FW(x|z)

)
16: update threshold τ : τ ← τ + ∆ for every T rounds
17: end while
18: ẑ

(l)
[j] = 1p

(l)
[j] > τ

19: while FW(x|ẑ) is not convergent do
20: W ←W − β · ∇WL

(
y, FW(x|ẑ)

)
21: end while

After the compression, DeepIoT fine-tunes the compressed model FW(x|ẑ), with a fixed

mask ẑ, which is decided by the previous threshold τ . Therefore the mask generation step

in (4.10) will be updated as

ẑ
(l)
[j] = 1p

(l)
[j] > τ. (4.11)

We summarize the compressor-critic compressing process of DeepIoT in Algorithm 4.1.

The algorithm consists of three parts. In the first part (Line 3 to Line 8), DeepIoT freezes

the critic FW(x|z) and initializes the compressor µφ(W) according to (4.9). In the second

part (Line 9 to Line 17), DeepIoT optimizes the critic and compressor jointly with the

gradients calculated by (4.8) and (4.9). At the same time, DeepIoT gradually compresses

the predictor by suppressing dropout probabilities according to (4.10). In the final part

(Line 18 to Line 21), DeepIoT fine-tunes the critic with the gradient calculated by (4.8) and

a deterministic dropout mask is generated according to (4.11). After these three phases,

DeepIoT generates a binary dropout mask ẑ and the fine-tuning parameters of the criticW .

With these two results, we can easily obtain the compressed model of the original neural

network.

4.2 THE EVALUATION OF DEEPIOT

In this section, we evaluate DeepIoT through three representative sensing tasks. The

first set is motivated by the prospect of enabling future smarter embedded “things” (phys-
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ical objects) to interact with humans using user-friendly modalities such as visual cues,

handwritten text, and speech commands, while the second evaluates human-centric context

sensing, such as human activity recognition and user identification. In the following sub-

sections, we first describe the comparison baselines that are current state of the art deep

neural network compression techniques. We then present the first set of experiments that

demonstrate accuracy and resource demands observed if IoT-style smart objects interacted

with users via natural human-centric modalities thanks to deep neural networks compressed,

for the resource-constrained hardware, with the help of our DeepIoT framework. Finally,

we present the second set of experiments that demonstrate accurancy and resource demands

when applying DeepIoT to compress deep neural networks trained for human-centric context

sensing applications.

4.2.1 Evaluation Platforms

Our hardware is based on Intel Edison computing platform [38]. The Intel Edison comput-

ing platform is powered by the Intel Atom SoC dual-core CPU at 500 MHz and is equipped

with 1GB memory and 4GB flash storage. For fairness, all neural network models are run

solely on CPU during experiments.

All the original neural networks for all sensing applications are trained on the workstation

with NVIDIA GeForce GTX Titan X. For all baseline algorithms mentioned in Section 4.2.2,

the compressing processes are also conducted on the workstation. The compressed models

are exported and loaded into the flash storage on Intel Edison for experiments.

We installed the Ubilinux operation system on Intel Edison computing platform [59]. Far

fairness, all compressed deep learning models are run through Theano [60] with only CPU de-

vice on Intel Edison. The matrix multiplication operations and sparse matrix multiplication

operations are optimized by BLAS and Sparse BLAS respectively during the implementa-

tion. No additional run-time optimization is applied for any compressed model and in all

experiments.

4.2.2 Baseline Algorithms

We compare DeepIoT with other three baseline algorithms:

1. DyNS: This is a magnitude-based network pruning algorithm [20]. The algorithm

prunes weights in convolutional kernels and fully-connected layer based on the magni-

tude. It retrains the network connections after each pruning step and has the ability
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to recover the pruned weights. For convolutional and fully-connected layers, DyNS

searches the optimal thresholds separately.

2. SparseSep: This is a sparse-coding and factorization based algorithm [61]. The

algorithm simplifies the fully-connected layer by finding the optimal code-book and

code based on a sparse coding technique. For the convolutional layer, the algorithm

compresses the model with matrix factorization methods. We greedily search for the

optimal code-book and factorizaiton number from the bottom to the top layer.

3. DyNS-Ext: The previous two algorithms mainly focus on compressing convolutional

and fully-connected layers. Therefore we further enhance and extend the magnitude-

based method used in DyNS to recurrent layers and call this algorithm DyNS-Ext.

Just like DeepIoT, DyNS-Ext can be applied to all commonly used deep network

modules, including fully-connected layers, convolutional layers, and recurrent layers.

If the network structure does not contain recurrent layers, we apply DyNS instead of

DyNS-Ext.

For magnitude-based pruning algorithms, DyNS and DyNS-Ext, hidden elements with zero

input connections or zero output connections will be pruned to further compress the network

structure. In addition, all models use 32-bit floats without any quantization.

Handwritten digits recognition with LeNet5

The first human interaction modality is recognizing handwritten text. In this experiment,

we consider a meaningful subset of that; namely recognizing handwritten digits from visual

inputs. An example application that uses this capability might be a smart wallet equipped

with a camera and a tip calculator. We use MNIST1 as our training and testing dataset.

The MNIST is a dataset of handwritten digits that is commonly used for training various

image processing systems. It has a training set of 60000 examples, and a test set of 10000

examples.

We test our algorithms and baselines on the LeNet-5 neural network model. The corre-

sponding network structure is shown in Table 4.1. Notice that we omit all the polling layers

in Table 4.1 for simplicity, because they do not contain training parameters.

The first column of Table 4.1 represents the network structure of LeNet-5, where “convX”

represents the convolutional layer and “fcY” represents the fully-connected layer. The second

column represents the number of hidden units or convolutional kernels we used in each layer.

1http://yann.lecun.com/exdb/mnist/
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Table 4.1: LeNet5 on MNIST dataset

Layer Hidden Units Params DeepIoT (Hidden Units/ Params) DyNS SparseSep

conv1 (5× 5) 20 0.5K 10 50.0% 24.2% 84%
conv2 (5× 5) 50 25K 20 20.0% 20.7% 91%

fc1 500 400K 10 0.8% 1.0% 78.75%
fc2 10 5K 10 2.0% 16.34% 70.28%

total 431K 1.98% 2.35% 72.39%

Test Error 0.85% 0.85% 0.85% 1.05%
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Figure 4.2: System performance tradeoff for LeNet5 on MNIST dataset

The third column represents the number of parameters used in each layer and in total. The

original LeNet-5 is trained and achieves an error rate of 0.85% in the test dataset.

We then apply DeepIoT and two other baseline algorithms, DyNS and SparseSep, to

compress LeNet-5. Note that, we do not use DyNS-Ext because the network does not

contain a recurrent layer. The network statistics of the compressed model are shown in

Table 4.1. DeepIoT is designed to prune the number of hidden units for a more efficient
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network structure. Therefore, we illustrate both the remaining number of hidden units

and the proportion of the remaining number of parameters in Table 4.1. Both DeepIoT

and DyNS can significantly compress the network without hurting the final performance.

SparseSep shows an acceptable drop of performance. This is because SparseSep is designed

without fine-tuning. It has the benefit of not fine-tuning the model, but it suffers the loss

in the final performance at the same time.

The detailed tradeoff between testing accuracy and memory consumption by the model is

illustrated in Fig 4.2a. We compress the original neural network with different compression

ratios and recode the final testing accuracy. In the zoom-in illustration, DeepIoT achieves

at least ×2 better tradeoff compared with the two baseline methods. This is mainly due to

two reasons. One is that the compressor neural network in DeepIoT obtains a global view

of parameter redundancies and is therefore better capable of eliminating them. The other is

that DeepIoT prunes the hidden units directly, which enables us to represent the compressed

model parameters with a small dense matrix instead of a large sparse matrix. The sparse

matrix consumes more memory for the indices of matrix elements. Algorithms such as DyNS

generate models represented by sparse matrices that cause larger memory consumption.

The evaluation results on execution time of compressed models on Intel Edison, are illus-

trated in Fig. 4.2b. We run each compressed model on Intel Edison for 5000 times and use

the mean value for generating the tradeoff curves.

DeepIoT still achieves the best tradeoff compared with other two baselines by a significant

margin. DeepIoT takes 14.2ms to make a single inference, which reduces execution time by

71.4% compared with the original network without loss of accuracy. However SparseSep takes

less execution time compared with DyNS at the cost of acceptable performance degradation

(around 0.2% degradation on test error). The main reason for this observation is that, even

though fully-connected layers occupy the most model parameters, most execution time is

used by the convolution operations. SparseSep uses a matrix factorization method to covert

the 2d convolutional kernel into two 1d convolutional kernels on two different dimensions.

Although this method makes low-rank assumption on convolutional kernel, it can speed up

convolution operations if the size of convolutional kernel is large (5× 5 in this experiment).

It can sometimes speed up the operation even when two 1d kernels have more parameters

in total compared with the original 2d kernel. However DyNS applies a magnitude-based

method that prunes most of the parameters in fully-connected layers. For convolutional

layers, DyNS does not reduce the number of convolutional operations effectively, and sparse

matrix multiplication is less efficient compared with regular matrix with the same number

of elements. DeepIoT directly reduces the number of convolutional kernels in each layer,

which reduces the number of operations in convolutional layers without making the low-
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rank assumption that can hurt the network performance.

The evaluation of energy consumption on Intel Edison is illustrated in Fig. 4.2c. For each

compressed model, we run it for 5000 times and measure the total energy consumption by a

power meter. Then, we calculate the expected energy consumption for one-time execution

and use the one-time energy consumption to generate the tradeoff curves in Fig. 4.2c.

Not surprisingly, DeepIoT still achieves the best tradeoff in the evaluation on energy

consumption by a significant margin. It reduces energy consumption by 73.7% compared

with the original network without loss of accuracy. Being similar as the evaluation on

execution time, energy consumption focuses more on the number of operations than the

model size. Therefore, SparseSep can take less energy consumption compared with DyNS

at the cost of acceptable loss on performance.

4.2.3 Image recognition with VGGNet

The task image recognition through low-resolution camera. During this experiment, we

use CIFAR102 as our training and testing dataset. The CIFAR-10 dataset consists of 60000

32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training

images and 10000 test images. It is a standard testing benchmark dataset for the image

recognition tasks. While not necessarily representative of seeing objects in the wild, it offers

a more controlled environment for an apples-to-apples comparison.

During this evaluation, we use the VGGNet structure as our original network structure. It

is a huge network with millions of parameters. VGGNet is chosen to show that DeepIoT is

able to compress relative deep and large network structure. The detailed structure is shown

Table 4.2.

In Table 4.2, we illustrate the detailed statistics of best compressed model that keeps the

original testing accuracy for three algorithms. We clearly see that DeepIoT beats the other

two baseline algorithms by a significant margin. This shows that the compressor in DeepIoT

can handle networks with relatively deep structure. The compressor uses a variant of the

LSTM architecture to share the redundancy information among different layers. Compared

with other baselines considering only local information within each layer, sharing the global

information among layers helps us learn about the parameter redundancy and compress the

network structure. In addition, we observe performance loss in the compressed network

generated by SparseSep. It is mainly due to the fact that SparseSep avoids the fine-tuning

step. This experiment shows that fine-tuning (Line 18 to Line 21 in Algorithm 4.1) is

important for model compression.

2https://www.kaggle.com/c/cifar-10
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Table 4.2: VGGNet on CIFAR-10 dataset

Layer Hidden Units Params DeepIoT (Hidden Units/ Params) DyNS SparseSep

conv1 (3× 3) 64 1.7K 27 42.2% 53.9% 93.1%
conv2 (3× 3) 64 36.9K 47 31.0% 40.1% 57.3%
conv3 (3× 3) 128 73.7K 53 30.4% 52.3% 85.1%
conv4 (3× 3) 128 147.5K 68 22.0% 67.0% 56.8%
conv5 (3× 3) 256 294.9K 104 21.6% 71.2% 85.1%
conv6 (3× 3) 256 589.8K 97 15.4% 65.0% 56.8%
conv7 (3× 3) 256 589.8K 89 13.2% 61.2% 56.8%
conv8 (3× 3) 512 1.179M 122 8.3% 36.5% 85.2%
conv9 (3× 3) 512 2.359M 95 4.4% 10.6% 56.8%
conv10 (3× 3) 512 2.359M 64 2.3% 3.9% 56.8%
conv11 (2× 2) 512 1.049M 128 3.1% 3.0% 85.2%
conv12 (2× 2) 512 1.049M 112 5.5% 1.7% 85.2%
conv13 (2× 2) 512 1.049M 149 6.4% 2.4% 85.2%

fc1 4096 2.097M 27 0.19% 2.2% 95.8%
fc2 4096 16.777M 371 0.06% 0.39% 135%
fc3 10 41K 10 9.1% 18.5% 90.2%

total 29.7M 2.44% 7.05% 112%

Test Accuracy 90.6% 90.6% 90.6% 87.1%
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Figure 4.3: System performance tradeoff for VGGNet on CIFAR-10 dataset
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Fig. 4.3a shows the tradeoff between testing accuracy and memory consumption for dif-

ferent models. DeepIoT achieves a better performance by even a larger margin, because

the model generated by DeepIoT can still be represented by a standard matrix, while other

methods that use a sparse matrix representation require more memory consumption.

Fig. 4.3b shows the tradeoff between testing accuracy and execution time for different

models. DeepIoT still achieves the best tradeoff. DeepIoT takes 82.2ms for a prediction,

which reduces 94.5% execution time without the loss of accuracy. DyNS uses less execution

time compared with SparseSep in this experiment. There are two reasons for this. One is

that VGGNet use smaller convolutional kernel compared with LeNet-5. Therefore factorizing

2d kernel into two 1d kernel helps less on reducing computation time. The other point is

that SparseSep fails to compress the original network into a small size while keeping the

original performance, because SparseSep avoids the fine-tuning.

Fig. 4.3c shows the tradeoff between testing accuracy and energy consumption for different

models. DeepIoT reduces energy consumption by 95.7% compared with the original VGGNet

without loss of accuracy. It greatly helps us to develop a long-standing application with deep

neural network in energy-constrained embedded devices.

4.2.4 Speech recognition with deep Bidirectional LSTM

The task is about speech. The sensing system can take the voices of users from the

microphone and automatically convert what users said into text. The previous experiment

focus on the network structure with convolutional layers and fully-connected layers. We

see how DeepIoT and the baseline algorithms work on the recurrent neural network in this

section.

In this experiment, we use LibriSpeech ASR corpus [62] as our training and testing dataset.

The LibriSpeech ASR corpus is a large-scale corpus of read English speech. It consists of

460-hour training data and 2-hour testing data.

We choose deep bidirectional LSTM as the original model [63] in this experiment. It takes

mel frequency cepstral coefficient (MFCC) features of voices as inputs, and uses two 5-layer

long short-term memory (LSTM) in both forward and backward direction. The output of

two LSTM are jointly used to predict the spoken text. The detailed network structure

is shown in the first column of Table 4.3, where “LSTMf” denotes the LSTM in forward

direction and “LSTMb” denotes the LSTM in backward direction.

Two baseline algorithms are not applicable to the recurrent neural network, so we com-

pared DeepIoT only with SyNS-Ext in this experiment. The word error rate (WER), defined

as the edit distance between the true word sequence and the most probable word sequence
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Table 4.3: Deep bidirectional LSTM on LibriSpeech ASR corpus

Layer Hidden Unit Params DeepIoT (Hidden Units/ Params) DyNS-Ext

LSTMf1 LSTMb1 512 512 1.090M 1.090M 55 20 10.74% 3.91% 34.9% 18.2%
LSTMf2 LSTMb2 512 512 2.097M 2.097M 192 71 4.03% 0.54% 37.2% 23.1%
LSTMf3 LSTMb3 512 512 2.097M 2.097M 240 76 17.58% 2.06% 43.1% 27.9%
LSTMf4 LSTMb4 512 512 2.097M 2.097M 258 81 23.62% 2.35% 52.3% 40.2%
LSTMf5 LSTMb5 512 512 2.097M 2.097M 294 90 28.93% 2.78% 72.6% 61.8%

fc1 29 59.3K 29 37.5% 69.0%
total 19.016M 9.98% 37.1%

Word error rate (WER) 9.31 9.20 9.62
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Figure 4.4: System performance tradeoff for deep bidirectional LSTM on LibriSpeech ASR corpus

predicted by the neural network, is used as the evaluation metric for this experiment.

We show the detailed statistics of best compressed model that keeps the original WER in

Table 4.3. DeepIoT achieves a significantly better compression rate compared with DyNS-

Ext, and the model generated by DeepIoT even has a little improvement on WER. However,

compared with the previous two examples on convolutional neural network, DeepIoT fails to
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compress the model to less than 5% of the original parameters in the recurrent neural network

case (still a 20-fold reduction though). The main reason is that compressing recurrent

networks needs to prune both the output dimension and the hidden dimension. It has been

shown that dropping hidden dimension can harm the network performance [34]. However

DeepIoT is still successful in compressing network to less than 10% of parameters.

Fig. 4.4a shows the tradeoff between word error rate and memory consumption by com-

pressed models. DeepIoT achieves around ×7 better tradeoff compared with magnitude-

based method, DyNS-Ext. This means compressing recurrent neural networks requires more

information about parameter redundancies within and among each layer. Compression using

only local information, such as magnitude information, will cause degradation in the final

performance.

Fig. 4.4b shows the tradeoff between word error rate and execution time. DeepIoT reduces

execution time by 86.4% without degradation on WER compared with the original network.

With the evaluation on Intel Edision, the original network requires 71.15 seconds in average

to recognize one human speak voice example with the average length of 7.43 seconds. The

compressed structure generated by DeepIoT reduces the average execution time to 9.68

seconds without performance loss, which improves responsiveness of human voice recognition.

Fig. 4.4c shows the tradeoff between word error rate and energy consumption. DeepIoT

reduces energy by 87% compared with the original network. It performs better than DyNS-

Ext by a large margin.

4.2.5 Supporting Human-Centric Context Sensing

In addition to experiments about supporting basic human-centric interaction modalities,

we evaluate DeepIoT on one human-centric context sensing application. We compress the

state-of-the-art deep learning model, DeepSense, [2] for these problems and evaluate the

accuracy and other system performance for the compressed networks. DeepSense contains

all commonly used modules, including convolutional, recurrent, and fully-connected layers,

which is also a good example to test the performance of compression algorithms on the

combination of different types of neural network modules.

The human-centric context sensing tasks we consider is heterogeneous human activity

recognition (HHAR). The HHAR task recognizes human activities with motion sensors,

accelerometer and gyroscope. “Heterogeneous” means that the task is focus on the general-

ization ability with human who has not appeared in the training set.

In this evaluation section, we use the dataset collected by Allan et al. [11]. This dataset

contains readings from two motion sensors (accelerometer and gyroscope). Readings were
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Table 4.4: Heterogeneous human activity recognition

Layer Hidden Unit Params DeepIoT (Hidden Units/ Params) DyNS-Ext DyNS SparseSep

conv1a conv1b (2× 9) 64 64 1.1K 1.1K 20 19 31.25% 29.69% 92% 95.7% 50.3% 60.0% 100% 100%
conv2a conv2b (1× 3) 64 64 12.3K 12.3K 20 14 9.76% 6.49% 70.1% 77.7% 25.3% 40.5% 114% 114%
conv3a conv3b (1× 3) 64 64 12.3K 12.3K 23 23 11.23% 7.86% 69.9% 66.2% 32.1% 35.4% 114% 114%

conv4 (2× 8) 64 65.5K 10 5.61% 40.3% 20.4% 53.7%
conv5 (1× 6) 64 24.6K 12 2.93% 27.2% 18.3% 100%
conv6 (1× 4) 64 16.4K 17 4.98% 24.6% 12.0% 100%

gru1 120 227.5K 27 5.8% 1.2% 100% 100%
gru2 120 86.4K 31 6.24% 3.6% 100% 100%
fc1 6 0.7K 6 25.83% 98.6% 99% 70%

total 472.5K 6.16% 17.1% 74.5% 95.3%

Test Accuracy 94.6% 94.7% 94.6% 94.6% 93.7%
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Figure 4.5: System performance tradeoff for heterogeneous human activity recognition

recorded when users execute activities scripted in no specific order, while carrying smart-

watches and smartphones. The dataset contains 9 users, 6 activities (biking, sitting, stand-

ing, walking, climbStairup, and climbStair-down), and 6 types of mobile devices.

The original network structure of DeepSense is shown in the first two columns of Table 4.12.

HHAR uses a unified neural network structure as introduced in Section 3. The structure

contains both convolutional and recurrent layers. Since SparseSep and DyNS are not directly
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applicable to recurrent layers, we keep the recurrent layers unchanged while using them. In

addition, we also compare DeepIoT with DyNS-Ext in this experiment.

Table 4.12 illustrates the statistics of final pruned network generated by four algorithms

that have no or acceptable degradation on testing accuracy. DeepIoT is the best-performing

algorithm considering the remaining number of network parameters. This is mainly due

to the design of compressor network and compressor-critic framework that jointly reduce

the redundancies among parameters while maintaining a global view across different layers.

DyNS and SparseSep are two algorithms that can be only applied to the fully-connected and

convolutional layers in the original structure. Therefore there exists a lower bound of the

left proportion of parameters, i.e., the number of parameters in recurrent layers. This lower

bound is around 66%.

The detailed tradeoffs between testing accuracy and memory consumption by the models

are illustrated in Fig. 4.5a. DeepIoT still achieves the best tradeoff for sensing applica-

tions. Other than the compressor neural network providing global parameter redundancies,

directly pruning hidden elements in each layer also enables DeepIoT to obtain more concise

representations in matrix form, which results in less memory consumption.

The tradeoffs between system execution time and testing accuracy are shown in Fig. 4.5b.

DeepIoT uses the least execution time when achieving the same testing accuracy compared

with three baselines. It takes 36.7ms for a single prediction, which reduces execution time

by around 71.4% without loss of accuracy. DyNS and DyNS-Ext achieve better performance

on time compared with SparseSep. As shown in Table 4.12, the original network uses 1-

d filters in its structure. The matrix factorization based kernel compressing method used

in SparseSep cannot help to reduce or even increase the parameter redundancies and the

number of operations involved. Therefore, there are constraints on the network structure

when applying matrix factorization based compression algorithm. In addition, SparseSep

cannot be applied to the recurrent layers in the network, which consumes a large proportion

of operations during running the neural network.

The tradeoffs between energy consumption and testing accuracy are shown in Fig. 4.5c.

DeepIoT is the best-performing algorithm for energy consumption. It reduces energy by

around 72.2% without loss of accuracy. Due to the aforementioned problem of SparseSep

on 1-d filter, redundant factorization causes more execution time and energy consumption

in the experiment.
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Table 4.5: Execution time of convolutional layers with 3× 3 kernel size, stride 1, same padding,
and 224× 224 input image size on the Nexus 5 phone.

in channel out channel FLOPs Time (ms)

CNN1 8 32 452.4 M 114.9

CNN2 32 8 452.4 M 300.2

CNN3 66 32 3732.3 M 908.3

CNN4 43 64 4863.3 M 751.7

4.3 THE DESIGN OF FASTDEEPIOT

In this section, we show how a better understanding of the non-linear relation between

neural network structure and performance can further improve execution time and energy

consumption without impacting accuracy.

4.3.1 Nonlinearities: Evidence and Exploitation

In practice, counting the number of neural network parameters and the total FLOPs does

not lead to good estimates of execution time because the relation between these predictors

and execution time is not proportional. On one hand, the fully-connected layer usually has

more parameters but takes much less time to run compared to the convolutional layer [64].

On the other hand, one can easily find examples, where increasing the total FLOPs does

not translate into added execution time. Caching effects, memory accesses, and compiler

optimizations complicate the translation. Table 4.5 shows that CNN2 takes around ×2.6 the

execution time of CNN1, while both have the same total FLOPs. Moreover, CNN3 takes

longer to run compared to CNN4 despite having fewer FLOPs. These observations indicate

that current rules-of-thumb for estimating neural network execution time are not the best

approximations.

FastDeepIoT answers two key questions to better parameterize neural network implemen-

tations for efficient execution on mobile and embedded platforms:

1. What are the main factors that affect the execution time of neural networks on mobile

and embedded devices?

2. How to guide existing structure compression algorithms to minimize the neural network

execution time properly?

FastDeepIoT consists of two main modules to tackle these two challenging problems, respec-

tively.

