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ABSTRACT. A detailed understanding of users contributes to the 

understanding of the Web’s evolution, and to the development of Web 

applications. Although for new Web platforms such a study is especially 

important, it is often jeopardized by the lack of knowledge about novel 

phenomena due to the sparsity of data. Akin to human transfer of 

experiences from one domain to the next, transfer learning as a subfield of 

machine learning adapts knowledge acquired in one domain to a new 

domain. We systematically investigate how the concept of transfer learning 

may be applied to the study of users on newly created (emerging) Web 

platforms, and propose our transfer learning–based approach, TraNet. We 

show two use cases where TraNet is applied to tasks involving the 

identification of user trust and roles on different Web platforms. We compare 

the performance of TraNet with other approaches and find that our approach 

can best transfer knowledge on users across platforms in the given tasks. 
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1. Introduction 

The Web evolves in a permanent cycle (Fig. 1), as portrayed by Hendler et al. [1]: An idea 

may lead to novel technology as well as social activities. Taken together, the individual 

micro interactions of the many lead to meso and macro effects observable at a larger scale. 

Very often, new issues arise and people tinker with solutions starting the cycle from anew. 

There has been and will be a multitude of Web platforms and many of them have 

repeated such a cycle of learning, often from scratch, sometimes based on anecdotal 



evidence contributed by experienced Web developers or community managers. In spite of 

long time learning from social scientists who studied behavior of individuals in groups, 

with abstracting lessons learned, little hard evidence could be brought to the table that 

might have been operationalized using quantification of user behavior. 

Quantifiable cross-community analyses have been undertaken by, e.g., Rowe et al. [2].  

They observed and classified multiple online communities. They proposed several 

measures useful to quantify differences between communities, such as the number of 

initiative-takers or the length of discussions. Considering these measures, however, it 

remained open whether and how they could actually be re-used to transfer experiences 

from one community to another. The evolution of a Web platform would be greatly 

facilitated, and the learning cycle would be cut short, if measurements of social behavior 

could be transferred from previous experiences to new ones, not just based on qualitative 

observations, but also based on quantifiable rules. For example, a new Web platform might 

want to discourage trolls and encourage trusted users without running through the learning 

cycle multiple times by transferring quantitative experiences from previous Web platforms. 

The main challenge of learning from existing platforms lies in the fact that Web 

platforms are so heterogeneous in terms of size and structure. For example, a user with 20 

friends in a small-scale network (e.g., a friendship network in a classroom) might be 

considered influential, while a user with the same number of friends in Facebook is far 

from being influential. Some platforms such as Slashdot contain negative user relationships 

such as “foes”, and others do not. 

Better than simply ignoring the heterogeneity, human experts are able to learn from few 

examples they observe from existing platforms, and transfer their “experience” to new 

situations. The analogy of such process in machine learning is called transfer learning [3], 

where we learn knowledge from source datasets we know well, and apply the knowledge 

to new target datasets. 

In this paper, we specifically address the problem of transferring quantifiable measures 

of users across Web platforms. Such transfer is particularly challenging due to the above-

mentioned heterogeneity of Web platforms. Thus, we extend previous studies and propose 

a transfer learning–based approach, TraNet, to benefit the evolution of Web platforms and 

reducing Web development efforts. TraNet is suitable when we have little knowledge on 

Figure 1. Web development cycle (adopted from Hendler et al. [1]). 



users of one platform, and wish to learn from existing, familiar platforms. In two case-

studies, we show how TraNet can be applied to the study of users in different Web 

platforms. In the first example, we try to evaluate users’ trustworthiness. In the second 

example, we try to identify users with specific roles. 

We briefly introduce the background knowledge on transfer learning and some related 

work in Section 2. In Section 3 we describe TraNet in detail and in Section 4 we evaluate 

two applications of TraNet. The necessary code (github.com/yfiua/TraNet) and 

public datasets to reproduce the results in the paper and apply TraNet to accomplish similar 

tasks are made available online.  

