
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y F E B R U A R Y 2 0 1 9 9

50 & 25
YEARS AGO

EDITOR ERICH NEUHOLD
University of Vienna
erich.neuhold@univie.ac.at

FEBRUARY 1969
In the early years, Computer was published only bimonthly.
Therefore, we will have to skip our interesting and informa-
tive extractions for this month. The next column will appear
in the March issue of Computer, and we hope you will eagerly
wait for its publication.

FEBRUARY 1994
Is 1994 1984 All Over Again? (p. 8) “This year, we face the
prospect of yet another profound development. Instead of
micro, it is a new era of multimedia telecommunications—
the convergence of micros with communications networks.
… 1994 marks the beginning of a roller-coaster ride into yet
another era of computing. We at Computer Magazine plan to
be at the forefront of this activity with articles and columns
that aim squarely at the core of these technologies. Our new
“Computing Milieu” section tackles the sociological and phil-
osophical underpinnings of this new era, our “Computing
Practices” section illustrates how to apply the new technolo-
gies, and our regular research articles give you a look at what
is to come.”

Exploiting the Parallelism Available in Loops (p. 13) “An
efficient approach for extracting this potential parallelism
is to concentrate on the parallelism available in loops. Since
the body of a loop may be executed many times, loops often
comprise a large portion of a program’s parallelism. A vari-
ety of parallel computer architectures and compilation tech-
niques have been proposed to exploit this parallelism at dif-
ferent granularities.” (p. 14) “We’re interested in parallelism
limitations due to data dependences, since, at least in theory,
we could eliminate resource dependences with additional
hardware. For simplicity, we’ll limit the analysis to singly
nested loops in which the loop index has been normalized
to vary from 1 to n with a stride (increment between itera-
tions) of 1.” (p. 16) “Fine-grained parallel architectures exploit

loop parallelism at the instruction set level by issuing sev-
eral instructions or operations in a single cycle. At runtime,
dependences between operations must be checked either
statically by the compiler or dynamically by the hardware to
ensure that only independent operations are issued simul-
taneously.” (p. 19) “While fine-grained parallel architectures
exploit parallelism at the instruction level, coarse-grained
architectures exploit it by scheduling entire iterations on
separate processors. On the shared-memory multiprocessor
shown in Figure 10, for example, the independent tasks to be
scheduled are the individual instantiations of the iterations,
each with a unique value of the loop index.” (Editor’s note:
The article evaluates various parallelization strategies for both
coarse-grained and fine-grained approaches. However, it restricts
its analysis to situations that appear in scientific programming,
for example, matrix-based situations. In today’s situations, sta-
tistical analysis of large amounts of data—for example, for infor-
mation mining—are important parts of parallelization; therefore,
novel distribution techniques had to be found.)

Defining Requirements for a Standard Simulation Envi-
ronment (p. 28): “In this article, we define a reference model
for general-purpose discrete-event simulation environments
as well as the associated requirements for the model’s func-
tional layers, to be used as the basis for a future standard.”
(p. 30) “Reference model … The model consists of five distinct
layers. The top layer, or application layer 4, can access all lay-
ers so that developers can add application-specific constructs
to their environments. The lower layers include properties
that enable implementation of similar features at higher lev-
els. The lowest layer 0 provides the basic language-level sup-
port for the environment and can be accessed by all other lay-
ers. Layer 1 defines the requirements for model specification.
Layer 2 deals with model knowledge management. Layer 3 is
the system design layer.” (Editor’s note: The article proposes a
reference architecture for simulation systems that, despite look-
ing attractive, never managed to become the reference model in
simulation. Simulink from MathWorks is widely used, but other
approaches still play important roles.)

Digital Object Identifier 10.1109/MC.2019.2897920
Date of publication: 22 March 2019

10 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

50 & 25 YEARS AGO

A Methodology for Design, Test, and Evaluation of Real-
Time Systems (p. 35): “This methodology can reduce proj-
ect costs and shorten schedules because it requires per-
formance evaluation and integration testing early, when
problems are generally easier and less costly to correct. …
This article presents a methodology that is suitable for use as
part of either a prototyping approach or a component-reuse
approach. This methodology integrates modeling and simu-
lation as well as developmental and operational testing over
the life cycle. The type of systems or components we address
operate in real time.” (p. 36) “This methodology consists of
an analytical approach for representing (1) a system and its
environment, and (2) a hardware and software architecture.
Both the methodology and the modeling-and-simulation/
test-and-evaluation suite based on this architecture are called
ASSET (an acronym for aerospace systems simulation, engi-
neering, and test tool).” (Editor’s note: The publication analyzes
in detail a design/simulation/implementation approach for an
airborne interferometer processing system.)

Ada System Dependency Analyzer Tool (p. 49): “Strongly
typed languages like Ada promote significant extensibility
and reusability because they support safe, error-free inter-
faces between different software packages. At the same time,
this ability to embed diverse systems within an application,
particularly commercial off-the-shelf (COTS) software, often
unintentionally adds to architectural complexity. … With
large, complex software systems, automated tools are indis-
pensable for identifying the architectural components, the
structure that interconnects them, and other subtle depen-
dencies. This article describes the construction of an Ada
System Dependency Analyzer (SDA), a software architecture
analysis tool that generates a quantitative snapshot of an
Ada application’s software architecture. The SDA can pro-
cess thousands of Ada source files during a single run and
report on them as a group of files comprising a single Ada
system.” (p. 54) “Our object-oriented design method provides
the additional benefit of letting us add new features to the
SDA in a straightforward manner. For example, to add a new
capability, a handle routine is added to the parser, providing
a point of call for the new construct when it is detected in the
grammar.” (Editor’s note: The authors claim that the approach
can easily be adopted to other high-level programming environ-
ments but do not indicate how this could be done, which is espe-
cially interesting in light of the ADA idiosyncrasies mentioned in
the next article.)