Profiling: Due to different code-level optimizations for different network structures within the

deep learning library, the execution time of neural network layers can be extremely nonlinear
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Figure 4.6: The non-linearity of neural network execution time over input/output channel.

over the structure configuration space. A simple illustration is shown in Figure 4.6, where we

plot the execution time of convolutional layers when changing the size of input and output

channels simultaneously. The plot reveals non-monotonic effects, featuring periodic dips in

execution time as network size increases.

A simple regression model over the entire space will thus not be a good approximation.

Instead, we propose a tree-structured linear regression model. Specifically, we automatically

detect key conditions at which linearity is violated and arrange them into a tree structure

that splits the overall modeling space into piecewise linear regions. Within each region

(tree branch), we use linear regression to convert input structure information into some

key explanatory variables, predictive of execution time. The splitting of the overall space

and the fitting of subspaces to predictive models are done jointly, which improves both

model interpretability and accuracy. The aforementioned modeling is done without specific

knowledge of underlying hardware and deep learning library.

Compression: Using the results of profiling, we then propose a compression steering module

that guides existing neural network structure compression methods to better minimize exe-

cution time. The execution time model leads compression algorithms to focus more on the

layer that takes longer to run instead of treating all layers equally or concentrating on inac-

curate total metrics. It is also better able at exploiting non-monotonicity of execution time

with respect to network structure size to reduce the former without hurting application-level

accuracy metrics.

4.3.2 Profiling Module

We separate this module into two parts. The first part generates diverse training struc-

tures for profiling. The second part builds an accurate and interpretable model predicting
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Table 4.6: The scope of our structure configuration for fully-connected (FC), convolutional
(CNN), and recurrent (RNN) layers.

Type Structure configuration scope

FC in dim ∈ [1, 4096] out dim ∈ [1, 4096]

CNN

in height ∈ [24, 225] in width ∈ [24, 225]
kernel height× kernel width ∈ {2× 2, 3× 3, 4× 4, 5× 5, 2× 3}

in channel ∈ [1, 256] out channel ∈ [1, 256]
padding ∈ {valid, same} stride ∈ {1, 2}

RNN
in dim ∈ [1, 512] out dim ∈ [1, 512]

step ∈ {8, 10, 15, 20}

the execution time of deep learning components for the corresponding structure information.

Neural Network Profiling

We introduce the basic system settings and the procedure of generating training structures

for profiling here.

FastDeepIoT utilizes TensorFlow benchmark tool [65] to profile the execution time of all

deep learning components on the target device. In order to make the profiling results fully

reflect the changes on the neural network structures, we fix the frequencies of phone CPUs

(processors) to be constants and stop all the power management services that can affect the

processor frequency on target devices, such as fixing mpdecision on Qualcomm chips.

The next step is to generate diverse neural network structures for time profiling. As a

deep learning component, such as a convolutional layer and recurrent layer, the combinations

of its structure design choices can form an extremely huge structure configuration space.

Therefore, we can only select a small proportion of structure configurations during our time

profiling. The scope of our structure configuration is shown in Table 4.6, from which the

network generation code chooses a random combination. Notice that we do not contain

the activation function as the profiling choice, because it only occupies around 1% ∼ 2%

execution time of a deep learning component through empirical observations. By eliminating

this insignificant configuration, i.e., activation function ∈ {ReLU,Tanh, sigmoid}, we can

save the number of profiling components by the factor of 3. Except for some pre-defined

cases, such as sigmoid activation function for gate outputs in recurrent layers, we set all

activation functions to be ReLU, which is one of the most widely used activation functions.

In addition, the order of deep learning components in the network has little impact on their

execution time empirically.

In our profiling module, for each target device, we profile around 120 neural networks

with about 1300 deep learning components in total. These time profiling results form a time
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Table 4.7: The definition of parameter and memory information for Fully-Connected layer (FC),
Convolutional layer (CNN), Gated Recurrent Unit (GRU), and Long Short Term Memory

(LSTM).

Type mem in mem out mem inter

FC in dim out dim 0

CNN
in height× in width× out height× out width× out height× out width× kernel height×

in channel out channel kernel width× in channel

GRU step× in dim step× out dim 3× step× out dim

LSTM 2× step× in dim 2× step× out dim 4× step× out dim

Type param size

FC in dim× out dim + out dim

CNN
kernel height× kernel width×
in channel× out channel +1

GRU
3× out dim×

(in dim + out dim + 1)

LSTM
4× out dim×

(in dim + out dim + 1)

profiling dataset, D = {Si, yi}, where Si is the structure configuration and yi the execution

time.

Execution Time Model Building

Due to the code-level optimization for different component configuration choices in the

deep learning library, execution-time non-linearity appears over the structure configuration

space as shown in Figure 4.6. The main challenge here is to build a model that can automat-

ically figure out the conditions that cause the execution-time non-linearity without specific

knowledge of underlying library and hardware.

In order to maintain both the accuracy and interpretability, we propose a tree-structure

linear regression model. The model can recursively partition the structure configuration

space such that the time profiling samples fitting the same linear relationship are grouped

together. The intuition behind this model is that the execution time of deep learning com-

ponent under each particular code-level optimization can be formulated with a linear re-

lationship given a set of well-designed explanatory variables. In addition, different deep

learning components, i.e., fully connected, convolutional, and recurrent layer, learn their

own execution time models.

Each time profiling data is composed of three elements. The feature vector f , used for
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identifying the condition that causes the execution-time non-linearity; the execution time y;

and the explanatory variable vector x, used for fitting the execution time y.

The basic idea of tree-structure linear regression is to find out the most significant condi-

tion causing the execution-time non-linearity within the current dataset recursively. These

conditions will form a binary tree structure. In order to figure out key conditions causing

the execution-time non-linearity, we take two conditioning functions into account.

1. Range condition C1(f [j], τ) := f [j] ≤ τ : identifies execution-time non-linearity caused

by cache and memory hit as well as specific implementation for a certain feature range.

2. Integer multiple condition C2(f [j], τ) := f [j] ≡ 0 (mod τ): identifies execution-time

non-linearity caused by loop unrolling, data alignment, and parallelized operations.

Assume that we are generating node m in the binary tree with dataset Dm. The model

creates a set of conditions {φ}. Each of them can partition the dataset into two subsets

D(l)
m (φ) and D(r)

m (φ). Each condition φ consists of three elements, φ = {f [j], τm, k}, where

k ∈ {1, 2} is the conditioning function type.

D(l)
m (φ) = Dm|Ck(xj , τm),

D(r)
m (φ) = DmnD(l)

m (φ).
(4.12)

Node m selects the most significant condition φ∗ by minimizing the impurity function

G(Dm, φ),

φ∗ = arg min
φ

G(Dm, φ), (4.13)

G(Dm, φ) =

∣∣D(l)
m (φ)

∣∣
|Dm|

H
(
D(l)
m (φ)

)
+

∣∣D(r)
m (φ)

∣∣
|Dm|

H
(
D(r)
m (φ)

)
, (4.14)

H(D) = min
w,b

1

|D|
∑

(x,y)∈D

(wᵀx + b− y)2 s.t. w, b ≥ 0. (4.15)

The impurity function is designed as the weighted mean square errors of linear regressions

over two sub-datasets partitioned by the condition φ.

Next, we describe the feature vector f . Our choice of feature vector f contains three

parts: the structure features, the memory features, and the parameter feature. The struc-

ture features refer to in dim and out dim for fully-connected and recurrent layers as well

as in channel and out channel for convolutional layers. The memory features include the

memory size of input, mem in, the memory size of output, mem out, and the memory size
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Algorithm 4.2. execution time model building
1: Input: time profiling dataset Dz , feature vector f , two conditioning functions f [j] ≤ τ and f [j] ≡ 0 (mod τ), and

explanatory variable xz .
2: Fit Dz with wr and br according to (4.15).
3: Save root node r = [∅,wr, br]
4: Initialize: que =

[
[r,Dz ]

]
.

5: while len(que) > 0 do
6: q,Dq = que.deque()
7: if Dq meets stoping condition then
8: Continue
9: end if
10: Search for the optimal partition φ∗ = {f [j∗], τ∗, k∗} according to (4.13) (4.14) (4.15).

11: Generate partitioned dataset D(l)
q (φ∗) and D(r)

m (φ∗) according to (4.12).

12: Fit D(l)
q (φ∗) with w

(l)
q and b

(l)
q according to (4.15).

13: Fit D(r)
q (φ∗) with w

(r)
q and b

(r)
q according to (4.15).

14: Save q’s left child node q(l) =
[
[True, φ∗],w

(l)
q , b

(l)
q

]
15: Save q’s right child node q(r) =

[
[False, φ∗],w

(r)
q , b

(r)
q

]
16: que.enque

(
[q(l),D(l)

q (φ∗)]
)

17: que.enque
(
[q(r),D(r)

q (φ∗)]
)

18: end while

of internal representations, mem inter. The parameter feature refers to the size of parame-

ters, param size. The detailed definitions of memory and parameter features are shown in

Table 4.7. All notations in Table 4.7 are consistent with the notations of structure con-

figurations in Table 4.6, except for the height and width of output image, out height and

out width, in the convolutional layer. However, we can easily calculate these two values

based on other structure information, i.e., in height, in width, kernel height, kernel width,

stride, and padding 3.

Last, we discuss about our explanatory variable vector x for linear regression. In this

dissertation, we build an intuitive performance model that the execution time of a program

is contributed by three parts, CPU operations, memory operations, and disk I/O operations.

For a deep learning component, these parts refer to FLOPs, memory size, and parameter

size,

x = [FLOPs,mem, param size]. (4.16)

where mem = mem in+mem out+mem inter.

With the weight vector w and the bias term b, the overall execution time of a deep learning

component, y, can be modelled as y = wᵀx + b. Since every term should have a positive

contribution to the execution time, we add an additional constraint, w, b ≥ 0, as shown

in (4.15).

The tree-structure linear regression model builds a binary tree that gradually picks out

conditions that cause execution-time non-linearity and breaks the dataset into subsets that

contain more “linearity”. Our designed explanatory variable vector x is able to fit the dataset

with linear relationships better level by level, especially for fully-connected and convolutional

3https://www.tensorflow.org/api_guides/python/nn\#Convolution
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layer. The recurrent layers, however, still have flaws. We analyze the error and find out

Table 4.8: The p-values of explanatory variables.

Type FLOPs mem param size step

FC 0.000 0.000 1.000

CNN 0.037 0.009 1.000

GRU 0.000 0.000 1.000 0.000

LSTM 0.000 0.000 1.000 0.000

that recurrent layers have a constant initialization overhead or set-up time for each step.

Therefore, we update explanatory variable vector x,

xfc = xcnn = [FLOPs,mem, param size],

xrnn = [FLOPs,mem, param size, step].
(4.17)

We summarize our execution time model building process in Algorithm 4.2. There is a

stopping condition in Line 7 that keeps tree-structure linear regression from growing in-

finitely. In our case, the stopping condition occurs when a linear regression can fit the

current dataset Dq with a mean absolute percentage error less than 5% or when the size of

current dataset is smaller than 15, |Dq| < 15.

Execution Time Model with Statistical Analysis

In this part, we provide an illustration of the FastDeepIoT profiling module on Nexus 5

phone with statistical analysis. The module first profiles and generates the execution time

profiling dataset. Then, the module builds an execution time model for each deep learn-

ing component based on the tree-structure linear regression in Algorithm 4.2. Additional

evaluations on the execution time model will be shown in Section 4.4.2.

For fully-connected layers and recurrent layers, including GRU and LSTM, their execution

time has a perfect linear relationship with our explanatory variable vector xfc and xrnn.

However, the execution time model of convolutional layers reflects a strong non-linearity over

the structure configuration space. As shown in Figure 4.7, the execution time of convolutional

layer has local minima when in channel or out channel is a multiple of 4.

Then we calculate the p-values to evaluate the mathematical relationship between each

explanatory variable and the execution time. The p-value for each explanatory variable tests

the null hypothesis that the variable has no correlation with the execution time. Results

are shown in Table 4.8. The p-values of explanatory variables, FLOPs, mem, and step, are
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less than the significance level (0.05) for all deep learning components. So our empirical

in_channel ≡ 0 (mod 4) 

out_channel ≡ 0 (mod 4) 

True

in_channel < 48 mem_out < 28M 

in_channel ≡ 0 (mod 32) in_channel ≡ 0 (mod 32) 

out_channel ≡ 0 (mod 32) 

False

out_channel < 64 

mem_inter < 1.4M 

out_channel ≡ 0 (mod 4) 

Figure 4.7: The execution time model of convolutional layers on Nexus 5.

in_channel < 48 

in_channel ≡ 0 (mod 32) 

True

in_channel ≡ 0 (mod 4) 
out_channel ≡ 0 (mod 4) 

Constraints

Figure 4.8: Simplified execution time model of convolutional layers on Nexus 5.

time profiling data provides enough evidence that the correlation between these explanatory

variables and the execution time are statistically significant. However, the p-values for

param size is high for all cases, which shows that the number of parameters has limited

correlation with the execution time. This experiment, again, highlights the importance of

proposing a compression algorithm targeting on minimizing the execution time instead the

number of parameters.

4.3.3 Compression Steering Module

Profiling and modelling deep learning execution time is not enough for speeding up the

model execution. In this section, we introduce the compression steering module that is

designed to empower existing deep learning structure compression algorithms to minimize

model execution time properly.

We assume that S = {sl} and W = {Wl} for l = 1, · · · , L is structure information and

weight matrix of a neural network from layer 1 to layer L respectively. We denote our execu-

tion time model as tl = T (sl), which takes the structure information sl as input and predicts
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Algorithm 4.3. Layer structure expansion and local minima searching
1: Input: the execution time model T () with root node r and the layer structure {f ,x}.
2: Set node = r, condL = [].
3: while ¬(node.left == None & node.right == None) do
4: if node.cond is a range condition then
5: condL.append(node.cond)
6: if f obeys node.cond then
7: node = node.left
8: else
9: node = node.right
10: end if
11: else
12: f̂ = f and x̂ = x.
13: f̂ [node.j] = node.τ ×

⌈
f [node.j]/node.τ

⌉
14: Update x̂ according to f̂ .
15: if node.wᵀ

T x̂ + node.bT > node.wᵀ
Fx + node.bF & f̂ obeys condL then

16: f = f̂ and x = x̂.
17: node = node.left
18: else
19: node = node.right
20: end if
21: end if
22: end while
23: Return: f

the component execution time tl. For a general neural network structure compression algo-

rithm, we denote the original compression process as,

min
S,W
Lθ(S,W), (4.18)

where the compression algorithm minimizes a loss function, concerning prediction error or

parameter size, with either the gradient descend or searching based optimization method.

In order to enable the compression algorithm to minimize the execution time, our first

step is to incorporate the execution time model into the original objective function (4.18),

min
S,W
Lθ(S,W) + λ

L∑
l=1

T (sl), (4.19)

where λ is a hyper-parameter that make the tradeoff between minimizing training loss and

minimizing execution time.

Adding execution time to the compression objective function can encourage the compres-

sion algorithm to concentrate more on the layers with higher execution time, which helps to

speed up the whole neural network.

However, due to the existence of execution-time local minima, compressing neural network

structure is not always the optimal choice for minimizing the execution time. As shown

in Figure 4.6, enlarging neural network structure can find a nearby execution-time local

minimum that reduces the execution time. Notice that enlarging structure is a lossless

operation. We can at least enlarge weight matrices with zeros that keeps performance the

same.

In general, utilizing execution-time local minima for speeding up involves two steps:
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1. Identifying an expanded structure configuration that can trigger a nearby execution-

time local minimum.

2. Deciding whether the expanded structure can speed up the execution time.

For an execution time model trained with a complex method, such as neural networks,

identifying a nearby execution-time local minimum can be almost impossible by blindly

searching a large configuration space. However, our tree-structure linear regression can

easily identify a nearby local minimum speeding up the neural network execution.

Local extrema, i.e., maxima and minima, are identified by the integer multiple condition,

f [j] ≡ 0 (mod τ), in our tree-structure linear regression model. Our compression steering

module searches for the nearby local maxima by gradually expanding the structure that fits

the integer multiple conditions from root node to leaf node in the execution time model.

Assume that node m is under the condition f [jm] ≡ 0 (mod τm) with two sets of linear

regression parameters {wT , bT} and {wF , bF} used for fitting the dataset that obeying and

against the condition respectively. A deep learning layer is denoted with the feature vector

fl and the explanatory variable vector xl. The compression steering module generates an

expanded layer with feature vector f̂l and explanatory variable vector x̂l by updating the

conditioning feature f̂ [jm] = τm
⌈
f [jm]/τm

⌉
. Then the module compares the values between

wᵀ
T x̂ + bT and wᵀ

Fx + bF to decide whether it should accept the expansion for speeding-up

and go through the corresponding branch.

The layer structure expansion and local minima searching process is summarized in Al-

gorithm 4.3. The algorithm goes through whole tree structure to find out a nearby local

minimum that reduces the execution time.

For a whole neural network, each layer goes through the structure expansion and local

minima searching process one by one. It is possible that conflicts exist between expanded

structures of two neighbouring layers. The module solves these conflicts sequentially by

choosing the one having shorter overall execution time.

In addition, we can further analyze the structure expansion process for a particular com-

ponent on a particular device for a particular application settings. For example, assume that

we are compressing the in channel and out channel of a convolutional layer on Nexus 5 with

kernel size 3 × 3, input image size 24 × 24, and the same padding. We are considering the

root condition in channel ≡ 0 (mod 4) as shown in Figure 4.7. According to our execution

time model, two linear regression models that fit the two datasets in the left and right child

of the root node are:

wT = [3.41× 10−8, 4.03× 10−6, 7.11× 10−25] bT = 8.11,

wF = [3.11× 10−8, 8.03× 10−6, 1.52× 10−34] bF = 12.82.
(4.20)
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Figure 4.9: The square region of safely expanding in channel for speed up.

Then we can obtain the execution time as a function of in channel and out channel by

substituting the explanatory variable vector x with definitions illustrated in Table 4.7 as

well as the application settings about kernel size, input image size, and padding option.

yT (in c, out c) =3.53× 10−4 · in c · out c + 8.11+

2.32× 10−2 · in c + 2.32× 10−3 · out c,

yF (in c, out c) =3.23× 10−4 · in c · out c + 12.82+

4.63× 10−2 · in c + 4.63× 10−3 · out c,

(4.21)

where we denote in channel and out channel as in c and out c for simplicity.

We are interested in the region where expanding the in channel to a nearby multiple of 4

can speed up the execution. This is equivalent to solving

yT (in c + 3, out c)− yF (in c, out c) < 0, (4.22)

where its zero contour line is a hyperbola. Therefore, within the region bounded by in channel

axis, out channel axis, and zero contour line, we can safely expand in channel to a multiple

of 4 to speed up the convolutional layer execution time.

In order to have a more interpretable result, as shown in Figure 4.9, we can obtain a

square region by finding the intersections between the zero contour line and the function

out channel = in channel. In this case, within the region in channel × out channel ∈
[1, 1288] × [1, 1288], we can blindly expand in channel to a multiple of 4 to speed up.

This region is much larger than the region we are interested in. We can keep analyzing

the next condition out channel ≡ 0 (mod 4) and achieve similar result. Within the re-

gion in channel × out channel ∈ [1, 808] × [1, 808], we can safely expand in channel and

out channel to a nearby multiple of 4 to speed up. In the end, we can obtain a simplified

execution time model T̂ as shown in Figure 4.8.

In summary, the compression steering module compresses the neural network structure

for reducing overall execution time with three steps.

82



1. Compressing neural network with a time-aware objective function (4.19) with execution

time model T .

2. Expanding layer structure and searching local minima for further speed up according

to Algorithm 4.3 with execution time model T or T̂ (if available).

3. Depending on the original compression algorithm, freeze the structure and fine-tune

the neural network.

4.4 THE EVALUATION OF FASTDEEPIOT

In this section, we evaluate FastDeepIoT through two sets of experiments. The first set

evaluates the accuracy of the execution time model generated by our profiling module, while

the second set evaluates the performance of our compression steering module. In order to

evaluate execution time modeling accuracy, we compare our tree-structured linear regression

model to other state-of-the-art regression models on two mobile devices. To evaluate the

quality of compression, we present a set of experiments that demonstrate the speed-up of

the compressed neural network obtained by the compression steering module with three

human-centric interaction and sensing applications.

4.4.1 Implementation

In this section, we briefly describe the hardware, software, and architecture of Fast-

DeepIoT.

Hardware: We test FastDeepIoT on two types of hardware, Nexus 5 phone and Galaxy

Nexus phone. Two devices are profiled for each type of hardware. The Nexus 5 phone is

equipped with quad-core 2.3 GHz CPU and 2 GB memory. The Galaxy Nexus phone is

equipped with dual-core 1.2 GHz CPU and 1GB memory. We stop the mpdecision service

and use userspace CPU governor for two hardware. We manually set 1.1GHz for the quad-

core CPU on Nexus 5, and 700MHz for the dual-core CPU on Galaxy Nexus to prevent

overheating caused by the constant time profiling. In addition, all profiling and testing

neural network models are run solely on CPU. The execution time model building and the

compression steering module are implemented on a workstation connected to two phones.

All compressing steps are implemented on the workstation.

Software: FastDeepIoT utilizes TensorFlow benchmark tool [65], a C++ binary, to profile

the execution time of deep learning components. For each neural network, the benchmark

tool have one warm up run to initialize the model and then profile all components execution
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time with 20 runs without internal delay. Mean values are taken as the profiled execution

time.

We install Android 5.0.1 on Nexus 5 phone and Android 4.3 on Galaxy Nexus phone.

All additional background services are closed during the profiling and testing. All energy

consumptions on two devices are measured by an external power meter.

Architecture: Given a target device, FastDeepIoT first queries the device and its own

database for a pre-generated execution time model with device type and OS version as the

key. If the query fails, the profiling module starts its function. FastDeepIoT generates

random neural network structures based on the configuration scope in Table 4.6, pushes

the Protocol Buffers (.pb file) to the target device, profiles the execution time of compo-

nents, fetches back and processes the profiling result. Once the profiling process has finished,

FastDeepIoT learns tree-structure linear regression execution time models according to Algo-

rithm 4.2 based on the time profiling dataset. FastDeepIoT pushes the generated execution

time models to the target device and its own database for storage.

Then given an original neural network structure and parameters, the compression steering

module can automatically generate a compressed structure to speed up inference time for a

target device. FastDeepIoT queries the target device and own database for a pre-generated

execution time model, and choose a structure compression algorithm, DeepIoT as a default,

to reduce the deep learning execution time according to (4.19) and Algorithm 4.3. The

resulting compressed neural network is transferred to the target device used locally.

4.4.2 Execution time Model

We implement the following execution time estimation alternatives:

1. SVR: support vector regression with radial basis function kernel [66]. This algorithm

tries to perform linear separation over a higher dimensional kernel feature space by

characterizing the maximal margin.

2. DT: classification and regression trees [67]. This is an interpretable model. It groups

and predicts execution time by the execution time itself.

3. RF: random forest regression [68]. This algorithm trades the interpretability of re-

gression tree for the predictive performance by ensembling multiple trees with random

feature selections.

4. GBRT: gradient boosted regression trees [69]. This algorithm builds an additive

model in a forward stage-wise fashion, which is hard to interpret.
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Table 4.9: The Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) in
millisecond, and Coefficient of determination (R2) of execution time models.