2. Transfer Learning 

Conventionally, machine learning happens in one domain. For example, one may train a 

friend recommendation model with the data of one Web platform, and apply the trained 

model to recommend friends to users on the same platform. When we do not have enough 

data to train our model, “transferring” knowledge from other, existing platforms is 

necessary. However, the performance is not guaranteed if we directly use the trained model 

from other platforms. This is because the distribution of data from various platforms might 

differ considerably, and it violates the assumption in conventional machine learning that 

the training data from which we learn, and the future data to which we want to apply the 

knowledge we learnt are sampled from the same domain [3]. 

Transfer learning tackles this issue. Formally, we adopt the definition of transfer 

learning given by Pan and Yang [3]: 

“Given a source domain DS and learning task TS, a target domain DT and learning task TT, transfer 

learning aims to help improve the learning of the target predictive function fT(•) in DT using the  

knowledge in DS and TS, where DS ≠ DT or TS  ≠ TT.” 

We use the term source dataset to refer to a dataset that belongs to the source domain 

DS, that we learn knowledge from; and target dataset to refer to a dataset that belongs to 

the target domain DT, to which we want to transfer the knowledge which we have learnt 

from the source dataset. 

Researchers in the field of Web science have used transfer learning to tackle the data 

Figure 2. Overview of TraNet, the transfer learning procedure for user study described in 

this paper. 

 



sparsity problem or the lack of ground truths (labels). For example, collaborative filtering 

aims to predict the interest of users, and can be used to give recommendation of products 

to customers in E-Commerce platforms for instance [4]. This problem can be seen as the 

prediction of missing values (to which extent a customer likes a potential item) in the 

adjacency matrix of a bipartite network. In order to mitigate the effect of data sparsity, Pan 

et al. [5] have proposed a transfer learning method based on coordinate system transfer, to 

effectively transfer knowledge about customers and products from other mature networks. 

Transfer learning also helps infer social ties on the Web. Not all types of social ties are 

explicit on all platforms. For instance, negative links representing “foe” relationship are 

not present in Facebook or Twitter, but they might be inferred from platforms where 

negative links are present such as Slashdot-Zoo (see Section 4.1.1). Tang et al. [6] proposed 

a transfer learning–based algorithm (TranFG) to transfer high level social-psychological 

patterns from existing networks, such as the structural balance theory in signed networks 

and the status theory in networks where people have higher/lower statuses (e.g., advisors 

and advisees). Such learned patterns can then be used to infer social ties in other networks. 

3. Proposed Method 

Fig. 2 illustrates our transfer learning approach, TraNet. TraNet comprises two phases: 

learning (top row) and inference (bottom row). The goal of the learning phase is to learn a 

model from the network of an existing Web platform with available user labels, and the 

goal of the inference phase is to apply the learned model to predict labels in other networks. 

In the example depicted in Fig. 2, we learn from the source dataset how to detect the 

following three predefined user labels: central users (diamonds), bridging users (triangles), 

and normal users (circles); and transfer the knowledge to the unlabeled target network to 

predict the user labels in it. The elements within the source domain DS and within the 

common domain D’ but above the dashed line are obtained during the learning phase, while 

the ones within the target domain DT and within the common domain D’ but below the 

dashed line are obtained during the inference phase. 

With a network G as input, we generate the feature matrix Fn_m (shown in Fig. 2 as 

grids), where n is the number of nodes in G and m is the total number of features. Inside 

Fn_m, each node (user) has m structural features 𝑥𝑗 , (𝑗 ∈ {1, 2, … , 𝑚}), which are expected 

to be non-domain-specific. The feature generation process consists of three steps: (i) 

feature extraction, (ii) feature transfer by feature transformation, and (iii) feature 

aggregation. They will be explained in the following subsections. 

In the source dataset, users as nodes in the network are labelled with a vector YS of length 

𝑛𝑆, where 𝑛𝑆 is the number of users in the source network. Each value 𝑦𝑖 ∈ {1, 2, … , 𝑘}, (𝑖 ∈
{1, 2, … , 𝑛𝑆}) in YS denotes the label of the i-th user, where k is the total number of possible 

labels. In the target dataset, the label vector YT is to be predicted. 

