
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y A U G U S T 2 0 1 9 9

50 & 25
YEARS AGO

EDITOR ERICH NEUHOLD
University of Vienna
erich.neuhold@univie.ac.at

AUGUST 1969
In the early years, Computer was only published bimonthly.
Therefore, we will have to skip our interesting and/or infor-
mative extractions for August. The next one will appear in
the September 2019 issue of Computer, and we hope you will
eagerly wait for our next publication of this column.

AUGUST 1994
 www.computer.org/csdl/mags/co/1994/08/index.html

 Industry Trends: Intelligent Agents Gaining Momen-
tum (p. 8) “‘Intelligent agents’ will do for software in the late
1990s what graphical user interfaces did in the 1980s, accord-
ing to Ovum, a London-based research fi rm. … Agents will
be of particular interest in the development of software for
communications. For instance, Internet areas of messaging,
work fl ow, and information retrieval. … There is a downside
though. Behind the golden promise of intelligent agents,
Guilfoyle warned, lurk some serious security risks. One dan-
ger is that specialized assassin agents created by hackers may
enter a network and damage or ‘kill’ other agents. Another
area of risk is controlling agents that learn from other agents
and take action based on that knowledge—action that the
user might not want taken.” [Editor’s note: On one side, the arti-
cle was overly optimistic. It took much longer for agent technology
and more general artifi cial intelligence principles to take hold
in the mainstream. On the other side, it identifi ed risks in such
systems that are still a big concern 25 years later and far from
being solved.]

COOL: An Object-Based Language for Parallel Program-
ming (p. 13) “Eff ectively using shared memory multiproces-
sors requires substantial programming eff ort. COOL inte-
grates concurrency and synchronization to ease the task of
creating modular and effi cient parallel programs.” (p. 14) “As
stated, concurrency in a COOL program is expressed through

parallel functions. Communication between parallel func-
tions occurs through shared variables, and the two basic
elements of synchronization—mutual exclusion and event
synchronization—are expressed through monitors and con-
dition variables, respectively.” (p. 25) “We have implemented
COOL on several shared-memory multiprocessors and have
programmed a variety of application programs in the lan-
guage. Our experience in writing programs in COOL, as well
as the performance of the programs on actual multipro-
cessors, has demonstrated the benefi ts of data abstraction
in expressing concurrency and synchronization, and in
exploiting data locality.” [Editor’s note: This is one of a large
number of such languages that actually did not achieve any sig-
nifi cant market penetration.]

Datafl ow Architectures and Multithreading (p. 27) “Con-
trary to initial expectations, implementing datafl ow com-
puters has presented a monumental challenge. Now, how-
ever, multithreading off ers a viable alternative for building
hybrid architectures that exploit parallelism. … This revival
is facilitated by a lack of developments in the conventional
parallel-processing arena, as well as by changes in the actual
implementation of the datafl ow model. One important devel-
opment, the emergence of an effi cient mechanism to detect
enabled nodes, replaces the expensive and complex process
of matching tags used in past projects. Another change is the
convergence of the control-fl ow and datafl ow models of exe-
cution.” (p. 29) “The major advantage of the dynamic data-
fl ow model is the higher performance it obtains by allowing
multiple tokens on an arc. For example, a loop can be dynam-
ically unfolded at runtime by creating multiple instances
of the loop body and allowing concurrent execution of the
instances. For this reason, current datafl ow research eff orts
indicate a trend toward adopting the dynamic datafl ow
model. However, as we’ll see in the next section, its imple-
mentation presents a number of diffi cult problems.” (p. 31)
“Recent architectural developments. … Three categories.
The dataflow machines currently advanced in the liter-
ature can be classifi ed into three categories: pure-datafl ow,

Digital Object Identifier 10.1109/MC.2019.2914754
Date of publication: 30 July 2019

10 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

50 & 25 YEARS AGO

macro-dataflow, and hybrid.” (p.38) “The eventual success
of dataflow computers will depend on their programmabil-
ity. Traditionally they’ve been programmed in languages …
that use functional semantics. These languages reveal high
levels of concurrency and translate onto dataflow machines
and conventional parallel machines via TAM. However,
because their syntax and semantics differ from the imper-
ative counterparts such as FORTRAN and C, they have been
slow to gain acceptance in the programming community.
An alternative is to explore the use of established impera-
tive languages to program dataflow machines. However, the
difficulty will be analyzing data dependencies and extract-
ing parallelism from source code that contains side effects.”
[Editor’s note: The article investigates in depth the difficulty
in a broad use of dataflow computing. After 25 years, dataflow
computers still have not made it into mainstream computing
but have established a firm hold in special applications. More
general approaches, such as Wave and Maxeler, rely heavily on
program libraries to ease the burden of effectively utilizing the
powers of these computers.]

Computing Practices (p. 44) “Software metrics have been
much criticized in the last few years, sometimes justly but
more often unjustly, because critics misunderstand the intent
behind the technology. Software complexity metrics, for
example, rarely measure the ‘inherent complexity’ embedded
in software systems, but they do a very good job of compar-
ing the relative complexity of one portion of a system with
another. In essence, they are good modeling tools. Whether
they are also good measuring tools depends on how consis-
tently and appropriately they are applied. The two articles
showcased here suggest ways of applying such metrics.”