(a) Nexus 5-Convolutional layer

FastDeepIoT SVR DT RF GBRT DNN

MAPE 7.6% 233.8% 23.8% 19.7% 10.9% 6.4%

MAE 15.2 227.1 39.2 27.3 20.5 16.4

R2 0.991 −0.229 0.969 0.985 0.988 0.994

(b) Nexus 5-Gated recurrent unit

FastDeepIoT SVR DT RF GBRT DNN

MAPE 1.8% 78.7% 9.4% 6.7% 4.8% 2.0%

MAE 0.6 23.6 2.9 1.8 1.5 0.7

R2 0.999 −0.078 0.986 0.995 0.995 0.999

(c) Nexus 5-Long short term memory

FastDeepIoT SVR DT RF GBRT DNN

MAPE 2.3% 73.7% 9.0% 4.7% 4.1% 2.8%

MAE 0.6 23.7 3.0 1.4 1.6 0.9

R2 0.999 −0.223 0.977 0.995 0.993 0.998

(d) Nexus 5-Fully-connected layer

FastDeepIoT SVR DT RF GBRT DNN

MAPE 1.9% 133.5% 22.5% 12.0% 0.2% 1.9%

MAE 0.19 5.98 1.18 0.38 0.01 0.19

R2 0.999 0.065 0.977 0.996 0.999 0.999

(e) Galaxy Nexus-Convolutional layer

FastDeepIoT SVR DT RF GBRT DNN

MAPE 4.1% 164.3% 33.1% 23.0% 15.2% 14.5%

MAE 26.8 878.7 162.9 123.7 114.6 110.1

R2 0.999 −0.246 0.969 0.980 0.982 0.983

(f) Galaxy Nexus-Gated recurrent unit

FastDeepIoT SVR DT RF GBRT DNN

MAPE 2.9% 71.5% 10.5% 8.8% 6.0% 4.1%

MAE 1.1 27.8 4.8 4.1 3.2 2.2

R2 0.997 −0.065 0.968 0.977 0.984 0.989

(g) Galaxy Nexus-Long short term memory

FastDeepIoT SVR DT RF GBRT DNN

MAPE 2.9% 66.8% 8.4% 7.8% 6.0% 2.9%

MAE 1.4 26.2 3.0 3.3 2.7 1.3

R2 0.997 −0.196 0.983 0.985 0.987 0.997

(h) Galaxy Nexus-Fully-connected layer

FastDeepIoT SVR DT RF GBRT DNN

MAPE 4.0% 55.0% 12.3% 11.3% 9.5% 4.1%

MAE 0.3 6.7 1.2 0.9 1.0 0.3

R2 0.996 −0.629 0.944 0.972 0.949 0.996
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5. DNN: multilayer perceptron [70]. Deep neural network is a learning model with high

capacity. We build a four-layer fully connected neural network with LeRU as the

activation function, except for the output layer. We fine-tune the structure and apply

dropout as well as L2 regularization to prevent overfitting. DNN is a black-box model.

We train all the baseline models with the dataset generated by the profiling module in

FastDeepIoT (75% for training and 25% for testing). For each deep learning component,

such as CNN and LSTM, an individual model is trained. We have trained these models

with feature vector f , explanatory variable vector x, and the concatenate of feature and

explanatory variable vectors as inputs, where f and x are the same as the definitions in

Section 4.3.2. We find that the model trained with explanatory variable vector x outperforms

other choices consistently in all cases, so we only report the results of models trained with

x for simplicity.

We evaluate these models on convolutional layer, gated recurrent unit, long short term

memory, and fully-connected layer with mean absolute percentage error, mean absolute rrror,

and coefficient of determination on two hardware. As shown in Table 4.9, FastDeepIoT is

consistently among top 2 predictors for all experiments with all three metrics. FastDeepIoT

also outperforms the highly capable deep learning model for more than half of the cases,

while FastDeepIoT is much more interpretable. There are two reasons for the remarkable

performance of FastDeepIoT. On one hand, FastDeepIoT captures the primary characters of

deep learning execution time behaviours, which makes an interpretable and accurate model

possible. On the other hand, since the profiled dataset is limited (around one thousand sam-

ples for training), complex models such as deep neural networks that require large training

dataset may not be the best choice here.

4.4.3 Compression Steering Module

In this section, we evaluate the performance of our compression steering module with

three sensing applications. We train the neural networks on traditional benchmark datasets

as original models. Then, we compress the original models using FastDeepIoT and the

three state-of-the-art baseline algorithms. Finally, we test the accuracy, execution time, and

energy consumption of compressed models on mobile devices.

We compare FastDeepIoT with three baseline algorithms:

1. DeepIoT: This is a state-of-the-art neural structure compression algorithm [3]. The

algorithm designs a compressor neural network with adaptive dropout to explore a

succinct structure for the original model.
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2. DeepIoT+localMin: We enhance DeepIoT with the ability of expanding layer for

finding execution-time local minima. This method takes the compressed model of

DeepIoT and expands its layers with zero-value elements that can trigger local min-

ima according to Algorithm 4.3. We use this almost zero-effort method to show the

improvement made on existing compressed models by interpreting deep learning exe-

cution time with FastDeepIoT.

3. DeepIoT+FLOPs: This method enhances DeepIoT by adding a term that minimizes

FLOPs to the original objective function (4.18). Since a large proportion of works use

FLOPs as the execution time estimation [21–23], this method shows to what extend

FLOPs can be used to compress neural network for reducing execution time.

Image recognition on CIFAR-10:

This is a vision based task, image recognition based on a low-resolution camera. During

this experiment, we use CIFAR-10 as our training and testing dataset. The CIFAR-10

dataset consists of 60000 32 × 32 colour images in 10 classes, with 6000 images per class.

There are 50000 training images and 10000 test images.

During the evaluation, we use VGGNet structure as the original network structure [71].

The detailed structure is shown in Table 4.10, where we also illustrate the best compressed

models that keeps the original test accuracy for all algorithms. The compressed model can

be even deployed on tiny IoT devices such as Intel Edison.

As shown in Table 4.10, FastDeepIoT achieves the best performance on two hardware with

their corresponding execution time models. Compared with the state-of-the-art DeepIoT

algorithm, FastDeepIoT can further reduce the model execution time by 48% to 53%.

DeepIoT+localMin outperforms DeepIoT on two hardware, reducing the execution time

by 12% to 32%. This shows that we can decently reduce the neural network execution time

by simply expanding the neural network structure to local execution-time minima. In addi-

tional, DeepIoT+FLOPs can speed up the model execution time compared with DeepIoT.

However, FastDeepIoT still outperforms DeepIoT+FLOPs by a significant margin. This

result highlights that FLOPs is not a proper estimation of time.

Figure 4.10a and 4.10b shows the tradeoff between testing accuracy and execution time for

different algorithms. FastDeepIoT consistently outperforms other algorithms by a significant

margin. Furthermore, the execution time characters on different hardware can affect the final

performance. FastDeepIoT (Nexus 5/Galaxy Nexus) performs better on its corresponding

hardware. DeepIoT+localMin achieves a better tradeoff compared with DeepIoT. Therefore,
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Table 4.10: VGGNet (hidden units) on CIFAR-10 dataset.

No Execution Time Model Nexus 5 Galaxy Nexus
Layer Original DeepIoT localMin FLOPs FastDeepIoT FastDeepIoT

conv1-1 (3× 3) 64 27 28 19 12 16
conv1-2 (3× 3) 64 47 48 17 16 24
conv2-1 (3× 3) 128 53 56 33 28 36
conv2-2 (3× 3) 128 68 68 50 32 44
conv3-1 (3× 3) 256 104 104 89 64 72
conv3-2 (3× 3) 256 97 100 79 64 56
conv3-3 (3× 3) 256 89 92 77 68 72
conv4-1 (3× 3) 512 122 124 115 132 96
conv4-2 (3× 3) 512 95 96 112 136 80
conv4-3 (3× 3) 512 64 64 112 104 120
conv5-1 (2× 2) 512 128 128 143 148 116
conv5-2 (2× 2) 512 112 112 132 144 108
conv5-3 (2× 2) 512 146 148 182 104 92

fc1 4096 27 27 1097 132 132
fc2 4096 161 161 935 152 123
fc3 1000 10 96 72 157 167

Test accuracy 90.6% 90.6% 90.6% 90.6% 90.6% 90.6%
Execution time t (Nexus 5) 328 ms 31 ms 21 ms 28 ms 16 ms 23 ms
Execution time t (Galaxy) 610 ms 72 ms 63 ms 52 ms 36 ms 34 ms

utilizing execution-time local minima is a low-cost strategy to speed up neural network

execution. In addition, since FLOPs has different degrees of execution time contribution on

different hardware, DeepIoT+FLOPs are not able to achieve a better tradeoff than DeepIoT

on all devices.

Figure 4.10d and 4.10e shows the tradeoff between testing accuracy and energy consump-

tion for different algorithms. Although FastDeepIoT is not designed to minimize the en-

ergy consumption, FastDeepIoT still achieves the best tradeoff. However, we can see that

the characters of energy consumption of deep neural network are different from the execu-

tion time. FastDeepIoT with the hardware-specific time models are not always the most

energy-saving method on the corresponding hardware. Execution-time local minima cannot

consistently help DeepIoT+localMin to outperform DeepIoT. Therefore, further studies on

understanding and minimizing deep learning energy consumption are needed.

Figure 4.10c shows the tradeoff between testing accuracy and left proportion of model

parameters. Since there is no algorithm targeting at minimizing model parameters, all

methods show comparable performances. However, from another perspective, the execution

time model learnt by FastDeepIoT empowers existing compression algorithms to reduce more

execution time with almost the same amount of parameters.
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Figure 4.10: System performance tradeoff for VGGNet on CIFAR-10 dataset

Large-scale image recognition on ImageNet:

This is a large-scale vision based task, image recognition based on a high-resolution camera.

During this experiment, we use ImageNet as our training and testing dataset. The ImageNet

dataset consists of 1.2 million 224×224 color images in 1000 classes with 100,000 images for

testing.

During the evaluation, we still use VGGNet structure as the original network structure.

The detailed structures of best compressed models without accuracy degradation of all al-
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Table 4.11: VGGNet (hidden units) on ImageNet dataset.

No Execution Time Model Nexus 5 Galaxy Nexus
Layer Original DeepIoT localMin FLOPs FastDeepIoT FastDeepIoT

conv1-1 (3× 3) 64 43 44 23 12 16
conv1-2 (3× 3) 64 47 48 32 12 16
conv2-1 (3× 3) 128 100 100 65 20 44
conv2-2 (3× 3) 128 97 100 67 40 40
conv3-1 (3× 3) 256 164 164 116 88 108
conv3-2 (3× 3) 256 164 164 135 72 104
conv3-3 (3× 3) 256 153 156 70 116 108
conv4-1 (3× 3) 512 235 236 72 268 240
conv4-2 (3× 3) 512 240 240 181 236 216
conv4-3 (3× 3) 512 220 240 258 340 200
conv5-1 (3× 3) 512 255 256 261 376 240
conv5-2 (3× 3) 512 260 260 303 376 288
conv5-3 (3× 3) 512 257 260 47 176 216

fc1 4096 436 436 1594 656 920
fc2 4096 1169 1169 824 1150 1189
fc3 1000 297 297 405 287 402

Test top-5 accuracy 88.9% 88.9% 88.9% 88.9% 88.9% 88.9%
Execution time t (Nexus 5) 1682 ms 1605 ms 968.8 ms 688.8 ms 725.7 ms
Execution time t (Galaxy) 7773 ms 6991 ms 3930 ms 3211 ms 2930 ms

gorithms are shown in Table 4.11. Note that the original VGGNet for 224 × 224 colour

image input is too large for running on two testing hardware. FastDeepIoT achieves the

best performance on the execution time among all methods. Compared with the state-of-

the-art DeepIoT method, FastDeepIoT can further reduce the execution time by 59% to

62%. DeepIoT+localMin still outperforms DeepIoT by reducing around 5% to 10% of ex-

ecution time. In addition, FastDeepIoT can further reduce 25% to 29% of execution time

compared with DeepIoT+FLOPs.

Figure 4.11a and 4.11b shows the tradeoff between testing top-5 accuracy and execution

time for all algorithms. FastDeepIoT consistently outperforms all other algorithms by a

significant margin. With the help of execution-time local minima, DeepIoT+localMin can

still outperform DeepIoT in all cases. DeepIoT+FLOPs performs better than DeepIoT in

this case. As shown in Table 4.8, FLOPs still possess a certain degree of correlation with

execution time. However, compared to the execution time model in FastDeepIoT, FLOPs

becomes an inferior execution time estimator.

Figure 4.11d and 4.11e illustrates the tradeoff between testing top-5 accuracy and energy

consumptions. FastDeepIoT outperforms all algorithms with a large margin. However, Fast-

DeepIoT with the Galaxy Nexus execution time model is not the most energy-saving com-

pression method on the Galaxy Nexus device. Also, DeepIoT+localMin cannot consistently

outperforms DeepIoT on energy saving. These two observations witness the discrepancies
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Figure 4.11: System performance tradeoff for VGGNet on ImageNet dataset

between the execution time and energy modeling on mobile devices. Figure 4.11c shows

the tradeoff between testing accuracy and left proportion of model parameters. Again, all

methods show the similar tradeoff, which indicates that FastDeepIoT is a parameter-efficient

method on execution time reduction.
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Table 4.12: DeepSense (hidden units) on HHAR dataset.

No Execution Time Model Nexus 5 Galaxy Nexus
Layer Original DeepIoT localMin FLOPs tmin FastDeepIoT FastDeepIoT

conv1a conv1b (2× 9) 64 64 20 19 20 20 26 25 4 4 16 8 16 16
conv2a conv2b (1× 3) 64 64 20 14 20 16 19 17 4 4 8 12 20 16
conv3a conv3b (1× 3) 64 64 23 23 24 24 22 22 4 4 16 16 16 16

conv4 (2× 8) 64 10 12 9 4 12 16
conv5 (1× 6) 64 12 12 13 4 16 16
conv6 (1× 4) 64 17 18 18 4 12 16

gru1 120 27 27 11 1 15 10
gru2 120 31 31 15 1 17 10

Test accuracy 94.6% 94.7% 94.7% 94.7% 16.7% 94.7% 94.7%
Execution time t (Nexus 5) 26.2 ms 19.5 ms 17.9 ms 18.3 ms 14.1 ms 15.3 ms 15.8 ms

t− tmin (Nexus 5) 12.1 ms 5.4 ms 3.8 ms 4.2 ms 1.2 ms 1.7 ms
Execution time t (Galaxy) 70.9 ms 30.1 ms 27.4 ms 28.2 ms 18.4 ms 22.6 ms 22.0 ms

t− tmin (Galaxy) 52.5 ms 11.7 ms 9.0 ms 9.8 ms 4.2 ms 3.6 ms

Heterogeneous human activity recognition:

This is a human-centric context sensing application, recognizing human activities with ac-

celerometer and gyroscope. Especially, we are considering the heterogeneous human activity

recognition (HHAR). This task focuses on the generalization ability with human who has

not appeared in the training dataset. During this experiment, we use the dataset collected

by Allan et al. [11].

During this evaluation, we use DeepSense structure as the original network structure [2].

Table 4.12 illustrates the detailed structure of the original network and final compressed

networks generated by four algorithms with no degradation on testing accuracy. As shown

in Table 4.12, FastDeepIoT achieves the best performance on two devices with the corre-

sponding execution time models. Compared with DeepIoT, FastDeepIoT can further reduce

the model execution time by 22% to 42%. During the compressing process, we observe that

all compressed models tend to approach a model execution time lower bound, which has not

been seen in the previous two experiments. In order to obtain the lower bound, we build a

DeepSense structure with all hidden units that equal to 1, and then applies Algorithm 4.3 to

find the structure that triggers local minimum. The resulted structure is illustrated in Table

4.12 denoted by tmin. If we calculate the deductible model execution time by subtracting

tmin from the model execution time, compared with DeepIoT, FastDeepIoT can reduce the

deductible execution time by 69% to 78%.

Furthermore, we can attempt to deduce the fundamental cause of the lower bound with our

execution time model. As shown in (4.17), the execution time of recurrent layer is partially

controlled by the number of step, which can be interpreted as an initialization overhead

for each step in the recurrent layer. We can use an example to illustrate the relationship

between the step overhead and this lower bound. In our experiment, there are 20 steps in

the GRU. The coefficient of step on Nexus 5 is 0.666 ms. Therefore, the lower bound is
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Figure 4.12: System performance tradeoff for DeepSense on HHAR dataset

14.1 ≈ 20×0.666 ms. Thus, only algorithms dealing with reducing recurrent-layer steps can

help further reducing the model execution time. Unfortunately, to the best of our knowledge,

there is no existing work that solves this problem. However, our empirical observation and

execution time model reveal an interesting problem that requires future research.

The tradeoffs between testing accuracy and execution time for different algorithms are

illustrated in Figure 4.12a and 4.12b. FastDeepIoT still achieves the best tradeoff for all

cases. DeepIoT+localMin still performs better than DeepIoT with the help of our structure

expanding and local minima searching algorithm. The performance of DeepIoT+FLOPs
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is not stable among different devices. The tradeoffs between testing accuracy and energy

consumption are illustrated in Figure 4.12d and 4.12e. FastDeepIoT performs better than

all other baselines in almost all cases. The tradeoffs between testing accuracy and remanin-

ing proportion of model parameters are illustrated in Figure 4.12c. All algorithms show

comparable results.
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CHAPTER 5: DEEP LEARNING FOR LABEL-LIMITED IOT SYSTEMS

In this section, we first introduce the technical details of the SenseGAN framework.

Then, we evaluate SenseGAN with several representative and challenging IoT applications

with different proportions of labelled and unlabelled data.

5.1 THE DESIGN OF SENSEGAN

In this section, we introduce our SenseGAN semi-supervised learning framework for IoT

applications. We separate our descriptions into six parts. First, we give some preliminary

knowledge about GAN. Next, we provide an overview of the SenseGAN framework with

its internal interactions among different components. Then, we introduce our designs of

generator, discriminator, and classifier in SenseGAN respectively. In the end, we discuss

SenseGAN’s training process.

5.1.1 Preliminaries

In this section, we give a preliminary overview of GANs [72], GANs with the Wasserstein

metric [24, 73], the Gumbel-Softmax function for categorical representations [25], and deep

learning classification models for IoT applications, all of which serve as key design ingredients

of our SenseGAN framework.

Generative Adversarial Networks (GANs)

The idea of GANs is to design a game between two competing networks. The generator

network takes the noise vectors as inputs and generates data samples. The discriminator

network takes either a generated sample or a real data sample, and distinguishes between

the two. The generator is trained to fool the discriminator [72].

The game between generator G and discriminator D can be formulated as the minmax

objective:

min
G

max
D

Ex∼Pr [log(D(x))] + Ex̃∼Pg [log(1−D(x̃))], (5.1)

where Pr is the real data distribution and Pg the generated data distribution implicitly

defined by x̃ = G(z), z ∼ p(z) (the input of generator z is sampled from a simple noise

distribution, such as the uniform distribution or a spherical Gaussian distribution).
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If the discriminator is optimal, the training objective function (5.1) amounts to minimizing

the Jensen-Shannon (JS) divergence between Pr and Pg. In practice, a stochastic lower-

bound to the JS divergence is minimized.

Wasserstein GANs

Since training instability has hindered the deployment of GANs on deeper and more com-

plex neural network structures, a great amount of research efforts have been made recently

to tackle this problem. Arjovsky et al. [24] argue that Jensen-Shannon divergence are po-

tentially not continuous and thus cannot provide a usable gradient for the generator. They

propose Earth mover’s distance (also called Wasserstein-1 Distance) as the training objec-

tive. Earth mover’s distance is the minimum cost of transporting mass in order to transform

one distribution into the other distribution, where the cost is mass times transport dis-

tance. They have shown that the Earth mover’s distance is continuous everywhere, and

differentiable almost everywhere, providing the desirable property for GANs training.

Wasserstein GAN (WGAN) is thus proposed, and its objective function is constructed by

applying the Kantorovich-Rubinstein duality [74]

min
G

max
D∈D

Ex∼Pr [D(x)]− Ex̃∼Pg [D(x̃)], (5.2)

where D is the set of 1-Lipschitz functions, Pr and Pg are defined the same as before.

Then given the optimal discriminator, WGAN’s training objective function (5.2) amounts

to minimizing the Earth mover’s distance between Pr and Pg.
Then the remaining question is how to enforce the Lipschitz constraint on the discrimi-

nator. Arjovsky et al. [24] make the Lipschitz constraint by clipping the weights within a

compact space [−c, c]. This results in a subset of k-Lipschitz functions for k depending on

the space boundary parameter c and the structure of the discriminator.

However Gulrajani et al. [73] claim that weight clipping can still cause optimization diffi-

culties such as capacity underuse and gradients exploding or vanishing. Then an alternative

is proposed: a differentiable function is 1-Lipschitz if and only if it has gradients with norm

less than or equal to 1 everywhere. Since an exact constraint is not easily tractable, Gulra-

jani et al. enforce a soft version by making gradient penalty on sampled points. The loss

function for the discriminator then becomes:

Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)] + λ · Ex̂∼Px̂

[
(‖∇D(x̂)‖2 − 1)2

]
, (5.3)

where gradient penalties are made by taking samples x̂ from straight lines between points
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Figure 5.1: The expectation and sample of Categorical and Gumbel-Softmax distribution.

in the data distribution Pr and the generator distribution Pg:

ε ∼ U [0, 1], x ∼ Pr, x̃ ∼ Pg,

x̂ = εx+ (1− ε)x̃,
(5.4)

where U [0, 1] is the uniform distribution from 0 to 1.

The WGAN with gradient penalty has achieved the state-of-the-art performance on mul-

tiple generative tasks, such as images and text generations. To the best of our knowledge,

SenseGAN is the first study to adopt WGAN with gradient penalty training strategy into

the semi-supervised learning.

Gumbel Softmax

Discrete variables sampled from categorical distribution is a powerful technique for rep-

resenting categorical distributions. In our framework, the discriminator in SenseGAN is de-

signed to differentiate the joint data/label distributions between partially generated samples

and real samples, which naturally requires taking discrete variables for categorical represen-

tation as inputs.

However, neural networks with discrete variables involving sampling from categorical dis-

tributions are non-differentiable, making them difficult to train with the backpropagation

algorithm. Existing stochastic gradient estimation requires variance reduction techniques to

stabilize the training process. In order to alleviate the problem of high-variance gradient

estimation in neural networks with discrete variables, a continuous relaxation of the discrete

variable is needed.

Recent study on Gumbel-Softmax defines a continuous distribution over the simplex that

can approximate samples from a categorical distribution [25], where the theoretical analysis

has been made.
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Figure 5.2: The illustration of SenseGAN components.

We assume categorical samples are encoded as l-dimensional one-hot vectors lying on

the corners of the (l − 1)-dimensional simplex, ∆l−1. o1, · · · , ol are multinomial logits for l

categories. We can therefore generate l-dimensional sample vectors y:

yi =
exp((oi + gi)/τ)∑l
j=1 exp((oj + gj)/τ)

, (5.5)

where g1, · · · , gl are i.i.d. samples drawn from Gumbel(0, 1). The Gumbel(0, 1) distribution

can be sampled using inverse transform sampling by drawing u ∼ U [0, 1] and computing

g = − log(− log(u)).

As the softmax temperature τ approaches 0, samples from the Gumbel-Softmax distri-

bution turns into one-hot representations, and its expectation approaches the correspond-

ing categorical distribution from the uniform distribution. The expectation and sample of

Gumbel-Softmax distribution with different softmax temperature τ are illustrated in Fig-

ure 5.1. In SenseGAN, the multinomial logits of the classifier go through the Gumbel-

Softmax before being fed into the discriminator, which further improves the training stability

and the final predictive performance.

5.1.2 SenseGAN Components Overview

The SenseGAN framework consists of three basic components. We assume the following

notations: X denotes the input sensing data tensor, y the one-hot categorical representation,

and z the random vector drawn from the random Gaussian distribution. The relationship

among these three components is illustrated in Figure 5.2.
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1. Generator X̃ ∼ G(z,y): The generator takes a random vector and a corresponding

one-hot categorical representation as the input, and generates a sensing data tensor X̃

that “fools” the discriminator into thinking that it is the real sensing data.

2. Classifier ỹ ∼ C(X): The classifier takes a sensing data tensor as the input and

generates classification result ỹ that can “fool” the discriminator into thinking that

it is the real data label. If the sensing data tensor happens to be from the limited

amount of labelled data, the classification result ỹ should also fit the supervision of

label y.

3. Discriminator D(X/X̃,y/ỹ): The discriminator takes a pair of sensing data and

corresponding one-hot categorical representation as the input. It gives each input pair

a score for indicating whether the pair is sampled from the real labelled dataset or

partially generated by other components.

The intuition of how our SenseGAN framework is able to leverage unlabelled data to

enhance its predictive power is as follows. The discriminator tries to discriminate real

data/label samples and the partially generated data/label samples; the generator attempts

to generate and recover the real sensing inputs based on the categorical information that can

fool the discriminator; and the classifier tries to predict the label of sensing inputs that can

both fit the supervision and fool the discriminator. During the adversarial game among the

three components under the training process, the resulting three improved components can

mutually boost performance. When the training reaches the optimality, the discriminator

will have learnt the true joint probability distribution of the input sensing data and their

corresponding labels for both the labelled and unlabelled samples. The classifier will have

learnt the true conditional probability of labels given the sensing input.