With YS and the feature matrices FS, FT for both source and target networks, the label 

prediction problem reduces to a classification problem. In the learning phase, we optimize 

a predictive function 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) that maps a node’s features [𝑥1, 𝑥2, … ,

𝑥𝑚] into a label 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ∈ {1, 2, … , 𝑘} which matches the corresponding value in YS. 

Such a predictive function f can be regarded as a user classifier which predicts user labels 

in the common domain, since the features in FS are expected to be non-domain-specific, 

and are already transformed in a way that they can match across networks. In the inference 



phase, we use f to compute 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡 for all nodes in GT in order to predict user labels in the 

target network. 

In our implementation, we use a random forest classifier. Once the classifier is trained, 

it can be saved and predict the probability that each node (user) belongs to each class (label) 

in future datasets, given the network structure as input.  

In the inference phase, once we obtain the feature matrix FT for the target dataset, we 

can use the pre-trained classifier to predict the user labels in the target network. 

The rest of the section describes the individual steps for feature generation. 

3.1 Feature Extraction 

Users behave in different ways on the Web. A user’s behavior is reflected in her 

surrounding network structure, and thus we can examine the structural features of a node 

to study the user. For instance, we can group users with similar behavior into a role and 

examine the common pattern appearing in their neighborhood. Users with a similar 

neighborhood pattern can then be classified into the same role [7]. 

Structural features of nodes can be extracted by only looking at the structure (e.g., the 

adjacency matrix) of the network, without requiring information on additional attributes of 

nodes or links (e.g., users’ geolocations as node attributes, or message contents as link 

attributes in a user interaction network) [8]. In machine learning, it would also be useful to 

take these additional attributes into consideration in order to improve the performance. 

However, these node and link attributes are usually domain-specific, and may not be 

applicable in other networks. In transfer learning, blindly transferring knowledge may not 

be successful, or even make the performance of learning worse [3]. Since structural features 

are by nature present in all networks, in order to better investigate the principle idea behind 

transfer learning on the Web, we focus on the aspect of structural features. 

3.1.1 Base Feature Extraction 

For each node in a given network, we compute the following five structural features as its 

base features: (i) degree (ii) indegree (iii) outdegree (iv) local clustering coefficient (v) 

PageRank. 

3.1.2 Feature Aggregation 

To characterize a user on a Web platform, it is important to know not only by who she is, 

but also who she knows and who knows her. In terms of machine learning, we do not only 

consider a node’s local features, but also look into its neighborhood’s features and the 

network structure around it. Inspired by the idea of recursive features proposed in [8], for 

each node in the network, we generate its neighborhood features by aggregating its 

neighbors’ features step by step. For more details, in the first round, for each node and each 

local feature, we compute the average feature value of its neighbors and store it as a new 

feature. In the following rounds, we aggregate the features that we get in the last round in 

the same way.  

As to the total number of rounds rmax for which we perform the above described 

repetitive feature aggregation process, we choose rmax = 5 in practice. Considering the de 

facto low diameters of real-world networks, this provides us a good trade-off between 

classification performance and computational overhead. 



3.2 Feature Transfer by Feature Transformation 

The main challenge in transfer learning is that the distributions of features differ between 

the source and target datasets. Thus, features that are extracted from different networks are 

often not directly comparable. Therefore, after all base features are extracted, we transform 

them via different methods in order to make them comparable across networks. The 

transformation of features to a dataset-independent space of values is performed separately 

for each dataset. 

Feature transformation is especially difficult since the target dataset might not be seen 

during the training phase [9]. In our approach, the general idea of feature transformation is 

to define a common feature distribution for each kind of base feature, which is more likely 

to be comparable across networks. Therefore, the feature transformation procedure is 

network-independent and order-free, i.e. we do not need to access the target network when 

we perform feature transformation for the source network, and vice versa. 

We discuss the following transformation methods for our base features. 

3.2.1 Power-law Degree Transformation 

Studies have shown that some base features such as nodes’ degree approximately follow 

power-law distribution in real networks [10]: 
𝑝(𝑥) = 𝑐 ∙ 𝑥−𝛼           𝛼 > 1, 𝑥 ∈ [𝑥𝑚𝑖𝑛, +∞), 𝑥𝑚𝑖𝑛 > 0 

(Eq. 1) 

Given this prior knowledge, we can transform the feature values according to their quantile 

values (Equation 2). The quantile of a feature value x is defined as the probability that any 

value in its domain is less than x, i.e., ∫ 𝑝(𝑥)𝑑𝑥
𝑥

𝑥𝑚𝑖𝑛
. 