Implementing a Software Configuration Management
Environment (p. 56) “Configuration management is con-
cerned with maintaining a product’s integrity. To do so,
a successful CM environment requires three basic capa-
bilities: (1) version control, (2) a check-out/check-in facility,
and (3) a buffered-compare program.” (p. 59) “There are a
few other items to consider when developing a software CM

environment: (1) establishing a standards-checking pro-
gram, (2) implementing an automated problem-reporting
system, (3) automating the generation of configuration status
accounting reports, and (4) providing an automated metrics
acquisition and reporting capability.” (Editor’s note: The article
develops and describes a software configuration management sys-
tem not so different from others existing in 1994, but it also relates it
to the ADA environment developed in the previous article.)

Computer Science for the Many (p. 62) “Traditional literacy
courses were developed some years ago and are still taught
at many universities throughout the world. These courses
emphasize learning the vocabulary of computing; gaining
some experience with software packages, such as word pro-
cessing, spreadsheets, and database systems; and studying
the history and social impact of computing. … Unfortunately,
literacy courses address the syntax and form of the field
rather than the structure and ideas. They enable students to
use machines, but they do not engage their intellects in the
real excitement of computing. Memorized vocabulary will not
last unless tied to a real understanding, and the applications
packages students learn will soon be out of date.” (p. 63) “The
philosophy is that if students develop sufficient knowledge of
what computers can do, and learn how to get started doing
those things, they will have gained knowledge and skills of
lasting value. The course teaches this material by introducing
the students to programming and by teaching them the fun-
damental mechanisms of computer hardware and software.”
(p. 69) “Artificial intelligence. This topic divides into two
parts, knowledge representation and reasoning. The knowl-
edge representation lectures introduce several common rep-
resentation schemes. … The reasoning lectures show several
search methodologies and applications of problem solving. …

“In concluding the artificial intelligence study, instructors
try to characterize the field’s current level of success and warn
against over optimism about the future. Students are told
that almost any intelligent phenomenon—learning, problem
solving, creativity, natural language processing, vision, and
so forth—can be simulated to a very limited extent. However,
no artificially intelligent phenomenon of this nature has been
exhibited to a great degree, nor is this likely in the foresee-
able future.” (Editor’s note: I consider this curriculum proposal to
be well thought out and well argued. Not knowing the U.S. scene
for such basic computer courses in academia, I am somewhat sur-
prised that the subjects covered apparently are not contained in
such courses. In Germany and Austria, such content was and is
more or less standard.)

Former IBM Chief T.J. Watson, Jr., dies (p. 84) “In 1977,
when he received an honorary Doctor of Civil Law degree
from Oxford University, Watson summed up concerns that
had occupied him in both his business and his public service
roles: ‘One of the most important problems we face today, as
techniques and systems become more and more pervasive, is

 F E B R U A R Y 2 0 1 9 11

the risk of missing that fine, human point that may well make
the difference between success and failure, fair and unfair,
right and wrong. … No IBM computer has an education in the
humanities. … There isn’t a single one with moral standards,
conscience, soul, or heart. … I say that for every step forward
in the direction of more so-called scientific management, we
must take one or more steps toward improved preservation
of human values.” (Editor’s note: A statement I fully subscribe
to. However, more than 40 years later, I sometimes have the strong
impression that we have forgotten this fact and trust computers,
clouds, big data, and deep learning more than our own human val-
ues, intelligence, and ethics.)

The Open Channel: Natural Talent for Computing (p. 120)
“Two extremes. Today, I am teaching in the laboratory again.
I’m moving between people who are convinced that they know
everything about computers and people who are convinced
that they will never know anything about computers. Some-
where in here are future computer science stars, but they’re not
so easy to spot anymore. I’m thinking, maybe we need fewer
gun nuts and fewer computer nuts, and more people who can
hit what they’re aiming at. I’m beginning to believe that natu-
ral talent is a matter of a fresh, patient, and open mind.” (Edi-
tor’s note: What a true statement and one that is often completely
disregarded by our “modern” recruiting methods.)

IEEE TRANSACTIONS ON

BIG DATA

For more information on paper submission, featured articles, calls for papers,
and subscription links visit: www.computer.org/tbd

TBD is financially cosponsored by IEEE Computer Society, IEEE Communications Society, IEEE Computational Intelligence
Society, IEEE Sensors Council, IEEE Consumer Electronics Society, IEEE Signal Processing Society, IEEE Systems, Man &
Cybernetics Society, IEEE Systems Council, and IEEE Vehicular Technology Society

TBD is technically cosponsored by IEEE Control Systems Society, IEEE Photonics Society, IEEE Engineering in Medicine &
Biology Society, IEEE Power & Energy Society, and IEEE Biometrics Council

SUBSCRIBE AND SUBMIT

SUBMIT
TODAY

Digital Object Identifier 10.1109/MC.2019.2901911