All three components are represented by neural networks. We will discuss their specific

structures for dealing with the multimodal sensing inputs in detail in the following subsec-

tions. In addition, the structure of the classifier can be task-specific or unified with diverse

IoT applications [2]. We therefore will not introduce the detailed structure for the classi-

fier but only discuss its output representation. We treat the classifier as an modular and

customizable component for IoT applications when using SenseGAN for semi-supervised

learning.

5.1.3 SenseGAN Generator

The goal here is to generate sensing data tensor by modelling the conditional probability

of sensing data given the one-hot label representation. The randomness of generated samples

99



is controlled by the input random vectors.

y z

Fully-connected Layer

Multiple Deconvolution Layers

t

f

Multiple Deconvolution Layers

t

f
d

Multiple Deconvolution Layers

t

f
d

..........

.....

n

.......... ..........

T1

T2

T3

X1
~

Xn
~

T0

Figure 5.3: The neural network design of SenseGAN generator.

We denote the generated sensing data tensor as X̃ ∈ Rn×t×f×d, where n is the number of

sensors used in an IoT application, t is the number of time steps, f is the length of frequency

domain or the number of time points within a time step, and d is the feature dimension of

data on each frequency or time point. We denote the one-hot label representation as y ∈ Rl,

where l is the number of categories of an IoT application. We also denote the input random

vector as z ∈ Rr, where r is the dimension of random vector.

The illustration of SenseGAN generator G(z,y) is shown in Figure 5.3. The input of

generator T0 is the concatenated vector of the one-hot label representation y and the random

vector z. T0 first goes through a fully-connected layer for learning a latent representation

T1, which is then transformed into a matrix form T2.

Then the generator starts the process of generating sensing data tensor as X̃ ∈ Rn×t×f×d.
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We assume that n sensing data possess a joint latent representation, and the generation

process is first going through generating along the time/frequency dimensions, t and f , with

a shared structure and then going through generating the feature dimension d with individual

structures for n sensors.

As shown in Figure 5.3, T2 goes through multiple deconvolution layers and generates a

joint latent representation along the time and frequency dimensions T3 ∈ Rt×f×c, where c

is the number of filters in the deconvolution layer. Then the joint representation T3 goes

through n independent multiple deconvolution layers for generating the sensing data tensor

for n sensors, X̃ = [X̃1, · · · , X̃n].

The whole generator structure tries to learn the conditional distribution of sensing data

given the label representation P (X|y). It also helps the discriminator to learn the joint

data/label distribution P (X,y) and the classifier to learn the conditional distribution of

label given the sensing data P (y|X) during the adversarial game by leveraging unlabelled

data.

5.1.4 SenseGAN Discriminator

The SenseGAN discriminator aims to differentiate partially generated data/label tuples

from the real ones by modelling the joint data/label distribution.

We again denote the sensing data as X ∈ Rn×t×f×d, and the one-hot label representation

as y ∈ Rl. The illustration of SenseGAN discriminator D(X,y) with two sensor inputs is

shown in Figure 5.4. The structure for n sensor inputs can be similarly designed. We first

need to generate input X̂ containing both data and label information. We simply expand

label representation y into Y ∈ Rn×t×f×l with the tiling operation, and then concatenate X

and Y into the generator input X̂ ∈ Rn×t×f×(d+l) as shown in Figure 5.4. These expansion

and concatenation operations can help to merge the data and label information and to

balance gradient penalty (5.3) between data and label inputs.

The design of discriminator is to first merge the information from multiple sensors and

then extract important relationships along the time and frequency dimensions. Since con-

volution layers can learn about the long-term dependency by stacking multiple of them [75],

SenseGAN uses full-convolution structure (with fully-connected layers at the end) instead of

the recurrent neural network for speeding up the training process. The empirical comparison

betweem CNN-based and RNN-based discriminator is shown in Section 5.2.2.

As shown in Figure 5.4, SenseGAN discriminator first learns a joint representation T1

from multiple sensors through a convolution layer. Then multiple convolution layers are

used to learn the latent representation T2 along the time and frequency dimension. At
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Figure 5.4: The neural network design of SenseGAN discriminator with two sensor inputs.

last, the discriminator generates the score v through multiple fully-connected layers for

determining whether the input X̂ is drawn from real data samples or partially generated by

other components.

The discriminator tries to differentiate whether the input is drawn from real samples

or is partially generated by learning the joint data and label distribution p(X,y). The

discriminator structure in Figure 5.4 tries to fit the multimodal sensing inputs that exists in

IoT applications better.

5.1.5 SenseGAN Classifier

As mentioned previously, the SenseGAN classifier, by design, serves as an application-

dependent customizable module, capable of taking the form of any existing neural network

classifiers. The classifier can be formulated as o = C(X), where X ∈ Rn×t×f×d is the sensing

data input, and o ∈ Rl is the multinomial logits for l categories.

However as shown in Figure 5.2, two other components take categorical representations

instead of multinomial logits as inputs. When the sensing data inputs X have no existing
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label, the classifier feeds the predictions ỹ as well as the sensing data X into the discriminator.

On the other hand, if the sensing data inputs X have existing labels, the classifier feeds the

predictions ỹ into classification loss with true label y for supervision. We denote these two

predictions as ỹd and ỹl for discriminator input and classification loss input respectively.

Softmax function is a common practice for converting multinomial logits into categori-

cal representations, which is also our choice for ỹl. However for ỹd, in order to prevent

discriminator from differentiating real or generated samples by just looking at whether the

categorical representations are one-hot representations or categorical distribution, we choose

Gumbel-Softmax (5.5) for converting multinomial logits into categorical representations,

which is introduced in Section 5.1.1. Compared with sampling from categorical distribution,

Gumbel-Softmax can eliminate non-differentiable operations and prevent using gradient es-

timation method with high variance.

5.1.6 SenseGAN Training

We now discuss the SenseGAN training that involves the aforementioned three compo-

nents. We denote {(Xl,yl)} as the labelled dataset and {(Xu)} as the unlabelled dataset.

The SenseGAN objective function consists of two parts. The first part captures the clas-

sifier’s intent to minimize the classification loss of labelled data, which can be formulated

as:

min
C

1

ml

∑
(Xl,yl)

`
(
y, C(X)

)
(5.6)

where `(·, ·) denotes the cross entropy loss and C(·) the SenseGAN classifier. The second

part is the adversarial game among the discriminator, the generator, and the classifier. The

discriminator tries to distinguish positive data/label tuples of “real” labelled dataset from

negative data/label tuples that are partially generated by the generator or classifier. At

the same time, the generator and classifier try to generate data/label tuples that can fool

the discriminator. Here we provide the formal definition of negative and positive data/label

tuples during the training process.

There are two types of negative data/label tuples. The first type is (X
(1)
u , C(X

(1)
u )), where

we sample sensing data from the unlabelled dataset and generate one-hot label with the

SenseGAN classifier. The second type is (G(z,yg),yg), where we randomly generate one-hot

label from all possible categories and generate sensing data with the SenseGAN generator.

The positive data/label tuples are (Xl,yl), where we directly sample data/label tuples

from the labelled dataset. In order to prevent the discriminator from overfitting the limited

labelled dataset by memorizing all of them, we introduce the pseudo positive data/label
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Table 5.1: Definitions of positive and negative data/label tuples.

Postive Tuples Pseudo Postive Tuples

Data sampled from the labelled dataset Xl Data sampled from the unlabelled dataset X
(2)
u

Corresponding real label yl Corresponding label generated by the Classifier C(X
(2)
u )

Negative Tuples 1 Negative Tuples 2

Data sampled from the unlabelled dataset X
(1)
u Corresponding data generated by the Generator G(z,yg)

Corresponding label generated by the Classifier C(X
(1)
u ) Randomly generated label yg

tuples, (X
(2)
u , C(X

(2)
u )) when training the discriminator in practice. The detailed definitions

of these negative and positive data/label tuples are summarized in Table 5.1.

With these definitions, we can formulate the second part of the objective function. We

apply the Earth mover’s distance to formulate the adversarial game, which is similar to the

Wasserstein GAN (5.2).

max
D∈D

1

ml +m
(2)
u

(∑
Xl,yl

D(Xl,yl) +
∑
X

(2)
u

D
(
X(2)
u , C

(
X(2)
u

)))
− α

mg

∑
yg

D
(
G(z,yg),yg

)
− 1− α

m
(1)
u

∑
X

(1)
u

D
(
X(1)
u , C

(
X(1)
u

))
,

min
G,C
− α

mg

∑
yg

D
(
G(z,yg),yg

)
− 1− α

m
(1)
u

∑
X

(1)
u

D
(
X(1)
u , C

(
X(1)
u

))
,

(5.7)

where α is a hyper-parameter for balancing two types of negative tuples with default value

0.5; D is the set of 1-Lipschitz functions; ml, m
(2)
u , m

(1)
u , and mg are the batch sizes of positive,

pseudo-positive, and two negative tuples during training. In SenseGAN, we enforce the

Lipschitz constraint by making gradient penalty (5.3) with λ.

The pseudo positive tuples (X
(2)
u , C(X

(2)
u )) also work as a variance reduction method for

the negative tuples (X
(1)
u , C(X

(1)
u )), which further stabilize the training process [76]. In

general, the pseudo positive tuple introduces a biased distribution into the discriminator.

However, the bias is controlled by the batch sizes of positive and pseudo positive tuples, ml

and m
(2)
u . In addition, the classifier can often achieve a reasonably good prediction result

quickly, which further reduces the bias. The empirical evaluation of pseudo positive tuple is

shown in Section 5.2.2.

By combining the two objective functions (5.6) and (5.7) with hyper-parameter γ, we can

summarize our final training process. As shown in Algorithm 5.1, the training proceeds

by iteratively updating the parameters of the discriminator, classifier, and generator. The

update of discriminator (Line 3 - Line 8) consists of three parts: increasing the score of

positive tuples, reducing the score of negative tuples, and imposing gradient penalty for
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Algorithm 5.1. SenseGAN training process
1: Initialize: discriminator with parameter θD, generator with parameter θG, and classifier with parameter θC .
2: for k training iterations do
3: for kd iterations do

4: Sample (Xl,yl), (X
(1)
u ), (X

(2)
u ), (yg), ε ∼ U [0, 1], and z ∼ N (0, 1)

5: X̄ = ε ·Xl + (1− ε) ·G(z,yg)
6: ȳ = Gumbel softmax(ε · yl + (1− ε) · yg)

7: Update θD by descending along its gradient ∇θD

[
α
mg

∑
yg
D
(
G(z,yg),yg

)
+ 1−α

m
(1)
u

∑
X

(1)
u

D
(
X

(1)
u , C

(
X

(1)
u

))
−

1

ml+m
(2)
u

(∑
Xl,yl

D(Xl,yl) +
∑

X
(2)
u

D
(
X

(2)
u , C

(
X

(2)
u

)))
+ λ(‖∇D(X̄, ȳ)‖2 − 1)2

]
8: end for
9: for kc iterations do

10: Sample (Xl,yl) and (X
(1)
i )

11: Update θC by descending along its gradient ∇θC

[
γ
ml

∑
(Xl,yl)

CE
(
y, C(X)

)
− 1−α
m

(1)
u

∑
X

(1)
u

D
(
X

(1)
u , C

(
X

(1)
u

))]
12: end for
13: for kg iterations do
14: Sample (yg) and z ∼ N (0, 1)

15: Update θG by descending along its gradient ∇θG
[
− α
mg

∑
yg
D
(
G(z,yg),yg

)]
16: end for
17: end for

enforcing the Lipschitz constraint. The update of classifier (Line 9 - Line 12) consists of

two parts: reducing the classification loss of labelled data and learning to make prediction

that can obtain high score by the discriminator. The update of generator (Line 13 - Line

16) has only one part: learning to generate sensing data that can obtain high score by

the discriminator so that the discriminator can be fooled to believe that the generated

sensing data is real. This iterative process can gradually improve the performance of all

three components by mutually boosting themselves with limited labelled supervision and

abundant unlabelled data.

5.2 THE EVALUATION OF SENSEGAN

In this section, we test SenseGAN on three IoT applications with several sets of exper-

iments evaluating the effectiveness, the design choices, and the resource consumption of

SenseGAN on commodity IoT devices.

5.2.1 Experiments Overview

For the evaluation, we conduct all our experiments on three different tasks. We next

briefly describe these tasks and introduce the training and testing datasets.

1. Heterogeneous human activity recognition (HHAR): In this task, we perform a human

activity recognition task with accelerometer and gyroscope measurements. We use

the dataset collected by Allan et al. [11]. This dataset contains readings from two
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motion sensors (accelerometer and gyroscope). Readings were recorded when users ex-

ecuted activities scripted in no specific order, while carrying smartwatches and smart-

phones. The dataset contains 9 users, 6 activities (biking, sitting, standing, walking,

climbStairup, and climbStairdown), and 6 types of mobile devices. For this task, ac-

celerometer and gyroscope measurements are classifier inputs, and activities are used

as labels.

2. User identification with biometric motion analysis (UserID): In this task, we perform

user identification with biometric motion analysis. We classify users’ identity according

to accelerometer and gyroscope measurements. We use the same dataset as in the

HHAR task. For this task, accelerometer and gyroscope measurements are classifier

inputs, and users’ unique IDs are used as labels.

3. Wi-Fi signal based gesture recognition (Wisture): In this task, we perform gesture

recognition (swipe, push, and pull) with Received Signal Strength Indicator (RSSI)

of Wi-Fi signal. We use the dataset collected by Mohamed et al. [77]. This dataset

contains labeled Wi-Fi RSSI measurements corresponding to three hand gestures made

near a smartphone under different spatial and data traffic scenarios. The Wi-Fi RSSI

measurements are classifier inputs, and gestures are used as labels.

For all the following experiments, the HHAR task performs leave-one-user-out cross-

validation. We select 1 out of 9 users as the testing dataset with the left as the train-

ing dataset. The UserID and Wisture tasks perform 10-fold cross-validation. Each time we

choose 10% data as the testing dataset with the left as the training dataset. Then we further

divide the training dataset into labelled and unlabelled dataset according to the specification

of each experiment.

For all experiments with SenseGAN, we choose DeepSense [2] as the classifier, which is

a state-of-the-art neural network structure designed for IoT applications. The generator

and the discriminator usually require more training steps to achieve better performance.

We therefore set kd, kc, and kg in Algorithm 5.1 to be 5, 1, and 7 respectively without

fine-tuning, which consistently achieves decent performance for all three tasks.

5.2.2 Effectiveness

We first illustrate the effectiveness of SenseGAN at leveraging unlabelled data for IoT ap-

plications. We evaluate the performance of SenseGAN with different proportions of labelled

and unlabelled data, and compare SenseGAN with supervised deep learning algorithms and
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other traditional supervised/semi-supervised machine learning algorithms, which are be-

lieved to have better predictive performance with smaller datasets. The baseline algorithms

are as follows:

1. DeepSense: A state-of-the-art supervised neural network structure designed for IoT

applications [2], also the classifier used in SenseGAN. DeepSense baseline is chosen to

show the performance gain of SenseGAN by leveraging unlabelled data. DeepSense

takes the same input as the SenseGAN model, which divides the sensing data into

equal-length time interval followed by Fourier transformation.

2. SGAN: A general GAN-based semi-supervised deep learning algorithm [78]. The al-

gorithm is not specifically designed for adapting the IoT sensing data. This base-

line is chosen to show the importance of design choices in SenseGAN that tailor the

GAN training method for IoT applications. SGAN also takes the same input as the

SenseGAN model.

3. RF: The random forests supervised classifier. The input of random forests is the

concatenation of popular time-domain and frequency domain features from [42] and

ECDF features [43].

4. SVM: The support vector machine supervised classifier, with the same feature selection

as the RF model.

5. Semi-RF: A semi-supervised learning algorithm that puts a self-training wrapper on

the random forest classifier [79]. Semi-RF takes the same input as the RF model.

6. S3VM: Semi-supervised SVMs (S3VMs) with the goal of maximizing the margin of

unlabelled data for classification [80]. S3VM takes the same input as the SVM model.

IoT Applications with Different Proportions of Labelled Data

We first conduct a series of experiments on evaluating SenseGAN against baseline al-

gorithms with different proportions of labelled data. The original datasets for tasks are all

labelled data samples. During these experiments, we randomly select p% of training samples

as labelled data, and treat the rest training samples as unlabelled data. When p = 100%,

SenseGAN stops generating “fake” data. SenseGAN then becomes equivalent to its super-

vised counterpart, DeepSense. For semi-supervised algorithms, SenseGAN, Semi-RF, and

S3VM, all unlabelled data is used for training. For supervised algorithms, DeepSense, RF,

and SVM, only labelled data is used for training. Please notice that the testing data never

appears in the unlabelled dataset.
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(a) The HHAR task.
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(b) The UserID task.
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(c) The Wisture task.

Figure 5.5: The accuracy of models with p% of labelled data for three IoT applications.
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(a) The HHAR task.
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(b) The UserID task.
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(c) The Wisture task.

Figure 5.6: The F1 Score of models with p% of labelled data for three IoT applications.

The results of three IoT tasks are shown in Figure 5.5 and 5.6. Two figures are plotted in

log scale along the p−axis, because we are more interested in the cases with limited labelled

data. The performance gains between semi-supervised and supervised algorithms can be

small when the proportion of labelled data p is large.

One interesting observation is that two deep learning methods, SenseGAN and DeepSense,

perform almost consistently better than the traditional machine learning methods even with

tiny proportion of labelled data (with the only exception of DeepSense on the Wisture

task). This is mainly attributed to their structures that can effectively handle the multi-

modal sensing data in three IoT applications. Performance can be further improved by our

proposed SenseGAN framework. As shown in Figure 5.5 and 5.6, SenseGAN shows a signif-

icant improvement on both accuracy and F1 score compared with all baseline algorithms.

SenseGAN can achieve within 2% and 0.03 drops on accuracy and F1 score with only 10%

of labelled data. In our experiments, 10% of labelled data equals around 200, 130, and

30 labelled data samples per category for the HHAR, UserID, and Wisture tasks respec-

tively, which is easily affordable by human labelling. In addition, the existing GAN-based

semi-supervised deep learning method, SGAN, consistently shows an inferior performance

compared to SenseGAN in all three tasks. These experimental results empirically show the

effectiveness of our SenseGAN design choices in general. More ablation study on verifying

the design choices of SenseGAN will be shown latter.
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(b) The UserID task.
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(c) The Wisture task.
Figure 5.7: The accuracy of models with q% of unlabelled data for three IoT applications.
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(b) The UserID task.
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Figure 5.8: The F1 Score of models with q% of unlabelled data for three IoT applications.

SenseGAN also attains a great improvement compared with its supervised counterpart,

DeepSense. However the other two traditional semi-supervised methods, Semi-RF and

S3VM, only achieve tiny improvements compared with their supervised counterparts, RF

and SVM. Semi-RF even performs worse than RF on the Wisture task. These observations

indicate that SenseGAN can effectively leverage the unlabelled multimodal sensor data for

improving the complex IoT recognition tasks.

IoT Applications with Different Proportions of Unlabelled Data

We have shown that SenseGAN can utilize labelled data efficiently. It can consistently

achieve the best performance with a large margin on three IoT tasks with different propor-

tions of labelled data. However, we have not investigated whether SenseGAN can utilize

unlabelled data efficiently. Next, we conduct a series of experiments on performing semi-

supervised learning with different proportions of unlabelled data to explore the effect of

unlabelled-data sizes on the SenseGAN predictive performance.

For these experiments, we randomly select p = [1, 2, 3, 5, 10]% of training samples as

labelled data, and randomly select q% of the remaining training samples as unlabelled data,

and discard all the rest training samples. We evaluate only SenseGAN here, because Semi-RF

and S3VM show little improvement on three IoT tasks even with q = 100% in Section 5.2.2.
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Figure 5.9: SenseGAN-LaUL with p% labelled data as unlabelled data.

When q = 0%, the model is trained with only labelled data, which is equivalent to the

DeepSense model. When q = 100%, all experiments are fully semi-supervised, which are

the same as those in Section 5.2.2, because all data samples other than p% of labelled data

are used as unlabelled data for training. As shown in Figure 5.7 and 5.8, SenseGAN with

q = 25% can attain almost the same predictive performance compared with q = 100% on

both accuracy and F1 score. Even when the proportion of unlabelled data is tiny, such

as q = 0.5% or 1%, SenseGAN can still achieve decent improvements compared with its

supervised counterpart. This indicates that SenseGAN can efficiently use both labelled and

unlabelled data to effectively improve the performance of the neural network classifier. Due

to the scale of y-axis in Figure 5.7 and 5.8, it seems that, when the proportion of labelled data

p is large, increasing the proportion of unlabelled data q can only make limited improvement.

However, the unlabelled data does play an important role in SenseGAN from the perspective

of reducing predictive error. Take UserID task with p = 10% as an example, SenseGAN

reduces the error of accuracy from 5.8%(= 100% − 94.2%) to 2.9%(= 100% − 97.1%) and

the error of F1 score from 0.077(= 1− 0.923) to 0.041(= 1− 0.959) by increasing q from 0%

to 100%, which greatly reduces the errors by around 50%.

IoT Applications with Labelled Data as Unlabelled Data (LaUL)

In a lot of proof-of-concept IoT applications, the total amount of data is limited. Re-

searchers probably want to label all existing samples for training. However, concerns still

exist that neural networks may cause performance degradation as shown in Figure 5.5c
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and 5.6c. In this experiment, we try to fully leverage the limited amount of data samples

with SenseGAN by using them as both labelled and unlabelled data. Since the classifier is

learned from both labelled supervision and joint interactions with the discriminator and gen-

erator in SenseGAN. Using labelled data as unlabelled data can enhance the discriminator

and generator, and therefore boost the performance of classifier in return.

During the experiments, we randomly select p% of original training data as labelled data

and discard all the rest training samples. These p% of data is used as both labelled and

unlabelled data for training SenseGAN in the manner just described in Algorithm 5.1.

In Figure 5.9, we plot the results of training SenseGAN with Labelled data as UnLabelled

data, called SenseGAN-LaUL, with p = [1, 2, 3, 5, 10]%, each accompanied with a upper and

a lower bound. The upper bound is training SenseGAN with all left training samples as

unlabelled data (i.e., q = 100% in Section 5.2.2). The lower bound is the DeepSense model

trained on only labelled data (i.e., q = 0% in Section 5.2.2).

SenseGAN-LaUL attains a considerable improvement on all the three IoT tasks compared

with the upper and lower bound. SenseGAN-LaUL can almost always achieve more than

50% of the maximum gain, i.e., the middle point between the upper and lower bound,

on three tasks with both accuracy and F1 score. Therefore, SenseGAN-LaUL is a good

choice for training IoT applications with extremely limited data. Performance agains show

that SenseGAN can efficiently utilize labelled and unlabelled data to effectively improve the

predictive performance of neural network classifier on IoT tasks.

Ablation Study for Design Choices

The previous experiments focus on evaluating the performance of SenseGAN for semi-

supervised learning on IoT tasks. Recall that we have many design choices within the

SenseGAN structure. In this subsection, we evaluate these design choices of SenseGAN

against baseline models generated by deleting one design component from the SenseGAN

model at a time and measuring the impact. This approach results in the following baselines:

1. SG-noWGAN : This model does not train the adversarial game with the Earth mover’s

distance, defined by Equation (5.3). Instead it uses the original less stable objective

function, defined by Equation (5.1).

2. SG-noGumbel : This model uses softmax instead of Gumbel-Softmax when feeding the

output of classifier into the discriminator, which is discussed in Section 5.1.5.

3. SG-noPseudo: This model deletes the pseudo positive data/label tuples (X
(2)
u , C(X

(2)
u ))

in the training objective function (5.7).
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Table 5.2: Different design choices with p = 10% and q = 100%.

(a) Accuracy.

SenseGAN SG-simpG SG-simpD SG-rnnD SG-noGumbel SG-noWGAN SG-noPseudo DeepSense

HHAR 0.948 0.932 0.926 0.935 0.918 0.920 0.930 0.920
UserID 0.971 0.950 0.946 0.949 0.917 0.916 0.917 0.942
Wisture 0.973 0.973 0.973 0.943 0.943 0.953 0.914 0.903

(b) F1 Score.