∫ 𝑝(𝑥)𝑑𝑥
𝑥

𝑥𝑚𝑖𝑛

= ∫ 𝑝′(𝑥′)𝑑𝑥′
𝑥′

𝑥′𝑚𝑖𝑛

 

(Eq. 2) 

By these means, we can transform any kind of power-law like feature distribution into one 

Figure 3.  Degree distributions of the German (de) and French (fr) Wiki-Talk networks 

(see Section 4.1.1) before and after power-law degree transformation. Each dot in the plot 

represents the probability (Y axis) of a degree value (X axis) in the network. Two separated 

curves overlap after the transformation. 



common power-law distribution. We choose the power-law distribution: 
𝑝′(𝑥′) = 𝑥′−2            𝑥′ ∈ [1, +∞) 

(Eq. 3) 

as the target distribution of transformation for the ease of calculation. Combining Equations 

1, 2 and 3, we get: 

𝑥′ = (
𝑥

𝑥𝑚𝑖𝑛
)𝛼−1 

(Eq. 4) 

where 𝑥′ is the transformed feature value. Considering our scenario where degree d 

commonly starts from 1, the formula can be further simplified to: 
𝑥′ = 𝑑𝛼−1 

(Eq. 5) 

In our implementation, we use the method by Clauset et al. [10] to fit a power-law 

distribution and estimate the exponential α. 

Fig. 3 shows the degree distributions of two networks before and after our 

transformation. The original curves of degree distributions are clearly separated (as in Fig. 

3a), while being overlapping after the transformation (as in Fig. 3b). This indicates that our 

transformation method can approximately transform degree distributions from different 

networks into a common power-law distribution. 

3.2.2 PageRank Transformation 

The standard PageRank of nodes in a network is defined as the stationary probability 

distribution in a converged random surfing process, and is often used to measure the 

centrality of nodes. However, it can be biased by the network size. Berberich et al. have 

proposed the normalized PageRank [11], where standard PageRank values are normalized 

by their theoretical lower bound. The normalized PageRank has been proved to be 

independent of network size and comparable across networks. Hence, we use it as the 

transformation for our base feature PageRank. 

4. Applications 

We now illustrate two concrete applications of TraNet as examples: identifying trusted 

users in social networks on the Web (in Section 4.2) and identifying users with specific 

roles (in Section 4.3). To evaluate the performance of TraNet, we accomplish the same 

tasks with other approaches and compare the performance. 

4.1 Settings 

We now present our application settings. 

4.1.1 Datasets 

We apply TraNet to the following real-world datasets from the Web. 

• Slashdot-Zoo is a signed network dataset extracted from Slashdot, consisting 

of 79,120 users and 515,397 directed relations [12]. In this network, each directed 

signed edge represents a “friend” (positive) or “foe” (negative) relation from one 

user to another on the technology news site Slashdot, where each user can explicitly 

mark other users as their friends or foes in order to increase or decrease the chance 

to see their posts. 

• Epinion-Trust is a signed network of Epinions, an online product rating site 



[13]. It consists of 131,828 users and 841,372 directed, signed edges, each 

representing a trust (positive) or distrust (negative) relation from one user to any 

user (possibly herself). 

• ARIS contains the user interaction network in the ARIS Community, the internal 

Business Process Management (BPM) system used in Software AG company, the 

second largest software company in Germany. At the time we extracted it, it had 

9,566 threads and 20,538 comments by 4,216 users, among which 885 were 

labelled as trusted users. We use a directed edge to represent a user’s comment to 

another user’s post or comment. 

• Wiki-Talk is a set of user interaction networks in Wikipedia of different 

languages. In Wikipedia, users can communicate with each other on their talk 

pages. We extract the interactions on all users’ talk pages of Wikipedia in different 

languages (each language forms an individual network). We use one node to 

represent a registered Wikipedia user, and one directed edge to represent a user 

interaction. Additionally, some users are labelled as administrators (Admin) by the 

Wikipedia community, among the others Normal users. A more detailed 

description of Wiki-Talk can be found online [14, 15]. 