Using Metrics to Evaluate Software System Maintain-
ability (p. 44): “Morton stated that Hewlett-Packard (HP)
currently has between 40 and 50 million lines of code under
maintenance and that 60 to 80 percent of research and devel-
opment personnel are involved in maintenance activities.
He went on to say that 40 to 60 percent of the cost of produc-
tion is now maintenance expense. The intent of this article
is to demonstrate how automated software maintainabil-
ity analysis can be used to guide software-related decision
making. We have applied metrics-based software maintain-
ability models to 11 industrial software systems and used the
results for fact-finding and process-selection decisions. The
results indicate that automated maintainability assessment
can be used to support buy-versus-build decisions, pre and
post-reengineering analysis, subcomponent quality analysis,
test resource allocation, and the prediction and targeting of
defect-prone subcomponents.” (p. 49) “Our results indicate
that automated maintainability analysis can be conducted
at the component level, the subsystem level, and the whole
system level to evaluate and compare software. … The point
is that a good model can help maintainers guide their efforts
and provide them with much needed feedback. Before devel-
opers can claim that they are building maintainable systems,
there must be some way to measure maintainability.” [Editor’s
note: In the last 25 years, software systems have grown tremen-
dously in size and complexity. When applied early in the devel-
opment process, maintainability metrics have helped to guide the
developers to produce and maintain more effectively. Of course,
maintenance is still a major factor in software costs.]

Validating Metrics for Ensuring Space Shuttle Flight
Software Quality (p. 50): “We achieve quality control during

Digital Object Identifier 10.1109/MC.2019.2917942
Date of publication: 30 July 2019

 A U G U S T 2 0 1 9 11

design using metrics in Boolean discriminator functions to
see whether product quality is acceptable or remedial action
is necessary—for example, detailed inspection and tracking
of product quality during test and operation. (Ours is the first
reported application of Boolean discriminator functions to
control software quality.) Quality prediction during design
is achieved using nonlinear regression equations developed
from smoothed data. (This is the first reported application
of smoothed data of this type in regression equations to pre-
dict software quality.) In this article, we cover the validation
of software quality metrics for the space shuttle.” (p. 57) “In
other words, we predict that a 100 percent increase in size and
complexity will result in a 30 percent degradation in quality.
Again, we must caution that the second design approach
may be the more appropriate one, all things considered. For
example, the smaller design would not be the better one if a
decrease in module size increases the intermodule complex-
ity of numerous small modules. However, despite these cave-
ats, this methodology allows software managers to predict
potential quality problems.” [Editor’s note: This is an interesting
study that lacks a clear definition of what the many parameters
utilized actually stand for in the various software components.]

Where Is Computing Headed? (p. 59): “By studying predict-
able Technology and asking ‘what if’ questions where devel-
opments are less certain, we can envision the state of com-
puting in another 10 years. … Technological change is putting
entire industries on the betting line. For computer technolo-
gists, these shifts can mean opportunity or disappointment
as one technology is replaced by another. Therefore, it is
important that we consider economic and technical forces
when we plan for the future.” (p 61) “These raw performance
trends have major implications for all of computing. They
mean that we can pack more processors in a single product,
run audio and video on the desktop, recognize speech, filter
image data, and reduce the cost of processing transactions in
banks, stock markets, insurance companies, universities, and
most other businesses. E-mail systems will change dramati-
cally, and telephone systems will be ‘service programmed’ by
consumers able to order up their own options.” (p. 62) “The
movement toward decentralization is not only continuing
but also accelerating. By the end of the decade, computing
will become personalized rather than departmentalized.
High-powered computers will fit in a person’s hand, and all
this power will make them extremely easy and intuitive to
use.” (p. 63) “Aside from the social, political, and economic
issues, a fully connected world of computer networks, cellu-
lar telephones, and interactive cable TV systems raises sig-
nificant research issues. First, what about network security?
For local-haul data, radio signals will probably be used. But

radio can be intercepted, altered, and rebroadcast without the
knowledge of the sender or the receiver. Authentication is
needed to protect bank accounts, stock markets, and corpo-
rate data. … Many computer scientists as well as civil libertar-
ians are concerned about this potential invasion of privacy.”
[Editor’s note: This is an amazing article, as the author predicted
most of the achievements we are living with today. He missed a
few, for example, the importance of the Internet of Things or the
influx of artificial intelligence. However, as an excuse, he predicted
only 10 years into the future.]

Formal methods (p. 68) “It is now widely accepted, how-
ever, that formal methods have potential benefits that are
likely to be exploited increasingly in the fields of safety- and
security-critical systems. A number of standards, partic-
ularly in the safety-critical domain, are now citing formal
methods as one of the techniques that should be employed
when the highest integrity of software is required.” (p. 71)
“Many of these standards are mentioning formal methods,
and others are likely to lean in that direction. It should be
noted, however, that most standards bodies are recommend-
ing formal methods rather than mandating them.” [Editor’s
note: Despite the attention given to and the potential seen for
using formal means for system specification and verification,
most of today’s systems still only embed miniscule components
where formal means have been used in their development. The
many issues with hacking, system break-in, and privacy violation
are just a consequence of our inability to use formal means to
ensure the correctness of our systems.]

The Open Channel: The Electronic Government Gamble
(p. 104) “As citizens of a democratic society in the Informa-
tion Age, we must act to prevent the electronic bureaucracy
from intentionally curtailing personal freedoms or uninten-
tionally ending life. … Electronic Data Interchange resides
at the core of the federal initiative. EDI, as embodied in the
ANSI X.12 standard, supports so-called ‘forms-enabled’
transaction sets. … unless a trusted computing base is estab-
lished for each participating organization. Such a base must
execute each transaction in a predictable and tamper-proof
way. So firewalls for security, digital encryption technology
for privacy-enhanced mail, and auditing of each transaction
are essential to ensure integrity. … An electronically equipped
bureaucrat constitutes a potentially profound threat to public
safety. In his or her hands, EDI may be more nefarious than
some lunatic’s semiautomatic assault weapon at a World Cup
match.” [Editor’s note: The concerns expressed here are, of course,
valid only if electronic data interchange is used in a stand-alone
fashion and not in some business process management system, as
is always the case today.]