SenseGAN SG-simpG SG-simpD SG-rnnD SG-noGumbel SG-noWGAN SG-noPseudo DeepSense

HHAR 0.927 0.915 0.903 0.894 0.882 0.878 0.913 0.883
UserID 0.959 0.941 0.939 0.938 0.911 0.914 0.898 0.923
Wisture 0.973 0.973 0.973 0.939 0.939 0.942 0.884 0.889

4. SG-simpG : This model uses a simple structure for the generator. As shown in Fig-

ure 5.3, instead of individual deconvolution layers for each sensor, this model uses

single but larger deconvolution layers to generate outputs for all sensors.

5. SG-simpD : This model uses a simple structure for the discriminator. As shown in

Figure 5.4, instead of individual convolution layers for each sensor, this model uses

single but larger convolution layers to extract the information from multiple sensor

inputs altogether.

6. SG-rnnD : Instead of using a full-convolution structure, this model uses the DeepSense

structure (with RNN layers) [2] as the discriminator. To best of our knowledge, existing

deep learning libraries do not support high-order gradient for RNN-based structure.

Therefore, we use weight clipping [24] instead of the gradient penalty [73] for the

WGAN training.

The baseline models SG-simpG and SG-simpD are designed such that they each have the

same number of parameters as SenseGAN.

We evaluate all baseline algorithms as well as SenseGAN and DeepSense on the three

IoT tasks with an illustrating case that randomly selects p = 10% of training samples as

labelled data and regards all the rest as unlabelled data, i.e., q = 100%. SenseGAN and

DeepSense work as the “upper bound” and the “lower bound” respectively. All baseline

algorithms should perform better than the supervised counterpart by leveraging unlabelled

data. SenseGAN should perform better than all baseline algorithms, if all design choices of

SenseGAN are reasonable.

Experiment results are shown in Table 5.2. As seen, SenseGAN outperforms all baseline

algorithms in all three tasks, providing strong empirical supports for our design choices. The

112



Wisture takes only one sensor as input, so the structure of SenseGAN, SG-simpG, and SG-

simpD are identical in this task. These three structures therefore have the same predictive

performance for the Wisture task. However, SG-noGumbel and SG-noWGAN can easily

perform worse than the supervised counterpart, DeepSense. This indicates that training

instability can also affect the final performance of classifier by providing noisy supervision

during the adversarial training. SG-simpG and SG-simpD also suffer from performance

degradation. Therefore, our specifically designed structures for handling multimodal sens-

ing inputs are crucial to semi-supervised learning for IoT applications. SG-noPseudo also

perform worse than the supervised counterpart. Thus pseudo positive data/label tuples

are important to prevent discriminator from overfitting when the number of labelled data

is limited. In addition, SenseGAN outperforms SG-rnnD in all three tasks, indicating the

instability of RNN-based discriminator.

5.2.3 Energy and Time Efficiencies

Finally, we evaluate the energy and time efficiencies of SenseGAN when running on an

IoT device, Intel Edison. Intel Edison computing platform is powered by the Intel Atom SoC

dual-core CPU at 500 MHz and is equipped with 1GB memory and 4GB flash storage. For

fairness, all models are run solely on CPU during experiments. Please notice that only the

classifier of SenseGAN need to be loaded and executed on the IoT device during inference.

The discriminator and generator only help the classifier to leverage unlabelled data during

training, and they can be deleted after the training process.

We evaluate SenseGAN and all baseline models used in Section 5.2.2 trained on 10% of

labelled data by measuring their per-inference running time and energy consumption. All

the measurements are reported by taking the mean of 500 experiments.

The results on three IoT tasks are illustrated in Figure 5.10, 5.11, and 5.12. SenseGAN

and its supervised counterpart, DeepSense, have almost the same running time and en-

ergy consumption on three tasks, while other semi-supervised models consume a little more

time and energy during inference compared their supervised counterparts. This observation

highlights the feature of SenseGAN that can leverage unlabelled sensing data for training

without additional time and energy consumption during inference on IoT devices. In addi-

tion, random forest based algorithms, Semi-RF and RF, take relatively long time to run. It

is because random forest models consist of long decision paths that contain a large number

of condition operations, which slow down the instruction pipelining in the CPU.
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Figure 5.10: Running time and energy consumption of HHAR
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Figure 5.11: Running time and energy consumption of UserID
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Figure 5.12: Running time and energy consumption of Wisture

5.2.4 Hyper-parameter Tuning

The training process of SenseGAN is controlled by several hyper-parameters. α controls

the tradeoff between two types of negative tuples created by the generator and the classifier.

γ controls the tradeoff between loss functions generated by the supervised classification

error and the adversarial game among three components. λ controls the strength of gradient

penalty. In this subsection, we evaluate the final performance of SenseGAN with different

choices of these three hyper-parameters on three IoT tasks.

We still evaluate with an illustrating case that randomly selects p = 10% of training sam-

ples as labelled data and regards all the rest as unlabelled data, i.e., q = 100%. The

default value of α is 0.5; λ is 10; and γ is 10, 150, and 100 for HHAR, UserID, and
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Figure 5.13: Accuracy of HHAR with hyperparameters α, γ, and λ.
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Figure 5.14: Accuracy of UserID with hyperparameters α, γ, and λ.
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Figure 5.15: Accuracy of Wisture with hyperparameters α, γ, and λ.

Wisture respectively. During each set of experiments, we only change the value of tar-

get hyper-parameter, while keeping all other hyper-parameters as the default values. The

tradeoffs between the prediction accuracy of the choices of hyper-parameters are shown in

Figure 5.13, 5.14, and 5.15.

For α, it achieves the best performance with 0.5 on all three tasks. Therefore, treating two

types of negative tuples equally helps to improve the predictive performance of SenseGAN.

Similarly, λ consistently achieves the best performance when equals to 10 in all three tasks.

These experiments show that fixed fault values work well for α and λ in practice, so we

do not have to tune the value of α and λ for different tasks. However, the values of γ are

different when achieving the highest accuracy in three tasks. When γ is small, the classifier

cannot obtain enough learning signal from the labelled data. When γ is large, the learning

signal from the labelled data can overwhelms the learning signal from the adversarial game.

Therefore, we need to fine tune the value of γ to balance these two types of learning signals

for different tasks.
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CHAPTER 6: DEEP LEARNING FOR RELIABLE IOT SYSTEMS

In this section, we first introduce the technical details of the RDeepSense framework.

Then, we evaluate RDeepSense with two representative and challenging IoT applications

based on uncertainty measuring, accuracy, and resource consumption.

6.1 THE DESIGN OF RDEEPSENSE FRAMEWORK

This section elaborates on the technical details of the RDeepSense framework in three

constituents. Section 6.1.1 introduces a simple yet effective recipe to build a fully-connected

neural network with predictive uncertainty estimations. In Section 6.1.2, we introduce

preliminary knowledge and make the theoretical analysis of RDeepSense. We prove that

RDeepSense is a mathematically grounded method to obtain predictive uncertainty estima-

tions. In Section 6.1.3, we introduce an effective and efficient approximation for RDeepSense

to obtain predictive uncertainty estimations while running on the resource-constrained em-

bedded devices.

6.1.1 RDeepSense components

RDeepSense is a simple and effective method that empowers fully-connected neural net-

works to output predictive uncertainty estimations. There are only two steps to convert an

arbitrary fully-connected neural networks into a neural network with uncertainty estima-

tions:

1. Insert dropout operation to each fully-connected layer.

2. Adopt a proper scoring rule as the loss function, and emit a distribution estimation

instead of a point estimation at the output layer.

The following two parts describe dropout training and proper scoring rules in detail.

Dropout training Fully-connected neural networks can be formulated using the following

equations:

y(l) = x(l)W(l) + b(l),

x(l+1) = f (l)
(
y(l)
)
,

(6.1)
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where the notation l = 1, · · · , L is the layer index in the fully-connected neural network. For

any layer l, the weight matrix is denoted as W(l) ∈ Rd(l−1)×d(l) ; the bias vector is denoted as

b(l) ∈ Rd(l) ; the input is denoted as x(l) ∈ Rd(l−1)
; and d(l) is the dimension of the lth layer.

In addition, f (l)(·) is a nonlinear activation function.

However, such formulations could run into feature co-adapting and model overfitting prob-

lems. To avoid these problems, researchers introduce the concept of dropout as a regular-

ization method [53]. “Dropout” originally refers to dropping out hidden and visible units

in a neural network, which is mathematically equivalent to ignoring rows of the weight ma-

trix W(l). Therefore, a fully-connected neural network with dropout can be represented as

follows:

z
(l)
[i] ∼ Bernoulli(p

(l)
[i] ),

W̃(l) = diag
(
z(l)
)
W(l),

y(l) = x(l)W̃(l) + b(l),

x(l+1) = f (l)
(
y(l)
)
.

(6.2)

As shown in (6.2), a vector of Bernoulli variables z(l) ∈ {0, 1}d(l−1)
forms a diagonal matrix

which acts as a mask to dropout the ith row of W̃(l) with probability p
(l)
[i] . Intuitively, the

dropout operations (4.1) convert a traditional (deterministic) neural network with param-

eters {W(l)} into a random Bayesian neural network with random variables {W̃(l)}, which

equates a neural network with a statistical model without using the Bayesian approach

explicitly. This conversion with dropout helps us to obtain predictive uncertainty estima-

tions and avoid the computationally intensive operations used in Bayesian approaches. The

detailed analysis about the equivalence will be discussed later.

Proper scoring rules Optimizing a deep neural network requires minimizing the loss

function. Therefore the loss function plays a crucial role in designing an effective neural

network. Many commonly used neural network loss functions are proper scoring rules, such

as logistic loss and hinge loss.

Scoring rules, also known as score functions, measure the quality of predictive uncertain-

ties [81]. Assume that pθ(y|x) is the probabilistic distribution represented by a deep neural

network. The scoring rule S(pθ(y|x), (x, y)) assigns a numerical score for the quality of pre-

dictive distribution pθ(y|x) on event (x, y) ∼ q(x, y), where q(x, y) is the true distribution

of data samples. The expected scoring rule is formulated as

S(pθ(y|x), q(x, y)) =

∫
q(x, y)S(pθ(y|x), (x, y))dxdy. (6.3)
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For a proper scoring rule, the equality in S(pθ(y|x), q(x, y)) ≥ S(q(x, y)), q(x, y)) holds if

and only if pθ(y|x) = q(x, y). Widely-adopted proper scoring rules include Log-likelihood

log pθ(y|x) and Brier score −
∑K

k=1(1k(y)− pθ(y = k|x))2.

RDeepSense employs a tunable function, the weighted sum of negative log-likelihood and

mean square error (Brier score for classification problems), which is a proper scoring rule,

as the loss functions for both regression and classification problems. This loss function tries

to offset the effect of overestimation and underestimation caused by negative log-likelihood

and mean square error respectively, which will be analyzed and evaluated later.

For regression problems, in order to optimize the neural network with negative log-

likelihood, we have to emit a distribution estimation instead of a point estimation at the

output layer. Therefore, we slightly change the structures of neural networks. The last

output layer generates both the predictive mean µ(ŷ) and the predictive variance σ2(ŷ). Ac-

cording to the notation in (6.2), the output layer is represented by xL+1 =
[
µ(ŷ), σ2(ŷ)

]ᵀ
=[

y
(L)
[0] , softplus(y

(L)
[1] )
]ᵀ

, where softplus function is log(1 + exp(·)) enforcing the positivity

constraint on the variance. Predictive mean µ(ŷ) and predictive variance σ2(ŷ) compose

a Gaussian distribution N (µ(ŷ), σ2(ŷ)) as the output predictive distribution of the neural

network.

Then the final loss function of a regression problem, Lr, is the weighted sum of mean

square error Lre and negative log-likelihood Lrl,

Lre =
N∑
n=1

(
y − µ(ŷ)

)2
+ λe

L∑
l=1

‖W(l)‖2
2,

Lrl =
N∑
n=1

(1

2
log σ2(ŷ) +

1

2σ2(ŷ)

(
y − µ(ŷ)

)2
)

+ λl

L∑
l=1

‖W(l)‖2
2,

Lr = (1− α) · Lrl + α · Lre,

(6.4)

where N is the number of training samples, the second term in the first two equations are

the L2 regularization, and α is a hyper-parameter.

As we will discuss in Section 6.1.2 and evaluate in Section 6.2.5, a larger α leads neural

networks to focus more on estimating an accurate mean value, which may underestimate

the true uncertainties, while a smaller α leads neural networks to estimate a larger variance

during the optimization process, which may overestimate the true uncertainties. Therefore,

α is a hyper-parameter that makes the bias-variance tradeoff and is tuned to generate a

well-calibrated predictive uncertainty, i.e., neither underestimation nor overestimation.

For the classification problem, f (L)(·) is the softmax function that generates predictive

probabilities for each category. The final loss function of a classification problem, Lc, is the
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weighted sum of mean square error Lce and negative log-likelihood Lcl,

Lce =
N∑
n=1

K∑
k=1

(1k(y)− pθ(y = k|x))2 + λe

L∑
l=1

‖W(l)‖2
2,

Lcl =
N∑
n=1

− log pW(ŷ = y|x) + λl

L∑
l=1

‖W(l)‖2
2,

Lc = (1− α) · Lcl + α · Lce,

(6.5)

where N is the number of training samples, K is the number of classes, the second term in

the first two equations are the L2 regularization, and α is a hyper-parameter.

In summary, the whole neural network is optimized through a tunable proper scoring

rule that maximizes the quality of predictive uncertainties. The detailed theoretical backup

and proof of the equivalence between RDeepSense and a statistical model will be shown in

Section 6.1.2.

6.1.2 The equivalence between RDeepSense and statistical models

Uncertainty estimations are usually inferred by a statistical model, such as a gaussian

process [82] and a graphical model [83]. This section provides the theoretical bases for using

RDeepSense to estimate predictive uncertainties by proving the equivalence between the

RDeepSense model and a statistical model. To achieve this goal, we first summarize the

preliminary knowledge about the equivalence between dropout training with mean square

error and a deep Gaussian process, which is proposed by Gal et al. [84]. Then we prove the

equivalence between dropout with the proper scoring rule (log-likelihood) and a Gaussian or

categorical distributions based on latent deep Gaussian process. Finally, we generalize the

analysis to another tunable proper scoring rule, weighted sum of log-likelihood and negative

mean square error, which provides the theoretical foundation for the RDeepSense.

Preliminary: Dropout with mean square error Gaussian process is a powerful sta-

tistical tool that allows us to model distribution over functions [82]. The proof optimize a

variational approximation of deep Gaussian process is equivalent to optimizing an dropout

neural network based on mean square error as the loss function, which is first discussed and

proven by Gal et al. [84].

However, mean square error is not a proper scoring rule for regression problems, which can-

not generate a well calibrated uncertainty estimations. Besides, due to the mode matching

nature of KL divergence, the variational approximating usually generates a highly underes-
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timated predictive uncertainty [85], which is also verified in our experiments in Section 6.2.4.

Therefore we further discuss the case of dropout training with proper scoring rules, which

enables RDeepSense to provide a high quality uncertainty estimation.

Dropout with negative log-likelihood We have introduced the previous work that

treats a neural network with dropout training based on mean square error loss function as

a deep Gaussian process with variational approximation. We call this method MCDrop.

However, there are two drawbacks for MCDrop. One is the underestimation of predictive

distribution. Variational Bayesian used in MCDrop is known to provide underestimated

posterior uncertainty, because optimizing the KL divergence will generate a low-variance

estimation to a single mode of true posterior distribution [85]. In addition, the loss func-

tion of MCDrop is not a proper scoring rule that can help to mitigate the negative effect

of underestimation caused by the variational Bayesian method. Underestimation is not a

desirable property for mobile and ubiquitous computing applications, because it means that

the deep neural network will always be over-confident about its prediction results.

The other drawback of MCDrop is the high computational burden during uncertainty

estimation. Since the output of MCDrop is a stochastic point estimation, Monte Carlo

sampling method is required to estimate the predictive mean and variance. Therefore we

need to run the whole neural network for multiple times, i.e., running k times for k samples,

to generate the predictive uncertainty. Since running time and energy consumption are

two crucial problems for mobile and ubiquitous computing applications, MCDrop is not a

suitable solution for applications running on embedded devices.

Therefore, we integrate proper scoring rules and dropout training in RDeepSense to solve

the aforementioned two drawbacks. The proper scoring rules such as log-likelihood help to

reduce or even erase the underestimation effect of MCDrop, because proper scoring rule is

a score function that gives higher quality uncertainty estimations more credits. In addition,

since a neural network with proper score rule directly generates a predictive distribution

estimation instead of a point estimation, we can efficiently obtain an approximated expec-

tation of uncertainty estimation through dropout inference. At the same time, dropout as

Bayesian approximation can provide a equivalence between the deep neural network and a

statistical model, which guarantees RDeepSense to be a mathematically grounded uncer-

tainty estimation method.

Readers can refer detailed proof in our original paper [6] that training a fully-connected

neural network with dropout and negative log-likelihood loss function is equivalent to a

Gaussian or categorical distribution based on the latent deep Gaussian process.
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Dropout with weighted sum of negative log-likelihood and mean square error

Training a neural network with a proper scoring rule, log-likelihood loss, should generate

predictive uncertainty estimations that faithfully reflect the probability that the prediction

will happen. However, training a neural network will log-likelihood loss solely could converge

to a local optima that overestimates the true uncertainty empirically, which will be shown

in our evaluation Section 6.2.4.

The intuitive explanation for this phenomenon is straight-forward. During the early phase

of training a neural network with log-likelihood loss, it is relatively hard to generate an

accurate estimation of predictive mean. Then increasing the value of variance estimation

can consistently decrease the negative log-likelihood loss with a high probability, since there

is only a logarithm term that prevents variance from increasing as shown in (6.4). Therefore,

the predictive uncertainty tends to favor an estimation with large variance that overestimates

the true uncertainty. As a result, although log-likelihood loss is a proper score rule that

assigns more credits to predictive uncertainties with higher quality, it usually fails to achieve

a good bias-variance tradeoff during training process in practice.

In order to achieve a well-calibrated uncertainty estimation, i.e., an estimation that neither

underestimates nor overestimates, we design a tunable proper scoring rule as the training

objective function of RDeepSense. It is a weighted sum of log-likelihood and negative mean

square error controlled by a hyper-parameter α,

(1− α) · log pW(ŷ = y|x)− α · (ŷ − y)2. (6.6)

With the definition in Section 6.1.1, we can easily see that (6.6) is a proper scoring rule.

According to the analysis in the previous two subsections 6.1.2 and 6.1.2, we can see that

RDeepSense, training fully-connected neural network by maximizing the weighted sum of

log-likelihood and negative mean square error, is equivalent to the mixture distribution of a

Gaussian or categorical distribution based on the latent deep Gaussian process and a deep

Gaussian process.

Since training solely with negative mean square error or log-likelihood tends to underes-

timate or overestimate the predictive uncertainties respectively, it is easy to fine-tune the

hyper-parameter α with the validation dataset. When the predictive uncertainty is under-

estimated, we decrease the value α, and vice versa.
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6.1.3 RDeepSense uncertainty estimation

The previous sections prove that RDeepSense is a mathematically grounded method to

estimate predictive uncertainties for fully-connected neural networks. In this section, we

show that RDeepSense can efficiently estimate predictive uncertainties of fully-connected

neural networks with only little computational overhead.

According to the analysis in our original paper [6], the approximated predictive distribu-

tion is

q(y|x) =

∫
p(y|x,W)q(W)dW = Eq(W)

[
p(y|x,W)

]
, (6.7)

where W = {W̃(l)} is the random variables generated by dropout operations at each layer.

z
(l)
[i] ∼ Bernoulli(p

(l)
[i] ),

W̃(l) = diag
(
z(l)
)
W(l).

(6.8)

Usually Monte Carlo estimation is used to approximate the predictive distribution q(y|x)

through sampling random variables W ,

q(y|x) =
1

M

M∑
m=1

p(y|x,Wm). (6.9)

For classification, (6.9) is the average of categorical distribution. For regression, (6.9)

is an average of Gaussian distributions. If we assume that M Gaussian distributions are

independent, the resulted average distribution can be approximated by a single Gaussian

distribution according to the central limit theorem,

1

M

M∑
m=1

p(y|x,Wm) =
M∑
m=1

N (µm(x), σ2
m(x))

= N (µ̂(x), σ̂2(x)),

µ̂(x) =
1

M

M∑
m=1

µm(x),

σ̂2(x) =
1

M

M∑
m=1

(
σ2
m(x) + µ2

m(x)
)
− µ̂2(x).

(6.10)

The drawback of Monte Carlo estimation for embedded devices is its high energy and

time consumptions. We have to run the whole neural network for M times to generate M

samples, which is not suitable for embedded devices with limited resources.
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Fortunately, there is a simple yet effective recipe proposed by the dropout operation

that can effectively approximate the expected output value instead of using Monte Carlo

estimation [53]. During test time, the dropout operation is changed from (4.1) into

W̃(l) = diag
(
p(l)
)
W(l),

y(l) = x(l)W̃(l) + b(l),

x(l+1) = f (l)
(
y(l)
)
.

(6.11)

Although the approximation (6.11) is not theoretically equivalent to the Monte Carlo esti-

mation (6.10) by assuming the zero variance of mean estimation,
∑M

m=1 µ
2
m(x)−(

∑M
m=1 µm(x))2 =

0, the proposed approximation (6.11) turns to be an effective and efficient approximation

during the evaluation in Section 6.2. In the evaluation section, we will empirically compare

the biased approximation (6.11) with the unbiased Monte Carlo estimation (6.10).

Therefore, with the approximation (6.11), we can directly estimate the expected predic-

tive mean and variance of a Gaussian distribution for regression problems and expected

categorical probabilities for classification problems by just running the neural network for

a single time. This makes RDeepSense a suitable candidate for deep neural networks with

uncertainty estimations used in mobile and ubiquitous computing applications.

6.2 THE EVALUATION OF RDEEPSENSE

In this section, we evaluate RDeepSense on two mobile and ubiquitous computing tasks.

We first introduce the experimental setup for each task, including hardware, datasets, and

baseline algorithms. We then evaluate the accuracy and the quality of uncertainty estima-

tion. Next, we evaluate the inference time and energy consumption of all algorithms on the

testing hardware. At last we evaluate and analyze the effect of hyper-parameter α in the

training objective function (6.6) on the model performance such as accuracy and quality of

uncertainty estimation.

6.2.1 Testing hardware

Our testing hardware is based on Intel Edison computing platform [38]. The Intel Edison

computing platform is powered by the Intel Atom SoC dual-core CPU at 500 MHz and is

equipped with 1GB memory and 4GB flash storage. For fairness, all neural network models

are run solely on CPU during evaluation for inference time and energy consumption.
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Table 6.1: Statistical Information of four datasets used in evaluations

Dataset Training Size Validating Size Testing Size Mean of output Std of output Range of output

BPEst 1,281,098 26,689 26,689 88.74 25.01 [50.0, 199.93]
NYCommute 10,287,766 214,328 214,328 15.08 52.79 [0.0, 1439.5]

GasSen 2,839,933 59,166 59,166 94.56 145.16 [0.0, 533.33]
HHAR 28,314 1,686 1,686 N/A N/A {0, 1, 2, 3, 4, 5}

6.2.2 Evaluation tasks

We conduct four experiments related to human health and wellbeing, smart city trans-

portation, environment monitoring, and human activity recognition We conduct two exper-

iments on environment monitoring and human activity recognition with RDeepSense and

other two state-of-the-art deep learning uncertainty measuring methods as well as a sta-

tistical model. The experimental settings of the tasks and datasets are introduced in this

subsection.

The detailed statistical information of four datasets is illustrated in Table 6.1

• BPEst: Cuffless blood pressure monitoring through photoplethysmogram. The first task

is to monitor cuffless blood pressure through photoplethysmogram from fingertip. The

dataset is originally collected by patient monitors at various hospitals between 2001

and 2008. Waveform signals were sampled at the frequency of 125 Hz with at least 8

bit accuracy [86]. The photoplethysmogram from fingertip (PPG) and arterial blood

pressure (ABP) signal (mmHg) is extracted by Mohamad et al. for the non-invasive

cuffless blood pressure monitoring task [87].1 The target of BPEst task is to infer

the waveform of ABP based on the waveform of PPG collected from fingertips. This

is a more challenging task compared with estimating the upper and lower bound of

the blood pressure, which requires a more precise estimation of predictive uncertainty.