4.1.2 Baselines 

We choose the following baselines to compare the performance of our approach (denoted 

as TraNet). We have also tried approaches such as the transfer component analysis (TCA) 

[16], but have found that they do not scale to suit our applications. 

• None: training a model from the source network and directly applying it to the 

target network. This serves as a lower-bound baseline, since no feature 

transformation is done. 

• Trad.: traditional machine learning (i.e. training a model from partial data in a 

network and apply it to the rest data in the same network). This serves as an upper-

bound baseline, since training and test data are sampled from the same domain, and 

no transformation is necessary. 

• SVD: performing feature transformation based on the singular value decomposition 

(SVD) proposed by Agirre and De Lacalle [17]. 

• TrAda.: performing transfer learning with TrAdaBoost proposed by Dai et al. 

[18]. TrAdaBoost has a different setting from ours: it requires partially labelled data 

from the target network 

4.1.3 Implementation 

We implement TraNet with Python. We use our own implementation for SVD, and adopt 

an open source implementation (github.com/chenchiwei/tradaboost) for 

TrAda. We use the ROC-AUC metric to measure the performance of the classifiers. 

4.2 Application in Trust Transfer 

Now we apply TraNet to predict trusted users on Web platforms. We compute the trusted 

users in Slashdot-Zoo and Epinion-Trust using the EigenTrust algorithm [19], 

and use each of them as the source dataset to learn a model respectively, and predict the 

trusted users in ARIS. The result is shown in Table 1. It shows that performing no feature 



transformation does not work well. Our approach TraNet outperforms other transfer 

learning approaches, and can even achieve the performance close to traditional within-

network learning when using Slashdot-Zoo as the source dataset. 
 

4.3 Application in Role Transfer 

In this application, we use the Wiki-Talk datasets and try to identify administrators 

among normal users. 

 Source Dataset 
Slashdot-Zoo Epinion-Trust 

None 0.7629 0.6755 
SVD 0.6090 0.6864 

TrAda. 0.6698 0.6889 
TraNet 0.8255 0.7500 
Trad. 0.8592 

Figure 4. ROC-AUC performance of the Admin classifier in different settings (see Section 

4.1.2). In each box plot, the red bar shows the median value, while the red dot shows the 

mean value of the ROC-AUC in each experiment. SVD and TrAda. are omitted here due 

to their poor performance (0.782 and 0.605 on average, respectively). Our approach 

TraNet achieves an average ROC-AUC of 0.982, which is the best among all transfer 

learning approaches. 

Table 1 
Predicting trusted users in the target network ARIS with the knowledge transferred from the two 

source networks Slashdot-Zoo and Epinion-Trust respectively. The values in the table show 

the ROC-AUC performance of the classifier in different settings (see Section 4.1.2). We can 
achieve the best performance with transfer learning using our approach TraNet. 



For each of the 14 sub-datasets in Wiki-Talk which contains at least 25 Admins, we 

build one binary classifier for Admins. Each of the classifiers is applied to the other 13 

sub-datasets. Therefore, we have 182 pairs of source and target datasets. 

As shown in Fig. 4, high ROC-AUC (0.997 on average) with traditional machine 

learning (Trad.) indicates that identifying Admins is achievable with given data. Transfer 

learning with SVD and TrAda. is ineffective with decreased performance compared with 

None. Our transfer learning approach can achieve the best performance with an average 

ROC-AUC of 0.982, improving by more than 1% compared with the transfer learning 

without feature transformation (None). 

5. Conclusion 

We have proposed a transfer learning–based approach, TraNet, to study users on the Web. 

It provides a novel method to transfer measurements of users’ social behavior (i.e. labels) 

from existing platforms in order to better analyze social effects on, especially, new Web 

platforms, and thus helps cut short the learning cycle of Web development as shown in the 

very beginning of the paper. 

We have been focusing on the study of users. TraNet can potentially be applied to study 

other entities on the Web such as groups or products, since they can also be represented as 

nodes in the network. This shows a direction of future work. 
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