
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y O C T O B E R 2 0 1 9 97

A s an educator who has played several roles in the
construction of the IEEE Computer Society/As-
sociation for Computing Machinery Undergrad-
uate Curriculum guidelines through the years,

interactions with other computing education-oriented col-
leagues show a consensus that, over the decades, the contents
of the Guidelines have moved away from computer hardware.
Recommended programming languages have also changed
in this way as time has passed, moving from languages like C,
which blatantly exposes the machine, to Java, which hides
the machine as much as possible. Today, problems, even
those already tied to hardware, are growing both in number
and significance, indicating that a hardware component in
undergraduate computing education is necessary.

To illustrate this point, a partial list of such issues in the
pursuit of sound, future- forward solutions is as follows:

› the incorporation of perfor-
mance/computation model
directives in the latest C++
standard library

› the identification/coordina-
tion/timing of the massively
growing number of the Inter-
net of Things applications

› the extensive use of cryptography, which relies on
the construction and interpretation of codes used
for encryption; this code has been and will increase
in its hardware dependency, given quantum com-
puting on the horizon

› the almost hidden compiler code optimizations by
interactive development environments and how the
structure of generated code influences the ability
to compromise software (the insertion of malicious
code); moreover, the structure and meaning of call
stacks and their direct relationship to potential
malicious behavior

› the pursuit of hardware-specific imaging render-
ing/analysis/enhancement toward total realism
and accuracy

› the movement of generic operating system func-
tions to hardware-customized ones to enhance
features and performance

› the continued growth of microcode for embedded
systems and robots; while it can be argued that

Digital Object Identifier 10.1109/MC.2019.2930098
Date of publication: 24 September 2019

A New (?) Educational
View of Computing
Ann E.K. Sobel, Miami University

 When considering potential solutions to today’s

hot topics in computing, such as security, the

Internet of Things, cloud computing, and modeling

performance, it is becoming clearer that such

approaches need to incorporate hardware-oriented

aspects, which is a step backward in our current

educational view of computing.

COMPUTING EDUCATION
EDITOR ANN E.K. SOBEL

Miami University; sobelae@muohio.edu

98	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

COMPUTING EDUCATION

hardware interaction in the
context of embedded systems
places this topic in a computer en-
gineering discipline, it becomes
less clear when the code commu-
nicates with other internal and
external software systems.

WHAT SHOULD BE DONE?
I am aware of academic attempts to ad-
dress some of these issues by offering
degree programs, that is “computer
science and computer engineering.”

But does such an approach really ad-
dress the problem, when this solution
just splices together two very differ-
ent strategies, with each retaining its
own views/methods/methodologies?
These disciplines need to be integrated
so that software construction incorpo-
rates the operating system/hardware
on which the software will run by
merging the best practices of each in a
way that they can work in tandem.

As a reasonable start to address-
ing these problems, students should

learn many of the concepts typically
taught in a compiler design course, not
to learn how to write compilers but to
gain an understanding of the inter-
play between the code generated and
the architecture. Focusing on which
outside entities can interact with the
code makes the programmer consider
interactions that support security by
design. Furthermore, a programmer
needs to understand not only what an
executable looks like but how, when,
and by whom its sections are used.
Again, focusing on such issues brings
the architecture into the code gener-
ated that is needed by current comput-
ing solutions.

A s educators, we are continually
challenged to find and apply
new strategies to solve today’s

computing problems. We must also
make judgment calls as to which and
when such approaches should be inte-
grated into our degree programs. While
the Undergraduate Curriculum Guide-
lines exist for the purpose of what the
community believes should be taught,
there is a transition phase where cut-
ting-edge programs dare to test what
may very well become the accepted ed-
ucational standard in the future. We
may just find that taking a step back to
a more machine-oriented methodology
is the right path forward.

ANN E.K. SOBEL is an associate
professor at Miami University,
Ohio, and editor of the “Computing
Education” column. Contact her at
sobelae@miamioh.edu.

IEEE Software seeks

practical, readable articles

that will appeal to experts

and nonexperts alike. The

magazine aims to deliver

reliable information to software

developers and managers to

help them stay on top of rapid

technology change. Submissions

must be original and no more

than 4,700 words, including 250

words for each table and � gure.

Call for Articles

Author guidelines:
www.computer.org/software/author

Further details: software@computer.org

www.computer.org/software

Digital Object Identifier 10.1109/MC.2019.2937717