During the experiment, a learning model is trained to estimate a 2-second ABP wave-

form (250 samples) based on the corresponding 2-second PPG waveform.

• NYCommute: Commute time estimation of New York City. Smart transportation is

an increasingly important task within the topic of smart city. The second task is to

estimate commute time in New York City through the pick-up time and location as well

as the drop-off location. We use the yellow and green taxi trip records within January

2017 as the training, validation, and testing dataset.2 The input of the learning model

is a vector with 5 elements, containing the standardized longitude and latitude of

pick-up and drop-off location as well as the pick-up time within a day. The output of

1https://archive.ics.uci.edu/ml/datasets/Cuff-Less+Blood+Pressure+Estimation
2http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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the learning model is the expected commute time and its corresponding uncertainty

estimation.

• GasSen: Estimate dynamic gas mixtures from chemical sensors. The third task is

related to the environment monitoring. The task is to estimate real concentration of

Ethylene and CO gas mixture from an array of low-end chemical sensors. Fonollosa et

al. constructed the dataset by the continuous acquisition the signals of a sensor array

with 16 chemical sensors for a duration of about 12 hours without interruption with the

sampling frequency of 100 Hz [88]. 3 Gas concentrations range from 0− 600 parts-per-

million (ppm). The learning model is trained and tested to predict the concentration

Ethylene and CO gas mixtures through the vector of 16 sensor inputs.

• HHAR: Heterogeneous human activity recognition. This is the same task as we de-

scribed in Section 3.2.1.

6.2.3 Baseline algorithms

We compare RDeepSense with other two state-of-the-algorithm deep learning uncertainty

estimation algorithms, RDeepSense with Monte Carlo estimation, and Gaussian process.

The algorithms with deep neural network, including RDeepSense, use the same neural net-

work architecture. It is a 4-layer fully-connected neural network with 500 hidden dimension.

• MCDrop: This algorithm is based on the Monte Carlo dropout as described in Sec-

tion 6.1.2 [84]. Compared with RDeepSense, the main difference is that MCDrop is not

optimized by a proper scoring rule. MCDrop requires running the neural network for

multiple times to generate samples during uncertainty estimation. Therefore we use

MCDrop-k to represent MCDrop with k samples. Multiple samples, i.e., k > 1, are

required to generate a predictive uncertainty estimation. During the evaluation, we

let k to be 3, 5, 10, and 20 to evaluate the tradeoff between the quality of uncertainty

estimation and the resource consumption for MCDrop.

• SSP: This algorithm trains the neural network with proper scoring methods and uses

the ensemble method [89]. Compared with RDeepSense, the main difference is that

SSP uses the ensemble method instead of the dropout operation in each layer. SSP

requires training multiple neural networks for ensemble. Therefore we use SSP-k to

represent SSP by ensemble k individual neural networks. During the evaluation, we

3https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
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let k to be 1, 3, 5, and 10 to evaluate the tradeoff between the quality of uncertainty

estimation and the resource consumption for SSP.

• RDeepSense-MC: This algorithm is basically the proposed RDeepSense algorithm. The

difference is that, during the inference, RDeepSense-MC uses Monte Carlo estima-

tion (6.10) instead of the efficient approximation (6.11) for uncertainty estimation.

Therefore we use RDeepSense-MCk to present RDeepSense-MC with k samples. Dur-

ing the evaluation, we let k to be 3, 5, 10, and 20 to evaluate the effectiveness and

efficiency of RDeepSense inference approximation (6.11) compared with the Monte

Carlo estimation (6.10).

• GP: Gaussian process (GP) is the baseline algorithm used during the evaluation of

accuracy and the quality of uncertainty estimations, but not for the evaluations of

running time and energy consumption on Edison. The main reason is that the com-

putation cost during model inference for GP is O(N3), where N is the number of data

instances. This cost can be prohibitive even for moderately sized datasets on embedded

devices, such as Intel Edison. In additional, GP requires O(N2) memory consumption

during training. Therefore we train the GP with only a proportion of dataset on a

server with 128GB memory. Notice that GP is the baseline used to illustrate the qual-

ity of uncertainty estimations generated by a statistical model, so the size of training

dataset is not the main concern.

6.2.4 Accuracy of prediction and quality of uncertainty estimations

In this section, we discuss the accuracy and the uncertainty estimation quality of RDeepSense

compared with the other baseline algorithms. RDeepSense is tuned with the validating

dataset, and all algorithms in all experiments are tested on the testing dataset.

For the regression problem, two types of evaluation results will be illustrated and dis-

cussed. The first type of evaluation is based on some basic measurements including mean

absolute error and negative log-likelihood. The second type of evaluation is based on the

calibration curves, also known as reliability diagrams. We compute the z% confidence

interval for each testing data based on predictive mean and variance of each algorithm.

Then we measure the fraction of the testing data that falls into this confidence interval.

For a well-calibrated uncertainty estimation, the fraction of testing data that falls into

the confidence interval should be similar to z%. We compute the calibration curves with

z = [10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 95%, 99%, 99.5%, 99.9%] for all three re-

gression problems.
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Table 6.2: Mean Absolute Error (MAE) and Negative Log-Likelihood (NLL) for the BPEst task.
Except for RDeepSense-MC20, RDeepSense is the best-performing algorithm for NLL and is the

second best-performing algorithm for MAE.

RDeepSense RDeepSense-MC3 RDeepSense-MC5 RDeepSense-MC10 RDeepSense-MC20
MAE 14.18 14.93 14.64 14.44 14.32
NLL 3.46 3.49 3.47 3.46 3.45

SSP-1 SSP-3 SSP-5 SSP-10 GP
MAE 15.76 14.68 14.67 14.78 19.15
NLL 4.4 3.69 3.48 3.49 3.59

MCDrop-3 MCDrop-5 MCDrop-10 MCDrop-20
MAE 14.80 14.41 14.09 14.09
NLL 38.1 5.28 4.00 4.00
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Figure 6.1: The calibration curves of BPEst for RDeepSense, GP, MCDrop-k, SSP-k, and
RDeepSense-MCk. MCDrop-k underestimates the predictive distribution. SSP-k overestimates

the predictive distribution. RDeepSense is the closest curve to the optimal predictive distribution.

For the classification problem, the calibration curve is not available. Therefore, we evaluate

HHAR based on accuracy, F1 Score, negative log-likelihood, and a new measurement called
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the mean entropy of false predictions. If the entropies of false predictions are higher, the

learning algorithms show more uncertainties about the false predictions, which represents a

better quality of uncertainty estimations.

BPEst

We first compare RDeepSense with four baseline algorithms based on mean absolute er-

ror (MAE) and negative log-likelihood (NLL), which is illustrated in Table 6.2, where we

highlight the results of RDeepSense and the best-performing one.

From Table 6.2, we can see that, except for RDeepSense-MC20, RDeepSense is the best-

performing and the second best-performing algorithm for NLL and MAE respectively, which

means that RDeepSense can provide accurate estimation with high-quality predictive uncer-

tainty. RDeepSense-MC20 only slightly beats RDeepSense on NLL, however RDeepSense-

MC20 consumes around ×20 time and energy compared with RDeepSense. The performance

of MCDrop-k increases when k increases. Larger k means that MCDrop algorithm gener-

ates more samples during model inference, which can provide higher-quality estimations but

more resource consumptions. MCDrop-3 provides a relatively bad result for NLL, which

means MCDrop does require a number of samples for uncertainty estimation with reason-

able quality. The ensemble method used in SSP increases the prediction performance, but it

is not consistent. SSP-10 observes the performance degradation compared with SSP-5. GP

obtains a relatively large MAE. This is because GP cannot be scaled to train on the whole

dataset.

The calibration curves of BPEst task is illustrated in Figure 6.1. These three figures

show the quality of predictive uncertainty estimations. RDeepSense generates predictive

uncertainties with the highest quality. RDeepSense even slightly out-performs the traditional

statistical model, GP. As we mentioned in Section 6.1.2, MCDrop-k tends to underestimate

the predictive uncertainty, while SSP-k tends to overestimate the predictive uncertainty.

RDeepSense even generates predictive uncertainty with better calibration compared with

RDeepSense-MCk, which indicate the effectiveness of approximation during inference. All

MCDrop-k, SSP-k, and RDeepSense-MCk improve the quality of uncertainty estimations by

increasing the value of k.

NYCommute

Then we compare RDeepSene with baseline algorithms for NYCommute task. The com-

parison based on Mean Absolute Error (MAE) and Negative Log-Likelihood (NLL) is shown
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in Table 6.3.

Table 6.3: Mean Absolute Error (MAE) and Negative Log-Likelihood (NLL) for the NYCommute
task.

RDeepSense RDeepSense-MC3 RDeepSense-MC5 RDeepSense-MC10 RDeepSense-MC20
MAE 5.64 6.10 6.04 5.99 5.96
NLL 7.7 7.85 7.81 7.73 7.7

SSP-1 SSP-3 SSP-5 SSP-10 GP
MAE 8.15 7.90 7.51 7.03 11.84
NLL 4.86 4.67 4.84 4.81 7.46

MCDrop-3 MCDrop-5 MCDrop-10 MCDrop-20
MAE 5.69 5.64 5.61 5.61
NLL 19995.6 1335.73 640.35 640.35
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(c) The calibration curves of RDeepSense, GP,
and RDeepSense-MCk.

Figure 6.2: The calibration curves of NYCommute for RDeepSense, GP, MCDrop-k, SSP-k, and
RDeepSense-MCk. MCDrop-k highly underestimates the predictive distribution. SSP-k highly

overestimates the predictive distribution. RDeepSense makes a tradeoff between these two and is
the closest curve to the optimal predictive distribution.
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In this task, RDeepSense tends to find a balance between MAE and NLL measurements.

MCDrop-k shows low MAE and high NLL, while SSP-k shows high MAE and low NLL.

MCDrop-k tries to minimize the mean square error, while SSP-k tries to minimize the neg-

ative log-likelihood. Therefore, MCDrop-k focuses more on the mean of predictive distribu-

tion, and SSP-k focuses more on the overall likelihood. RDeepSense combines two objective

functions, mean square error and negative log-likelihood, which tries to find a balance point

between these two. Still, due to the scalability problem, GP obtains a relatively larger MAE.

Compared with RDeepSense-MCk, RDeepSense achieve a good performance on both MAE

and NLL. Only RDeepSense-MC20 shows the same performance on the NLL measurement.

The calibration curves of NYCommute task is illustrated in Figure 6.2. Both MCDrop-k

and SSP-k fail to generate high-quality uncertainty estimations by either underestimating

or overestimating the predictive uncertainties. However, RDeepSense can still provide un-

certainty estimations with good quality, which outperforms GP with a significant margin.

Compared with RDeepSense-MCk, RDeepSense shows similar performance on generating

well-calibrated predictive uncertainties, which shows that the approximation (6.11) works

well in practice.

GasSen

Next we compare RDeepSense with other baseline algorithms for the GasSen task. Ta-

ble 6.4 illustrates the performance of all these algorithms based on Mean Absolute Error

(MAE) and Negative Log-Likelihood (NLL). Except for RDeepSense-MC20, RDeepSense is

the best-performing algorithm according to these two metrics. Similarly, MCDrop-k shows

low MAE and NLL, while SSP-k shows high MAE and NLL. This is due to the objective

of these two types of algorithms. MCDrop-k minimizes the mean square error, while SSP-k

minimizes the negative log-likelihood. Therefore, MCDrop-k focuses more on the mean of

predictive distribution, and SSP-k focuses more on the overall likelihood. RDeepSense com-

bines two objective function. Therefore, RDeepSense is able to achieve the best performance

in both cases. The usage of dropout that prevents feature co-adapting is the main reason

why RDeepSense achieves better NLL compared with SPP-k. The RDeepSense still achieves

good performance compared with its Motel Carlo version. Only RDeepSense-MC20 slightly

outperforms RDeepSense under the NLL measurement, which shows the effectiveness of the

approximation used in RDeepSense.

The calibration curves of GasSen task is illustrated in Figure 6.3. The calibration curves of

MCDrop-k highly underestimates the predictive distribution as shown in Figure 6.3a, while

the calibration curves of SSP-k highly overestimates the predictive distribution as shown
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Table 6.4: Mean Absolute Error (MAE) and Negative Log-Likelihood (NLL) for the GasSen task.
Except for RDeepSense-MC20, RDeepSense is the best-performing algorithm for both MAE and

NLL.

RDeepSense RDeepSense-MC3 RDeepSense-MC5 RDeepSense-MC10 RDeepSense-MC20
MAE 15.25 17.21 16.44 16.34 15.61
NLL 3.77 4.23 4.18 3.88 3.73

SSP-1 SSP-3 SSP-5 SSP-10 GP
MAE 24.40 22.53 20.75 20.68 35.74
NLL 4.76 4.34 3.92 3.81 7.76

MCDrop-3 MCDrop-5 MCDrop-10 MCDrop-20
MAE 21.23 20.45 19.79 19.79
NLL 2201.95 463.94 170.45 170.45
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Figure 6.3: The calibration curves of GasSen for RDeepSense, GP, MCDrop-k, SSP-k, and
RDeepSense-MCk. MCDrop-k highly underestimates the predictive distribution. SSP-k highly

overestimates the predictive distribution. RDeepSense is the closest curve to the optimal
predictive distribution.
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Table 6.5: Accuracy (Acc), Negative Log-Likelihood (NLL), Mean Entropy of False Predictions
(MEFP) for the HHAR task. RDeepSense is the best-performing algorithm according to all

measures.

RDeepSense RDeepSense-MC3 RDeepSense-MC5 RDeepSense-MC10 RDeepSense-MC20
Acc 83.98% 80.66% 83.07% 83.08% 83.85%

F1 Score 0.670 0.601 0.638 0.668 0.671
NLL 0.161 0.193 0.188 0.172 0.159

MEFP 1.715 1.604 1.621 1.626 1.628

SSP-1 SSP-3 SSP-5 SSP-10 GP
Acc 77.15% 78.34% 79.30% 80.30% 77.29%

F1 Score 0.650 0.652 0.657 0.661 0.659
NLL 1.138 1.188 1.165 1.214 0.807

MEFP 1.619 1.629 1.672 1.708 1.218

MCDrop-3 MCDrop-5 MCDrop-10 MCDrop-20
Acc 79.53% 79.73% 79.73% 80.51%

F1 Score 0.586 0.589 0.589 0.593
NLL 0.166 0.163 0.162 0.161

MEFP 0.501 0.548 0.574 0.579

in Figure 6.3b. Although there exists a bit deviation for RDeepSense compared with the

optimal calibration curve, RDeepSense greatly reduces the effect of underestimation and

overestimation, and slightly outperforms the traditional statistical model, GP. Compared

with unbiased RDeepSense-MCk, RDeepSense shows the similar performance. However,

RDeepSense saves save a great amount of energy and time consumption as we will discuss

in Section 6.2.5.

HHAR

Last we compare RDeepSense with the other baseline algorithm for the HHAR task.

Table 6.5 illustrates the performance metrics of all algorithms based on Accuracy (Acc), F1

Score (F1 Score), Negative Log-Likelihood (NLL), and Mean Entropy of False Predictions

(MEFP).

Except for RDeepSense-MC20, RDeepSense is the best-performing algorithm according

to all measures, which means RDeepSense can provide both high prediction accuracy as

well as high quality of uncertainty estimations. MCDrop-k algorithms are trained with

log-likelihood. Therefore they try to minimize the negative log-likelihood, but they are over-

confident about their prediction even when they make some wrong predictions according to

the MEFP measure. SSP-k algorithms are trained with Brier score. Therefore they fall short

to achieve smaller NLL values. Compared with RDeepSense-MCk algorithms, RDeepSense

still provides a good performance in all measurements. Only RDeepSense-MC20 shows a

superior performance on F1 Score and NLL measurements.
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6.2.5 Inference time and energy consumption
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Figure 6.4: The inference time and energy consumption of RDeepSense, RDeepSense-MCk,
MCDrop-k, and SSP-k for BPEst.
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Figure 6.5: The inference time and energy consumption of RDeepSense, RDeepSense-MCk,
MCDrop-k, and SSP-k for NYCommute.

We compared the resource consumption of each algorithm including inference time and

energy consumption of one-data-sample execution, which are two key issues for mobile and

ubiquitous computing. All the experiments are conducted on Intel Edison with only CPU

as the computing unit. No further optimization is made on any algorithms. The inference

time and energy consumption of GP are not included. This is because the time complexity

of GP is O(N3), where N is the size of training dataset, which is infeasible for embedded
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Figure 6.6: The inference time and energy consumption of RDeepSense, RDeepSense-MCk,
MCDrop-k, and SSP-k for GasSen.
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Figure 6.7: The inference time and energy consumption of RDeepSense, RDeepSense-MCk,
MCDrop-k, and SSP-k for HHAR.

devices such as Intel Edison. The results of four tasks, i.e., BPEst, NYCommute, GasSen,

and HHAR, are illustrated in Figures 6.4, 6.5, 6.6, and 6.7 respectively.

We can clearly see that RDeepSense greatly reduces the inference time and energy con-

sumption compared with the other deep learning uncertainty estimation algorithms. Com-

pared with MCDrop algorithm, RDeepSense is trained according to the proper scoring rule,

which can directly output the predictive distribution instead of using sampling methods.

Compared with SSP algorithm, RDeepSense uses dropout regularization as an implicit en-

semble method, which avoids running multiple deep learning models during model inference

on embedded devices. Compared with RDeepSense-MC, RDeepSense use the approxima-

tion (6.11) to replace the computationally intensive Motel Carlo method (6.10).
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(a) The relationship between deviation area
and energy consumption for BPEst.
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and energy consumption for NYCommute.
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(c) The relationship between deviation area and
energy consumption for GasSen.
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(d) The relationship between negative mean
entropy of false predictions and energy

consumption for HHAR.

Figure 6.8: The relationship between deviation area/negative mean entropy of false predictions
and energy consumption of all algorithms. RDeepSense (in the bottom-left corner) is the

best-performing algorithm that uses the least energy to achieve the best uncertainty estimation
quality

We further analyze the relationship between energy consumption and the quality of uncer-

tainty estimation for each algorithms. For regression problems, we use the area between the

calibration curve of an algorithm and the optimal calibration curve, called deviation area, as

the quality measurement of uncertainty. The smaller deviation area is, the better quality of

uncertainty the algorithm estimates. When the calibration curve of an algorithm is optimal,

the deviation area is 0. For classification problems, we use the negative mean entropy of false

predictions as the quality measurement of uncertainty. Smaller negative mean entropy of

false predictions means is that the algorithm is more uncertain about their false predictions.

The result is shown in Figure 6.8.

The point or line stay in the bottom-left corner of the graph represents a better tradeoff
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between energy and uncertainty quality, i.e., using less energy to obtain better uncertainty

estimations. Therefore, RDeepSense is the best-performing algorithm that uses the least

amount of energy to obtain the best uncertainty estimation quality. RDeepSense-MC can

achieve similar uncertainty estimation quality as RDeepSense, however it requires much more

energy consumption. The results show that RDeepSense is an effective and efficient uncer-

tainty estimation algorithm (6.11) compared with its Monte Carlo version (6.10). Other two

baseline algorithms, MCDrop and SSP, usually suffer a large deviation area or become over-

confidence about their false predictions while using more energy for computation. Figure 6.8

shows that RDeepSense is the most suitable algorithm for generate predictive uncertainty

estimations for mobile and ubiquitous computing application on embedded devices.

Effect of hyper-parameter α on model performance

The hyper-parameter α controls the tradeoff between optimization of mean and variance

within the training objective function (6.6) that can help to obtain a well-calibrated uncer-

tainty estimation. In this subsection, we evaluate the functionality of α and also shed light

on the way of tuning α.

For each task, we train RDeepSense with α = [0, 0.2, 0.4, 0.6, 0.8, 0.9]. When α = 0.0,

RDeepSense is trained by minimizing the negative log-likelihood. When we increase the

value of α, RDeepSense focuses more on the mean value estimation instead of the negative

log-likelihood. In order to show the effect of the choice of α on the quality of predictive un-

certainty estimation, we show the negative log-likelihood and devision area (the area between

the calibration curve of an algorithm and the optimal calibration curve) for regression tasks

and show the negative log-likelihood and Negative Mean Entropy (NME) of false predictions

for the classification task in Figure 6.9.

A good uncertainty estimation should faithfully reflect the probability that prediction

will happen. Therefore, RDeepSense targets on a well-calibrated uncertainty estimation,

such as the prediction with low devision area, in stead of the prediction with low nega-

tive log-likelihood. From Figure 6.9a, 6.9b, and 6.9c, we can see that hyper-parameter α

controls the tradeoff between optimization mean and variance within the training objective

function (6.6). Smaller α tends to reduce negative log-likelihood by increasing the predic-

tive variance, which tends to result the overestimation of predictive uncertainties. Larger α

tends to reduce negative log-likelihood by predicting a better mean value, which tends to

result the underestimation of predictive uncertainties. When tuning the hyper-parameter

α, we can easily found a point that achieve the smallest devision area by grid searching α

from 0 to 1. At the same time, it is not surprising that increasing α can slightly increase
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(b) Negative Log-Likelihood, Mean Absolute
Error, and Deviation Area with different

selections of α for NYCommute.
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Figure 6.9: Negative Log-Likelihood, Mean Absolute Error, and Deviation Area/Negative Mean
Entropy (NME) of false predictions with different selections of α for four tasks.

the negative log-likelihood, since α = 0 represents regarding negative log-likelihood as the

objective function. In addition, Figure 6.9d shows that increasing α can consistently increase
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the negative mean entropy of false predictions.
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CHAPTER 7: DEEP LEARNING SERVICES ON EDGE/CLOUD

In this section, we first introduce the technical details of the RTDeepSense framework.

Then, we implement a user space scheduling framework to verify the effectiveness of RT-

DeepIoT.

7.1 THE DESIGN OF RTDEEPIOT

In this section, we introduce RTDeepIoT, a real-time scheduling model motivated by the

special needs of “smart” embedded/IoT applications that derive their intelligent behavior

from offloading measurements to servers that process them using deep neural networks. We

keep the model in this section relatively abstract, and defer to Section 7.2 the technical

details of applying this model in practice to an actual service prototype. We also ignore

a few complexities first, such as the manner in which we estimate accurate utility values.

Those will be discussed later, when we map the abstract model to the actual design of our

service.

The discussion below presents the scheduling model on the server that must run deep

neural networks on request from client devices when data from these devices arrives at

the server. We assume that communication with the server is not the bottleneck. Later,

in the evaluation, we indeed show that this is the case (due to the comparatively heavier

computational demand of deep neural network processing). Hence, below we model server-

side execution only. Let program Ti refer to a program with a sequence of computation

stages {T (l)
i } for l = 1, · · · , Li, and a relative deadline, di. We define the set T (1:l)

i as the

set of stages {T (1)
i , · · · , T (l)

i }. The utility for running all stages in T (1:l)
i by the deadline is

denoted by U(T (1:l)
i ) = u

(l)
i . No utility is derived from the execution of stages that miss the

deadline.

When executing a stage (typically a layer or more in the neural network), computations

include matrix multiplications and element-wise operations. Matrices and vectors in neural

networks are usually large enough that the available parallelism exceeds the number of un-

derlying cores by a significant multiplicative factor. Therefore, without loss of schedulability,

a stage can be deployed on all cores concurrently, leading to a model where the same stages

run in parallel on all cores. Thus, the system is scheduled as a (replicated) uniprocessor.

As we discuss later, our system uses EDF as the underlying scheduling algorithm, which is

optimal for the uniprocessor scheduling model.

We consider diminishing-return utility curves, a widely encountered case in data process-

139



ing systems. Recent studies on deep learning have shown that the improvement in result

accuracy is indeed diminishing in the depth of the neural network [26]. The formal definition

of diminishing-return utility is as follows:

Definition 7.1. For a utility curve Ui(·), define the differential utility as ∆u
(l)
i = Ui(T (1:l)

i )−
Ui(T (1:l−1)

i ), where Ui(T (1:0)
i ) = 0. The property of diminishing returns is that ∆u

(l1)
i <=

∆u
(l2)
i , if l1 > l2.

In order to ensure the stages of a task are executed in sequence, we abstract the set of

program stages as a multiset, allowing for multiple instances for each of its elements.

Definition 7.2. For n stage-wise programs, we denote the set of all stages of all programs

as a multiset T = {TLii } with i = 1, · · · , n, where the multiplicity of task stage Ti is Li. The

cardinality of multiset is defined as |T | =
∑n

i=1 Li. In addition, set {T li } denotes T (1:l)
i .

The element Ti in multiset does not explicitly refer to executing a specific computation stage,

but to the chance of executing one computation stage in the i-th program with a pre-defined

sequence order. If we select two Ti from the multiset, the i-th program will be scheduled to

run with the depth of 2.

The goal of the scheduler is to choose the best depth, hi, for each program Ti, such that (i)

the resulting system is schedulable under the underlying operating system’s scheduling policy

(we use EDF), and (ii) the overall utility (given by the sum of
∑n

i=1 u
(hi)
i ) is maximized. This

is akin to a knapsack problem with a additional constraint that ensures schedulability.

Let us define S to be the multiset of all task stages that are chosen for execution by our

scheduler (i.e., S = {T hii }). Let us further denote t
(hi)
i as the time period from the arrival

time of task Ti to the time point when all stages in Ti are completed. We can now formulate

the problem as:

max
S⊆T

U(S) =
n∑
i=1

u
(hi)
i

s.t. t
(hi)
i < di

(7.1)

As shown in Definition 7.1, the utility curve of deep learning execution stages follow the

diminishing-return property. The overall utility of scheduling set, therefore, diminishes as

we add more scheduling stages. We express that more formally as Lemma 7.1:

Lemma 7.1. The objective set function U(S) is monotone submodular, i.e., for every S ⊆
W ⊆ T and every v ∈ T \W, it satisfies that U(S ∪ v) − U(S) ≥ U(W ∪ v) − U(W); and

for every S ⊆ W, it satisfies U(S) ≤ U(W).
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Algorithm 7.1. The greedy submodular maximization algorithm

1: Input: T , U(·), ∀i : di; Output: SG
2: SG ← ∅, G ← T
3: while G 6= 0 do
4: v∗ ← arg maxv∈G U(SG ∪ v)− U(SG)
5: G ← G\{v∗}
6: if SG ∪ {v∗} can be scheduled under deadlines {τi} then
7: S ← SG ∪ {v∗}
8: end if
9: end while

10: return SG
Without loss of generality, we assume v = Tn. According to the diminishing-return utility

defined in Definition 7.1, U(S∪v)−U(S) ≥ U(W∪v)−U(W). In addition, since the utility

is positive and non-decreasing, U(S) ≤ U(W).

The submodularity of objective set function motivates us to solve the scheduling prob-

lem (7.1) with the submodular maximization. In many submodular maximization problems

settings, the simple greedy algorithm can be implemented in an efficient way, while the opti-

mal solution is proven to be NP-Hard. Moreover, the submodularity of objective set function

can often provide a good performance guarantee depending on the structure of feasible set.

Thus, in this subsection, we first design a greedy algorithm to our scheduling problem (7.1)

and then analyze its performance accordingly.

The greedy algorithm for our scheduling problem is shown in Algorithm 7.1. The algorithm

starts from an empty set SG. In each step, the algorithm picks a computation stage v∗ with

the maximum differential utility (where utility in our implementation, as we show later, is

the estimated confidence in results), and deletes v∗ from the candidate set G. Then, we

verify whether the new SG set is still feasible, satisfying the deadline constraints, when the

picked execution stage v∗ is added to SG. The verification can be done easily with the EDF

algorithm. If v∗ passes the verification, it is added to SG (Line 4-6). The algorithm keeps

the loop until the candidate set G is empty. We can thus schedule SG with the simple EDF

algorithm.

When the objective set function is monotone submodular, the greedy algorithm can often

ensure a guaranteed performance when the set of feasible solutions has a nice structure.

p-independence systems [90] are one of these structures:

Definition 7.3. An independence system is a pair (T , I) such that T is a finite set, and

I ⊆ 2T is a collection of subsets of T (called the independent sets) satisfying the following

two properties: (1) ∅ ∈ I and (2) for each S ′ ⊆ S ⊆ T , if S ∈ I then S ′ ∈ I.

Given an independence system (T , I) and a set S ⊆ T , we assume that B(S) denotes the
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set of maximal independent sets in S. It is an independent set that is not a subset of any

other independent set. We can formally define it as B(S) = {S ′ ⊆ S : S ′ ∈ I, and @e ∈
S\S ′ such that S ′ ∪ {e} ∈ I}.

Definition 7.4. An independence system (T , I) is called a p-independence system if for all

S ⊆ I,
maxS′∈B(S) |S ′|
minS′′∈B(S) |S ′′|

≤ p, (7.2)

where |S| denotes the cardinality of set S. In addition, 1-independence system is also called

matroid.

Now we can easily obtain that the feasible solutions of our scheduling problem (7.1) form

an independence system. Firstly, the empty set is schedulable, which is a feasible solution

to (7.1). Secondly, for a feasible set S, all its subsets S ′ ⊆ S are also feasible to the problem.

Therefore, according to Definition 7.2, the feasible sets of our scheduling problem (7.1) form

an independence system.

Here, we provide an illustrative example for the previous two definitions. Assume that

we have two programs T1 = {T (1)
1 } and T2 = {T (1)

2 , T
(2)
2 }. Both of them arrive at the

same time with the same deadline, d1 = d2 = 5s. The execution time of the stage in T1

is 4s, and the execution time of each stage in T2 is 2s. In this case, T = {T1, T2, T2},
I = {∅, {T1}, {T2}, {T2, T2}}, maxS′∈B(S) = {T2, T2}, and minS′∈B(S) = {T1}. Therefore, in

this case, (T , I) is a 2-independence system according to Definition 7.4.

After identifying the structure of feasible sets, we can provide a general guaranteed per-

formance of our greedy scheduling algorithm, Algorithm 7.1.

Theorem 7.1. The optimal solution of the scheduling problem (7.1) can be approximated by

the greedy algorithm, Algorithm 7.1, with a factor of 1/(1 + p) in the worst case, when the

feasible sets form a p-independence system, i.e., U(SG) ≥ maxS⊆T U(S)/(1 + p).

Given that our scheduling problem (7.1) is a p-independent system. The theorem follows

from the previous study in combinatorial optimization [90].

The above result assumes that the utility is known excatly. In our system, utility is

represented by confidence in results. Note that, due to the fact that stages must be executed

in order, at any point in time, one only needs to estimate utility of executing the single next

stage. In other words, one needs to estimate confindence in results of a task if one more layer

of its neural network is executed. As we show in the next section, this problem is solvable,

but only approximately. Assume that we have an α-approximate oracle for the (next stage

of the) utility curve. Hence, the following applies [90]:
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Theorem 7.2. When only an α-approximate oracle for the utility curve is available for α <

1, the optimal solution of the scheduling problem (7.1) can be approximated by Algorithm 7.1,

with a factor of α/(α + p) in the worst case.

Given that we have an α-approximate oracle for the (next stage of the) utility curve. The

theorem follows directly from earlier literature [90].

The above two theorems provide Algorithm 7.1 a worst-case performance guarantee. The

guarantee depends on p defined in (7.2). In general, p is usually small for the system

that schedules multi-stage deep learning applications. The value is p is decided by the ratio

between the maximum and minimum cardinalities of sets that are just meet the schedulability

condition. In practice, such ratio is small for two reasons. On one hand, the execution time

of different deep learning stages are in the same order of magnitude. On the other hand,

when scheduling deep intelligence services on high-speed cloud servers, the cardinalities of

sets that are just schedulable are very large. Therefore, the ratio of two large cardinalities is

small or even approximates 1. It turns out, since the deep intelligence service would typically

run the same code (e.g., face recognition) but on different inputs, the worst-case execution

time of each layer can be the same across different tasks. Thus, the following assumption

holds:

If we have an addition assumption that the worst-case running times are the same for all

executable stages in T = {T (l)
i }, i.e., t(T

(l)
i ) = w, where t(·) denotes the worst-case running

time. The previous two theorems can lead to the a stronger corollary:

Corollary 7.1. With the assumption that worst-case running times are the same for all

executable stages in T , the feasible set of the scheduling problem (7.1) forms a matroid, i.e.,

1-independence system. The optimal solution of (7.1) can be approximated by the greedy al-

gorithm, Algorithm 7.1, with a factor of 1/2 in the worst case, i.e., U(SG) ≥ maxS⊆T U(S)/2.

When only an α-approximate oracle for the utility curve is available for α < 1, the optimal

solution of (7.1) can be approximated by Algorithm 7.1, with a factor of α/(α + 1) in the

worst case.

If the feasible set of the scheduling problem (7.1) forms a matroid with t(T
(l)
i ) = w, the

whole proposition can be naturally proved with Lemma 7.2 and 7.3.

According to Definition 7.1, the feasible set of the scheduling problem (7.1) forms an

independence system (T , I). We, therefore, only need to prove that, if A,B ∈ I and

|A| > |B|, then ∃e ∈ A\B such that B ∪ {e} ∈ I.

We assume that there are D deadline values. Without loss of generality, we sort them such

that a larger index denotes a longer deadline. We denote the set of executable stages with
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Algorithm 7.2. The top-k greedy submodular maximization algorithm

1: Input: T , U(·), ∀i : di; Output: SG
2: SG ← ∅, G ← T
3: while |SG| < k do
4: v∗ ← arg maxv∈G U(SG ∪ v)− U(SG)
5: G ← G\{v∗}
6: if SG ∪ {v∗} can be scheduled under deadlines {τi} then
7: S ← SG ∪ {v∗}
8: end if
9: end while

10: return SG
deadline di in A and B as Ai and Bi respectively. We sort A and B according to the EDF

algorithm. Since |A| > |B|, the total execution time of A is larger than the total execution

time of B by at least w: ∑
a∈A

t(a)−
∑
b∈B

t(b) ≥ w,

dD −
D∑
i=1

∑
b∈Bi

t(b) ≥ w.

(7.3)

We try to find a element aD ∈ AD that aD 6∈ B. If such element aD is found, then we prove

that B ∪ {aD} ∈ I. If not, then any elements in AD exists in BD, which indicates that

|AD| < |BD| and also:

dD−1 −
D−1∑
i=1

∑
b∈Bi

t(b) ≥ w. (7.4)

Similarly, we try to find a element aD−1 ∈ AD−1 that aD−1 6∈ B. If such element aD−1 is

found, then we prove that B∪{aD−1} ∈ I. If not, then any elements in AD−1 exists in BD−1,

which indicates that |AD−1| < |BD−1|. Continuing with this recursion, we can either find a

element ai such that B ∪ {ai} ∈ I that ends the proof or |Ai| < |Bi| for i from D to 1. If we

cannot find any element e such that B ∪ {e} ∈ I, we end up with the condition that:

D∑
i=1

|Ai| <
D∑
i=1

|Bi|, (7.5)

which is in contradiction to the initial condition |A| > |B|. Thus, we prove the proposition.

During the scheduling process, due to the data-dependent complexities of deep learning

tasks, the utility curves may have to be updated constantly. Therefore, the old scheduling

sequence is deprecated with by a new sequence through running Algorithm 7.1 with updated

information. This property of constant updating causes some issues. On one hand, the
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Figure 7.1: The overview of Deep Intelligence as a Service.

system utilizes only the beginning part of the scheduling sequence. On the other hand,

constant running the greedy algorithm over the whole candidate set causes a high overhead.

Therefore, we further approximate Algorithm 7.1 by limiting the size of scheduling set. As

shown in Algorithm 7.2, we change the ending condition of while loop into |SG| < k (Line

2). Therefore, we will obtain a scheduling set SG with size k through Algorithm 7.2, and

then we schedule SG with simple EDF algorithm.

7.2 DEEP INTELLIGENCE AS A SERVICE

Next, we overview our service architecture, where trained classifiers perform on-demand

processing on client data. For example, an airport might send images from security cameras

across the terminal for processing to detect unattended baggage (and report it to a human

operator). The architecture is shown in Figure 7.1.

As mentioned earlier, neural network processing is separated into multiple layers. These

layers can be grouped into a small number of stages (in general of multiple layers each).

At the end of each stage, a thin softmax function layer can be attached to compute a
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classification at selected internal layers. Two challenges ensue:

• Confidence calibration: calibrate the confidence of neural network classification at

intermediate layers.

• Dynamic confidence curve updates: construct a utility curve by dynamically refining

the confidence in outputs over time.

We discuss the technical details of these two modules in the following subsections.

7.2.1 Utility Metric: Confidence Calibration

For a classification problem, the output of a neural network classifier is a vector of

probabilities, where the largest probability is called the classification confidence. Ideally,

a well-calibrated classification confidence should be equal to the likelihood of classification

correctness, which is an unbiased estimator of classification accuracy. Unfortunately, most

deep learning systems are not well-calibrated. With the growing capability and advances

in deep learning, although classification accuracy has greatly improved, the classification

confidence is not as accurate [91].

The calibration of confidence can be visually represented by the reliability diagram [92].

As shown in Figure 7.2, the diagram plots expected classification accuracy as a function

of confidence. If the neural network is perfect, then the diagram should plot the identity

function. Any deviation from a perfect diagonal represents miscalibration.

In order to represent the degree of miscalibration with a scalar that summarizes statistics

of calibration, we introduce the metric, Expected Calibration Error (ECE) [93]. First, we

group classification results into M bins with equal-width 1/M . We denote Sm as the set of

samples whose classification confidence falls into the interval ((m− 1)/M,m/M ]. Then, we

can define the average accuracy of Sm as:

acc(Sm) =
1

|Sm|
∑

Si∈Sm

1(ŷi = yi), (7.6)

where ŷi and yi are the predicted and true label of sample Si. Next, we define the average

confidence of Sm as:

conf(Sm) =
1

|Sm|
∑

Si∈Sm

pi, (7.7)

where pi is the classification confidence of sample Si. The ECE metric is defined as the
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Figure 7.2: The reliability diagrams of ResNet on CIFAR-10.

weighted average of the difference between average accuracy and confidence in M bins.

ECE =
M∑
m=1

|Sm|
m

∣∣∣acc(Sm)− conf(Sm)
∣∣∣. (7.8)

Accurate confidence estimation has drawn growing attention in recent studies [6, 89, 94].

However, existing efforts either focus mainly on regression problems [6, 89, 94] or tend to

underestimate or overestimate the confidence [89,94]. The behaviour of confidence underes-

timation and overestimation can be described by the formulation of average accuracy (7.6)

and confidence (7.7). We denote S as the set of all samples. When acc(S) < conf(S), the

neural network tends to underestimate the classification results. When acc(S) > conf(S),

the neural network tends to overestimate. The target is to make acc(S) ≈ conf(S) and

ECE → 0, making the confidence in neural network results be an unbiased estimator of

classification accuracy (i.e., the utility metric).

A straightforward approach is to adjust the average confidence conf(S) to the value of
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average accuracy acc(S) with fine-tuning on a validation dataset. A natural metric to control

the classification confidence is entropy, H(pi), where pi is the vector of confidences over all

targeted classes. Therefore, we propose a simple entropy-based regularization method for

confidence calibration with fine-tuning. We reformulate the loss function of the fine-tuning

process as:

L = CE(pi,yi) + α ·H(pi), (7.9)

where CE(·, ·) is the cross entropy; yi is label of sample i in one-hot representation; and α is

the hyper-parameter for the entropy regularization. Tuning the value of α is simple. When

the confidence underestimate the accuracy, we set α < 0 and vice-versa.

Our confidence calibration method is simple but works well in practice. Detailed evaluation

is shown in Section 7.4.1.

7.2.2 Utility Curve: Dynamic Confidence Updates

The idea of dynamic confidence updates is to gradually refine confidence during the

execution process. At the beginning, predicted confidence in results is the same for all tasks,

and is based on overall statistics computed from training data. However, as tasks computes

results at intermediate stages, each task is able to update its own confidence in computed

results. It can then update confidence in results of future (subsequent) stages. We do so

using regression models that relate computed confidence in results of the executed stage(s)

to predicted confidence in results of future stages.

Specifically, we choose the Gaussian process regression model [95]. We made this choice

for two reasons. First, Gaussian process is the state-of-the-art regression model. Second,

Gaussian processes produce a Gaussian distribution as the output, from which we can easily

compute the mean value or desired confidence intervals. In this dissertation, we simply

select the expected mean value, because RTDeepIoT focuses on maximizing the classification

accuracy.

Specifically, we choose the Gaussian process regression model [95]. We made this choice

for two reasons. First, Gaussian process is the state-of-the-art regression model. Second,

Gaussian processes produce a Gaussian distribution as the output, from which we can easily

compute the mean value or desired confidence intervals. In this dissertation, we simply

select the expected mean value, because RTDeepIoT focuses on maximizing the classification

accuracy.

For a three-stage neural network, as shown in Figure 7.1, we train three Gaussian process

regression models, p̂
(2)
i = GP1 2(p

(1)
i ), p̂

(3)
i = GP1 3(p

(1)
i ), and p̂

(3)
i = GP2 3(p

(2)
i ), where p

(l)
i
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Figure 7.3: The illustration of three-stage ResNet.

denotes the classification confidence of sample i at neural network stage l. These regression

models are learnt from the confidence curves of training data.

However, Gaussian process is notorious for its long inference time, which is unacceptable

for a runtime predictor. Fortunately, the inputs of these gaussian models are bounded,

i.e., p
(l)
i ∈ [0, 1]. Therefore, we can approximate these complex Gaussian process regression

models with simple piece-wise linear functions with two steps:

1. profiling the Gaussian process regression model with a set of input confidences, {0, 1/M, · · · , 1}.

2. connecting these profiling points with a piece-wise linear function.

Thus, we can use these computationally efficient piece-wise linear functions during the run-

time for updating the dynamic confidence curve. In practice, a good approximation can be

achieved by choosing M = 10. Detailed evaluation is shown in Section 7.4.1.

7.3 THE IMPLEMENTATION OF RTDEEPIOT

We implemented a user space scheduling framework to verify the effectiveness of RT-

DeepIoT. Implementing the schedule in user space solves two key concerns. First, it makes

it compatible with popular operating systems, such as Linux, which facilitates deployment

at scale. Second, it enables us to integrate the scheduler with widely deployed deep learning

libraries. Specifically, we integrate it with TensorFlow [96].

To implement classifiers for our proof-of-concept prototype, we choose an image recog-

nition service based on a state-of-the-art convelutional neural network (CNN) structure;

namely, residual neural networks (ResNet). As shown in Figure 7.3, compared to traditional

CNNs, ResNets add extra shortcut connections between convolutional layers. The whole

ResNet is divided into three stages. Except for the bottom convolutional layer on the left

side, each stage consists of six convolutional layers with three residual shortcut connections.

At the end of each stage, a simple softmax classifier is appended, using the end-of-stage ag-

gregated features for classification. The whole network is trained on the CIFAR-10 dataset

50000 training images.
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Figure 7.4: Structure of scheduling framework implementation.

Figure 7.4 demonstrates the structure of our framework. The RTDeepIoT scheduler

spawns a pool of worker processes. These processes wait on input images to arrive. Each

image represents a task and is submitted to the system with a deadline by which it is to

be classified. The deadline is inherited from the client’s class of service. When an input

image arrives, it is assigned to a process in the pool. The process runs the aforementioned

deep neural network on the new input. The execution of the process features an explicit

separation into stages. A stage might contain multiple layers. When finished, each stage will

output a tuple in the form (predicted value, confidence). Predicted value is the classification

result from the current stage, specifying the most likely classification. Confidence describes

the likelihood that this classification is correct. For example, a picture can be classified as a

cat, dog, or cow, with probabilities 0.6, 0.3, and 0.1, respectively. The classification result is

then (“cat”, 0.6). The confidence in classification will then be sent to our scheduler through

a named pipe in linux. Other parameters that are given to the scheduler include the deadline

from the original image classification request and the worst case execution time (WCET) of

the task, known from previous profiling of the system.

A daemon process monitors the elapsed time for each classification task. If the elapsed

time for a task exceeds the deadline, the daemon process will send a signal to stop the

current computation. The process is returned to the pool and is made available to handle

new requests. The scheduler and the daemon process run at the highest priority. Below, we

describe the workflow for a single classification process:

1. The process picks a classification task. Namely, it gets an image to classify.

2. It notifies the daemon process of its deadline, and is assigned a priority accordingly.
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3. When a stage is finished, the process sends the updated confidence value in results of

subsequent stages to the scheduler.

4. The scheduler will update its estimate of utility of future stages and recompute the set

of stages to execute using Algorithm 7.2.

5. If the process finishes all the stages of the current classification task, it goes back to

the pool and waits for new assignments.

6. If the process cannot finish by the deadline, it will be interrupted by the daemon

process, and forced to return to the pool.

Note that, since our greedy algorithm tends to choose stages with the maximum incremental

utility for future execution, tasks with lower initial classification confidence values tend to

be selected for another execution stage. This has the side-effect of attaining better fairness

as well.

7.4 THE EVALUATION OF RTDEEPIOT

To verify the effectiveness of our proposed scheduling algorithm, we tested the scheduler

with several processes running the aforementioned residual neural network. Each process

classifies images from the CIFAR-10 dataset. The dataset consists of 60000 images of 10

classes. Images arrive in a randomly shuffled order. The workstation that runs the sched-

uler and the classification processes has 8 Intel i7-4770 CPUs, with 32 GB memory. The

evaluation is performed under Ubuntu 16.04 with kernel version 4.13. The residual neural

network is implemented on TensorFlow 1.4.0.

In the following subsections, we will evaluate our RTDeepIoT real-time scheduling pipeline

from different perspectives, including classification confidence, scheduler overhead, pipeline

bottlenecks, and overall classification accuracy under different workloads.

7.4.1 Confidence Calibration & Dynamic Confidence Updates

The evaluation of classification confidence includes two parts: confidence calibration and

dynamic confidence updates.

We first evaluate the quality of confidence calibration. We train the three-stage ResNet

structure shown in Figure 7.3 on the CIFAR-10 dataset with following calibration method:

1. RTDeepIoT: the entropy-based confidence calibration method introduced in (7.9).
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Table 7.1: The ECE of confidence calibration methods with three-stage ResNet on CIFAR-10
dataset .

Uncalibrated RDeepSense RTDeepIoT

Stage 1 0.134 0.058 0.010
Stage 2 0.146 0.046 0.012
Stage 3 0.123 0.054 0.008

Table 7.2: The Mean Absolute Error (MAE) and coefficient of determination (R2) of dynamic
confidence curve prediction for three-stage ResNet on CIFAR-10 dataset .

GP1 2 GP1 3 GP2 3

MAE 0.124 0.108 0.072
R2 0.57 0.43 0.78

2. RDeepSense: the state-of-the-art confidence calibration method with dropout opera-

tions [6].

3. Uncalibrated: the original neural network without confidence calibration method.

An illustration of reliability diagrams is shown in Figure 7.2. Compared to the uncali-

brated result, the RTDeepIoT method has greatly reduced miscalibration error between the

estimated confidence and actual classification accuracy. A quantitative analysis with the

ECE metric, defined in Equation (7.8), is shown in Table 7.1. RTDeepIoT achieves the

smallest ECE among all three stages, even compared to the state-of-the-art RDeepSense

method. The evaluation results show that our proposed simple entropy-based confidence

calibration method can provide a good estimation of classification accuracy, making it possi-

ble for the RTDeepIoT scheduling pipeline to utilize the calibrated classification confidence

as the utility metric.

Next, we evaluate the quality of our dynamic confidence updates predicted for three-stage

ResNet, which contains three regression models for predicting future-stage classification

confidence values, i.e., p̂
(2)
i = GP1 2(p

(1)
i ), p̂

(3)
i = GP1 3(p

(1)
i ), and p̂

(3)
i = GP2 3(p

(2)
i ). The

evaluation results on Mean Absolute Error (MAE) and coefficient of determination (R2) are

shown in Table 7.2. Overall, the method provides a decent confidence prediction result.

As the number of finished stages increases, the dynamic prediction improves. Although a

certain degree of error remains, it can still provide the scheduling algorithm good estimates

of the relative confidence gains obtained among different deep learning services. In the

following sections, we show that the dynamic confidence update method provides better

152



Table 7.3: The averaged overhead of RTDeepIoT scheduler and daemon process for 10000 images
with different number of worker processes.

3 procs 4 procs 5 procs
Scheduling Runtime (ms) 24.82 33.72 37.56

Classification Runtime (ms) 196.60 256.67 314.67
Total Runtime (ms) 221.42 290.39 352.23

Overhead 11.2% 11.6% 10.7%

overall classification accuracy than simple heuristics.

7.4.2 Scheduler Overhead

In this subsection, we evaluate the overhead of our framework. Since the framework

contains a user space scheduler and a daemon process running at highest priority, we need

to make sure these two modules do not impose significant overhead. We measure the portion

of time spent on scheduling framework and daemon process.

As shown in Table 7.3, RTDeepIoT scheduling framework takes roughly 11% of total

runtime to calculate and adjust priority of worker processes. Implementing our schedule in

user space on top of the TensorFlow framework, therefore, has significant costs. Scheduling

overhead per task can be as large as a few dozen milliseconds and the percentage overhead

reaches the low double-digits. While more efficient implementation of the scheduler are

possible, we opted for ours because of its compatibility with tools already used in the machine

learning community, which significantly increases the likelihood of us making impact in

that community using our results. Namely, our solutions uses Linux unmodified and uses

TensorFlow (the standard library for machine intelligence applications) unmodified as well.

On top of those, our scheduler inherits TensorFlow overheads, which is the price paid for

compatibility/portability. As we show later, despite this overhead, we still achieve a higher

total utility because we are able to allocate more judiciously the resources remaining after

overhead is paid.

7.4.3 Transmission vs. Computation Bottleneck

The deep-intelligence-as-a-serive scheduler presented in this dissertation makes sense only

if the CPU is indeed the bottleneck resource. If the bottleneck lies in the communication

network, then the rate at which new pictures (or data) arrive for classification will be slow

enough for the CPU to never be overloaded. Thus, all classification tasks will always run to
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Figure 7.5: Histogram of transmission and computation time.

completion and this work is not needed.

In this subsection, we compare empirical measurements of transmission and computation

delays from our prototype of deep-learning based image recognition services. A local desktop

constantly transmits images from CIFAR-10 dataset to a remote workstation through a

secure copy protocol. The trained ResNet, as shown in Figure 7.3, takes the received images

from the local desktop as input and runs the whole three stages to classify the image content.

We measure the distributions of transmission and computation delays and plot Figure 7.5

on a log scale along the time axis. We can see a clear separation between transmission and

computation time distributions. Therefore, computation time is orders of magnitude higher

and is indeed the bottleneck in the system justifying our scheduler design.

7.4.4 Deep Intelligence as a Service

In this subsection, we evaluate the deep learning based image recognition services on the

workstation. In order to illustrate the effectiveness of our RTDeepIoT pipeline, we take the

following algorithms as the backend scheduler.

1. RTDeepIoT-k: this is our proposed scheduling pipeline, where k denotes the size of

scheduling set we choose in Algorithm 7.2. During the whole experiments, we select k

to be {1, 2, 3}.

2. RTDeepIoT-DC-k: this is a variant of our scheduling pipeline. Instead of using dy-

namic confidence updates, we assume that the confidence increases with the same

slope. Therefore, we use the confidence gain of the current stage as the gain of future

stages. We still select k to be {1, 2, 3}.
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Figure 7.6: The intensity test for scheduling algorithms with ResNet on CIFAR-10.

3. RR: this is a stage-level round-robin scheduling algorithm. The scheduler will select a

stage to run among all the deep learning services in a round-robin manner.

4. FIFO: this is a FIFO scheduling algorithm, where the scheduler runs the deep learning

service on images in a first come first served manner, and runs all stages to the end.

In this evaluation, we also consider two kind of service workloads. In the first one, we

keep the deadline of deep learning services unchanged but increase the number of concurrent

deep learning tasks. In the second one, we increase the service deadline and the number of

concurrent deep learning tasks proportionally. Each deep learning task will log its classifi-

cation results over stages with timestamps. We will select the last result before its deadline

as the final classification result.

In the first set of experiments, we set the deadline to 1.0s, while increasing the number

of concurrent deep learning tasks from 12 to 24 with step 4. We illustrate the mean value

and the standard deviation of classification accuracy over concurrent tasks for the scheduling
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Figure 7.7: The scalability test for scheduling algorithms with ResNet on CIFAR-10.

algorithms in Figure 7.6. From Figure 7.6c, we can clearly see that the scheduling algorithms

fall into two categories. The first type of algorithms, including RTDeepIoT-k and RR, tend

to balance the classification accuracy over multiple tasks under the intensive workload. The

second type of algorithms, including RTDeepIoT-DC-k and FIFO, tend to maximize the

classification accuracy of a small set of tasks under the intensive workload, creating some

imbalance.

RTDeepIoT-k is constantly be the best scheduling algorithm under all cases. However,

an interesting observation that appears in both RTDeepIoT-k and RTDeepIoT-DC-k is that

increasing the size of the scheduling set k may hurt the overall classification accuracy, which

is a bit counterintuitive. We believe that such phenomenon is caused by two reasons. On one

hand, although Lemma 7.3 and Proposition 7.1 can provide us the worst case guarantee with

Algorithm 7.1 even when we only have an approximately correct utility curve, Algorithm 7.1

may not be the optimal choice for a normal case, which is our experiment setting. On the

other hand, Algorithm 7.1 assumes the underlying scheduling policy to be EDF, which is not
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the best choice under the intensive workload. However, as we increase intensity of workload,

RTDeepIoT-3 starts to achieve the best performance among all.

The two baseline scheduling algorithms, RR and FIFO, show relatively bad classification

accuracy under a mild-intensive workload. This means that, by informing the scheduler with

the classification confidence, we can achieve better classification accuracy through utilizing

the heterogeneous input data complexity. When comparing RTDeepIoT-k to RTDeepIoT-

DC-k, we can find that RTDeepIoT-k consistently achieves better performance with a large

margin. Therefore, the dynamic confidence update and the greedy submodular maximization

scheduler helps to maximize the overall classification quality give the limited system resources

and deadline constraints.

In the second set of experiments, we proportionally increase the deadline and the num-

ber of concurrent tasks from 0.14s and 2 to 0.35s and 5, 0.7s and 10, as well as 1.4s and

20. We illustrate the mean value and the standard deviation of classification accuracy over

concurrent tasks for the scheduling algorithms in Figure 7.7. The standard deviation of

classification accuracy, shown in Figure 7.7c, still see divergence between two types of algo-

rithms. However, when increasing the scale of the workload, some algorithms that do well

for a small number of tasks will tend to do worse, such as DeepIoT-DC-1. Our proposed

scheduling algorithm 7.2 can balance the computation over services, even with a very biased

utility curve.

RTDeepIoT-1 is the best-performing scheduling algorithm. However, its accuracy gain

tends to be minimized when the scale of the workload increases, which is consistent with our

previous set of experiments. In this experiment, increasing the size of the scheduling set k

may still hurt the overall classification accuracy. However, the performance degradation is

diminished as we increase the scale of the workload.

When using algorithm 7.2 as backend, i.e., RTDeepIoT-k and RTDeepIoT-DC-k, the

overall classification accuracy among deep learning services increases as we scale up the

workload. Therefore, our proposed scheduling model, RTDeepIoT, benefits from the scaled

workload, which fits its envisioned use in future deep intelligence services.

In addition, general baseline algorithms, RR and FIFO, show performance degradation

as we scale the workload. Therefore, the scalability of these algorithms is poor, while our

RTDeepIoT does better as we scale the workload. This again illustrates the importance of

taking neural network depth as a new dimension for scheduling.
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CHAPTER 8: RELATED WORK

8.1 DEEP LEARNING FOR SENSOR-RICH IOT SYSTEMS

Recently, deep learning [32] has become one of the most popular methodologies in AI-

related tasks, such as computer vision [29], speech recognition [97], and natural language

processing [36]. Lots of deep learning architectures have been proposed to exploit the rela-

tionships embedded in different types of inputs. For example, Residual nets [29] introduce

shortcut connections into CNNs, which greatly reduces the difficulty of training super-deep

models. However, since residual nets mainly focus on visual inputs, they lose the capability

to model temporal relationships, which are of great importance in time-series sensor inputs.

LRCNs [98] apply CNNs to extract features for each video frame and combine video frame

sequences with LSTM [30], which exploits spatio-temporal relationships in video inputs.

However, it does not consider modeling multimodal inputs. This capability is important to

mobile sensing and computing tasks, because most tasks require collaboration among mul-

tiple sensors. Multimodal DBMs [99] merge multimodal inputs, such as images and text,

with Deep Boltzmann Machines (DBMs). However, the work does not model temporal rela-

tionships and does not apply tailored structures, such as CNNs, to effectively and efficiently

exploit local interactions within input data. To the best of our knowledge, DeepSense is the

first architecture that possesses the capability for both (i) modelling temporal relationships

and (ii) fusing multimodal sensor inputs. It also contains specifically designed structures to

exploit local interactions in sensor inputs.

There are several illuminating studies, applying deep neural network models to different

mobile sensing applications. DeepEar [10] uses Deep Boltzmann Machines to improve the

performance of audio sensing tasks in an environment with background noise. RBM [44] and

MultiRBM [45] use Deep Boltzmann Machines and Multimodal DBMs to improve the per-

formance of heterogeneous human activity recognition. IDNet [47] applies CNNs to the bio-

metric gait analysis task. However, these studies do not capture the temporal relationships

in time-series sensor inputs, and, with the only exception of MultiRBM, lack the capability

of fusing multimodal sensor inputs. In addition, these techniques focus on classification-

oriented tasks only. To the best of our knowledge, DeepSense is the first framework that

directly solves both regression-based and classification-based problems in a unified manner.

The impressive achievements in image classification using deep neural networks at the

turn of the decade [100] precipitated a re-emergence of intereset in deep learning. Deep

neural networks have achieved significant accuracy improvements in a broad spectrum of
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areas, including computer vision [26,71], natural language processing [36,101], and network

analysis [102, 103]. However, none of the aforementioned IoT-inspired efforts addressed the

customization of learning machinery to a different signal space inspired by the physics of

measured processes; namely, the frequency domain.

To fill the above gap, recent work in machine learning focused on extending deep neural

networks to complex numbers and spectral representations. Trabelsi et al. propose deep

complex networks, investigating the complex-value neural network structure [18]. However,

they mainly concentrate on the problems of initialization, normalization, and activation

functions when extending real-valued operations directly into the complex-value domain.

Their designs focus more on complex-value representations than spectral representations, and

do not take the properties of spectral data into consideration. Rippel et al. study spectral

representations for convolutional neural networks [104]. However, their study focuses on

spectral parametrizing of standard CNNs, instead of designing operations customized for

spectral data. In addition, their work treats input data fully from the frequency perspective

instead of the time-frequency perspective. DeepSense takes short-time Fourier transformed

data as inputs [2]. Yet their design uses traditional CNNs and RNNs, combining the real

and imagery parts of complex-value inputs as additional features.

To the best of our knowledge, STFNet is the first work that integrates neural networks

with traditional time-frequency analysis, and designs fundamental spectral-compatible oper-

ations for Fourier-transformed representations. Our study shows that the approach leads to

improved accuracy compared to the state of the art. It implies that integrating neural net-

works with domain-inspired transformation techniques (in our case, the Fourier Transform

of physical time-series signals) projects input signals into a space that significantly facilitates

the learning process.

8.2 DEEP LEARNING FOR RESOURCE-CONSTRAINED IOT SYSTEMS

Recent studies focused on compressing deep neural networks for embedded and mobile

devices. Han et al. proposed a magnitude-based compression method with fine-tuning,

which illustrated promising compression results [58]. This method removes weight con-

nections with low magnitude iteratively; however, it requires additional implementation of

sparse matrix with more resource consumption. In addition, the aggressive pruning method

increases the potential risk of irretrievable network damage. Guo et al. proposed a com-

pression algorithm with connection splicing, which provided the chance of rehabilitation

with a certain threshold [20]. However, the algorithm still focuses on weight level instead of

structure level. Other than the magnitude-based method, another series of works focused
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on the factorization-based method that reduced the neural network complexity by exploit-

ing low-rank structures in parameters. Denton et al. exploited various matrix factorization

methods with fine-tunning to approximate the convolutional operations in order to reduce

the neural network execution time [105]. Lane et al. applied sparse coding based and matrix

factorization based method to reduce complexity of fully-connected layer and convolutional

layer respectively [61]. However, factorization-based methods usually obtain lower compres-

sion ratio compared with magnitude-based methods, and the low-rank assumption may hurt

the final network performance. Wang et al. applied the information of frequency domain

for model compression [106]. However, additional implementation is required to speed-up

the frequency-domain representations, and the method is not suitable for modern CNNs

with small convolution filter sizes. Hinton et al. proposed a teacher-student framework

that distilled the knowledge in an ensemble of models into a single model [107]. However,

the framework focused more on compressing model ensemble into a single model instead of

structure compression.

To the best of our knowledge, DeepIoT is the first framework for neural network struc-

ture compressing based on dropout operations and reducing parameter redundancies, where

dropout operations provide DeepIoT the chance of rehabilitation with a certain probabil-

ity. DeepIoT generates a more concise network structure for transplanting large-scale neural

networks onto resource-constrained embedded devices.

In addition, all these previous compression algorithms focus on reducing the model param-

eters, while taking execution time speed-up as a by-product. Therefore, these compression

methods inevitably show inferior performance on execution time reduction. There are some

preliminary studies on designing time-efficient neural network for mobile and embedded de-

vices [21–23], but all these works design the network structure based on their own personal

experience. There is little understanding about the impact of different network structures

on system performance, such as the execution time. In addition, these works usually use

some biased metrics, such as FLOPs, for evaluating the model execution time. To the best

of our knowledge, FastDeepIoT is the first framework to understand the impact of changing

neural network structure on model execution time, and to empower existing compression

algorithms to reduce the execution time on mobile and embedded devices properly.

8.3 DEEP LEARNING FOR LABEL-LIMITED IOT SYSTEMS

The idea of GANs is to design a game between two competing networks. The generator

network takes the noise vectors as inputs and generates data samples. The discriminator

network takes either a generated sample or a real data sample, and distinguishes between
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the two. The generator is trained to fool the discriminator [72].

Since training instability has hindered the deployment of GANs on deeper and more com-

plex neural network structures, a great amount of research efforts have been made recently

to tackle this problem. The WGAN with gradient penalty has achieved the state-of-the-art

performance on multiple generative tasks, such as images and text generations [73]. To the

best of our knowledge, SenseGAN is the first study to adopt WGAN with gradient penalty

training strategy into the semi-supervised learning.

In addition, deep learning is emerging as a powerful learning component in IoT applica-

tions [1]. These highly capable models are good at making sophisticated mappings between

unstructured data such as sensor inputs and target quantities, which can hardly be achieved

by traditional machine learning models. Lane et al. [10] build a multilayer perceptron im-

proving the performance of multiple audio sensing tasks. Yao et al. [2] design a unified

deep learning framework for IoT tasks that can fuse multiple sensory modalities and extract

temporal relationships along sensor inputs. However, to the best of our knowledge, all the

previous works focus on the supervised learning scenario, which fails to utilize the abundant

unlabelled data in IoT applications.

8.4 DEEP LEARNING FOR RELIABLE IOT SYSTEMS

Recently there are some illuminating works from the machine learning community that

tries to provide deep neural networks with uncertainty estimations. Gal et al. [84] provide

the first theoretical proof of the linkage between dropout training with deep Gaussian process

called MCDrop. However, the proposed method tends to underestimate the uncertainty due

to the nature of variational inference. Lakshminarayanan et al. [89] propose a solution SSP

based on proper scoring rules and ensemble methods. However, the proposed method tends

to overestimate the uncertainty on real datasets.

Since these previous works do not consider the scenario of mobile and ubiquitous comput-

ing, all these proposed methods require the operations with high computational cost during

model inference, i.e., sampling methods or ensemble methods. These computationally in-

tensive operations aggravate the time and energy consumption problems in the embedded

devices, which is one of the key issues of mobile and ubiquitous computing.

To the best of our knowledge, RDeepSense is the first work that provides a simple yet effec-

tive solution to estimate the uncertainties of deep neural networks for mobile and ubiquitous

computing applications. RDeepSense uses proper scoring rules to mitigate the underesti-

mation effect of MCDrop, and applies dropout training as implicit ensemble to avoid the

computationally intensive ensemble method used in SSP.
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8.5 DEEP LEARNING SERVICES ON EDGE/CLOUD

RTDeepIoT is the first to develop a real-time scheduler for a service motivated by machine

intelligence needs of IoT applications. The essence of the scheduling problem lies in deter-

mining the number of processing stages (and hence neural network layers) that are sufficient

to obtain an accurate output (e.g., a good classification). A body of scheduling algorithms

that comes close to ours are those that support approximate computing. The general concept

pervades many areas of computer science, spanning circuit design [108], architecture [109],

energy efficient computing [110], machine learning [111], algorithm design [112] [113]. Our

work resembles approximate computing in that we aim to provide better quality of service

(QoS) in the context of offering machine intelligence as the service paradigm, where we

intentionally discard some stages of the neural network.

A prime example of approximate computing in the real time research community is the

literature on imprecise computations. The work trades off result quality versus computation

time [114–118]. Our work resembles imprecise computations in that we use intermediate

results from a prematurely terminated real-time process. The work assumes processes to

be monotone, and propose an indicator for the quality of the imprecise results. More re-

cently [116], imprecise computation models were proposed where the scheduler decides on

the execution of an optional section of processes by taking deadlines and required QoS into

consideration. However, our work focus on the stage-wise computation with sequential de-

pendency and dynamic utility function.

The QoS optimization and management have also been heavily addressed in real-time

literature. Rajkumar et al. presented an analytical model for QoS management in systems

with multiple constraints [119,120]. Lee et al. extended the QoS management analysis with

the discrete and non-concave utility functions [121]. Abdelzaher et al. proposed a real-time

QoS negotiation model for maximizing system utility with guaranteed performance [122].

Curescu et al. presented a QoS optimization scheme for mobile networks [123]. Koliver et

al. designed a fuzzy-control approach for QoS adaptation [124]. However, all of the previous

studies assume a known utility function beforehand. In this dissertation, we consider a case

where the exact utility function is not known as a priori but is rather revealed approximately

as the computation proceeds.

In addition, our scheduler has been integrated with TensorFlow - a library for deep learning

systems. This makes it the first real-time scheduler to be implemented in the context of a

mainstream deep learning software framework.
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CHAPTER 9: CONCLUSION AND DISCUSSION

We have only scratched the surface of the research landscape on Deep Learning for IoT.

Fundamentally, interest in deep learning will evolve as a means to bridge the ever-growing gap

between the exponentially increasing planet-wide data generation rate on one hand (thanks

to the proliferation of IoT devices), and the flat human ability to consume the data, on the

other (since our cognitive capacity and population do not increase at the same exponential

rate). Deep learning empowers automation that takes the human out of the data processing

loop and more to a supervisory capacity.

9.1 DEEP LEARNING FOR SENSOR-RICH IOT SYSTEMS

The past decade witnessed a reemergence of interest in deep learning with significant

contributions to human-like perception modalities including computer vision, natural lan-

guage processing, and speech processing. In the next decade, however, growth of IoT-

device-sourced data will significantly outpace the growth of human-sources data, due to

the proliferation of such devices at rates that far outpace human population growth on the

planet. As a consequence, I envision that a growing research interest will shift to model-

ing and analyzing “IoT big data” using deep neural networks. This is not only due to the

sheer volume of data created by the growing number of IoT devices, but also due to the

unique problem space that IoT data offers. IoT data are generated by physical, social, and

spatio-temporal processes that have different dynamics, correlations, and internal structure

compared to bits in a video, or words in an article. Researchers have gained much experience

designing neural networks for human-like perception tasks, inspired by the way our brain

processes information. STFNet suggests that while the human brain evolved to excel at

such perception tasks, it is not optimized for discerning the internal physics of a process, or

the spatiotemporal dynamics of a planet-wide phenomenon. As such today’s brain-inspired

neural networks are not well-suited for inference from IoT-sourced big data. For example,

my work shows that learning in the frequency domain leads to improved results, when it

comes to inference from physical sensor data. Starting with existing transform domains for

physical measurements (e.g., Wavelet Transform, Fourier Transform, etc) and dimensional-

ity reduction techniques for big data (e.g., SVD, PCA, etc), I will develop hybrid solutions

that empower deep learning in feature spaces that are better suited to the inherent big IoT

data properties and dynamics (compared to learning from direct observations, as inspired by

perception physiology of the human brain). As a result, my new deep hybrid networks will
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inherently perceive, capture, and distinguish the internal characteristics of big data sets the

way our brains perceive external shapes and color patterns of objects, leading to significant

advances in big IoT data analysis tasks.

9.2 DEEP LEARNING FOR RESOURCE-CONSTRAINED IOT SYSTEMS

DeepIoT and FastDeepIoT are frameworks for understanding and minimizing neural net-

work execution time on mobile and embedded devices. We proposed a tree- structured linear

regression model to figure out the causes of execution-time nonlinearity and to interpret ex-

ecution time through explanatory variables. Furthermore, we utilized the execution time

model to rebalance the focus of existing structure compression algorithms to reduce the

overall execution time properly.

They are just the first few steps into the exploration of neural network compression for

performance optimization. More profiling results are needed with the different choices of

hardware, OS versions, load factors, power scaling, and deep learning libraries. Currently,

FastDeepIoT can only support deep learning structure compression algorithms. More work is

needed to support other deep learning compression methods, such as parameter quantization

and pruning. The execution time model shows that the setup overhead of recurrent layers

imposes a lower bound on efficacy of compression. It is a function of recurrent neural network

steps, offering another dimension to compress for speeding up recurrent layers. These insights

offer avenues for future research on system performance oriented neural network compression

for sensing applications.

9.3 DEEP LEARNING FOR LABEL-LIMITED IOT SYSTEMS

SenseGAN separates the functionalities of discriminator and classifier into two neural

networks, designs specific generator and discriminator structures for handling multimodal

sensing inputs, and stabilizes and enhances the adversarial training process by WGAN with

gradient penalty as well as Gumbel-Softmax for categorical representations. The evaluation

empirically shows that SenseGAN can efficiently leverage both labelled and unlabelled data

to effectively improve the predictive power of the classifier without additional time and en-

ergy consumption during the inference. Several improvement opportunities remain. First,

our architecture for fusing multi-sensor data is not yet optimal. For example, we can use

attention-based structures [125] to guide the discriminator and the generator to focus on

data segments containing more representative information. Second, SenseGAN focuses on
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the classification problem in the IoT scenario. However, regression is another common IoT

task that needs to be considered. To solve the regression problem with SenseGAN, we can

transform the range of continuous target outputs into a set of intervals that can be used

as discrete classes. By treating regression problems as classification problems, SenseGAN

can be applied in the manner described in this dissertatuib. However, we still need further

studies to formally solve this problem. Third, the learning process of SenseGAN is compu-

tationally intensive. Therefore, more studies are needed to enable online adaptive learning

with streaming unlabelled sensing data on low-power IoT devices. Finally, more evaluation

is needed in the context of deployed application scenarios to better understand the feasibility

of needed (albeit minimal) labeling and the limitations of the approach.

9.4 DEEP LEARNING FOR RELIABLE IOT SYSTEMS

RDeepSense focuses on empowering neural networks to generate high-quality predictive

uncertainty estimations in a theoretically-grounded and energy-efficient manner for mobile

and ubiquitous computing tasks. Currently, RDeepSense can only support fully-connected

neural networks. It is possible to extend the solution to convolutional and recurrent neural

networks by replacing the original dropout operation with convolutional dropout and recur-

rent dropout. But additional efforts are needed to 1) theoretically prove that the extended

two-step solution can equate an arbitrary neural network with a statistical model, and 2)

empirically show that the extended two-step solution can provide high-quality uncertainty

estimations on the real datasets.

9.5 DEEP LEARNING SERVICES ON EDGE/CLOUD

This dissertation presented a novel service model, suitable for smart IoT applications where

simple devices with sensing capabilities offload their ?machine intelligence? to the cloud or

to an edge server. We focused on deep learning as the state of the art enabler of machine

intelligence. A key observation was that trained deep neural networks can be partitioned

into stages with results available at different degrees of fidelity after each stage. The number

of stages of processing that an input item needs (e.g., for purposes of detection, prediction,

or classification) depends on the data. This key insight was used to build a service, where the

scheduler determines the best number of stages needed to process each input. As successive

processing stages were completed, this number would be refined. We show that the resulting

schedules improve the average quality of results, essentially by allocating computing resources
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where they engender the best improvement in result accuracy. The service is currently being

extended to other deep learning libraries (besides machine vision) to offer rich support for

deep intelligence as a (real-time) service.
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