
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y F E B R U A R Y 2 0 2 0 9

50 & 25
YEARS AGO

EDITOR ERICH NEUHOLD
University of Vienna
erich.neuhold@univie.ac.at

FEBRUARY 1970
In the early years, Computer was only published bimonthly.
Therefore, we will have to skip our interesting and informa-
tive extractions for this month. The next column will appear
in the March issue of Computer, and we hope you will eagerly
wait for its publication.

FEBRUARY 1995
www.computer.org/csdl/mags/co/1995/02/index.html

Is the Macintosh Dead Meat? (p. 6) “If you believe what you
read, Microsoft will scorch a path to desktop domination. …
It’s irresponsible for anyone to claim victory months or years
before a product is released. So I will add my two cents’ worth
to the pot and stir it around: The 32-bit operating system wars
mean everything, and they mean nothing! … IBM is claiming
strong support for OS/2, citing a 20 percent demand for OS/2
Warp among OEMers. … It seems that killing Apple will be
more difficult than the press pundits would have us believe.”
(p. 7) “Now comes the surprise ending. The sleeper column
of Table 1 is full of players who can upset the platform cart.
If NeXT, Taligent, or Microsoft successfully covers all major
operating systems with a thick layer of application frame-
works, as each is attempting to do, then the underlying OS
no longer makes any difference.” [Editor’s note: Despite this
concluding statement, it turned out that Microsoft and Apple are
practically the only operating systems covering the PC and laptop
market. Only the appearance of smartphones allowed Google’s
Android to establish itself on the market.]

Reducing the Time to Market Through Rapid Prototyping
(p. 14) “The term Rapid System Prototyping (RSP) signifies the
need to develop systems in significantly less time or with sig-
nificantly less effort than is currently possible, and thus pro-
vides the context for the driving problem in the design com-
munity in the present and for years to come. … Activities in

the RSP community break down into three substantial areas
of research: formalizing the design process so that a system
can be described by formal methods … developing CAD tools
that can synthesize a system expressed in a formal language
… reducing these two steps to practice. … The articles in this
issue of Computer reflect the diversity and state of the field.”

Real-Time Image Processing on a Custom Computing Plat-
form (p. 16) “The authors explore the utility of custom comput-
ing machinery for accelerating the development, testing, and
prototyping of a diverse set of image-processing applications.
… Due to the enormous processing time required to simulate
a complex image-processing system, executing a VHDL model
with a representative data set even on a fast workstation is not
practical. Days, or even weeks, are commonly needed to sim-
ulate the processing of a single full-sized image. … With our
system, a designer can proceed from a behavioral description
of the image-processing task to a functioning prototype that
can perform the task at full speed (rapid prototyping).” (p. 17)
“Splash-2 is an attached processor featuring programmable
processing elements (PEs) and communication paths. The
Splash-2 system uses arrays of RAM-based field-programma-
ble gate arrays (FPGAs), crossbar networks, and distributed
memory to accomplish the needed flexibility and perfor-
mance.” (p. 19) “ Figure 2 shows the VTSplash laboratory sys-
tem we developed. A video camera or a VCR creates a standard
RS-170 video stream. The signal produced from the camera
is digitized with a custom-built frame-grabber card. This
board not only captures images but also performs any needed
sequencing or simple pixel operations before the data are pre-
sented to Splash-2.” (p. 20) “Although Splash-2 represents the
state-of-the-art in custom computing processors—both in
hardware capabilities and software support—it requires a sub-
stantial time investment to develop an application. To make
this class of machinery more widely accepted and cost-effec-
tive, methods must be developed to reduce application-devel-
opment time. Several promising endeavors focus on this issue.
… Image operations have been classified into five generic
classes.” [Editor’s note: This article explores these five classes and

Digital Object Identifier 10.1109/MC.2019.2957560
Date of current version: 12 February 2020

10 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

50 & 25 YEARS AGO

demonstrates that the flexible architecture of Splash-2 allows those
applications to vastly outperform general-purpose machines like
the Sun SparcStation. Unfortunately, it does not illustrate any of the
gains in development time in the sense of rapid system prototyping.]

RPM: A Rapid Prototyping Engine for Multiprocessor
Systems (p. 26) “The RPM (Rapid Prototyping engine for Mul-
tiprocessors) project is exploring a rapid-prototyping meth-
odology for multiprocessor systems that is based on hard-
ware emulation. The flexibility of emulation is important,
since the design space for multiprocessor systems is arguably
much wider than that of uniprocessors. … For programming
ease, the shared-memory model has thus far been the favored
transition path from uniprocessors to multiprocessors. On the
other hand, message-passing systems are generally perceived
as more scalable than shared-memory systems.” (p. 27) “Sev-
eral technologies, including field-programmable gate arrays
(FPGAs), and efficient computer-aided design (CAD) tools are
converging, making it possible to build and program flexible
multiprocessor emulators.” (p. 30) “Since the speeds of the
hardware emulation and target differ, timing measured on the
emulator must be related to the timing in the target machine.
… Time scaling preserves the relative timing of components
in the emulator and target, and simple scaling arguments
yield absolute times in the target.” (p. 33) “Finally, as with any
hardware, an emulator’s efficiency advantage over simulation
erodes every year, as faster workstations and PCs are intro-
duced. Nevertheless, given RPM’s current speed, we expect
that it will remain competitive with software simulators for
at least 10 years.” [Editor’s note: It is interesting to observe how
limited execution speed and storage size had been in 1995. As the
authors confess, the limited budget of a university also hampered
the size of the multiprocessor systems that can be emulated.]

Grape-II: A System-Level Prototyping Environment for
DSP Applications (p. 35) “Grape-II has been used successfully
in three real-world DSP applications. Its structured prototyp-
ing methodology reduces programming effort: its use of gen-
eral-purpose reusable hardware minimizes development cost.
… Digital signal processing is used for speech synthesis and
recognition, telecommunications, image and video process-
ing, and robotics, as well as for consumer products, i.e., com-
pact disk players, digital audio tape recorders, and digital radio
receivers. The increasing complexity and data rates of these DSP
applications demand application-specific integrated circuits.
… The general-purpose hardware consists of commercial DSP
processors, bond-out versions of core processors, and field-pro-
grammable gate arrays (FPGAs) linked to form a powerful, het-
erogeneous multiprocessor.” (p. 40) “Example: Rapid proto-
typing a video encoder. As an example, let’s look at the rapid
prototyping of a video encoder that generates compressed video
for a wireless local area network. We’ll go through the steps we
followed in prototyping the video encoder component, but first,
let’s look at the entire video-on-demand system.” (p. 42) “This

case study resulted in an operational prototype at full speed. It
shows the feasibility of our strategy for prototyping real time
color video compression on a commercial DSP multiprocessor.”
[Editor’s note: This article provides a quite detailed description of the
various tasks involved in building an actual prototype within the
architecture proposed.]

Synthesis Steps and Design Models for Codesign (p. 44)
“Growing design complexity and an urgent need for early
prototypes have become limitations in electronic systems
design. A mature codesign offers advantages to overcome
this challenge. … The fields of specification, design, and syn-
thesis of mixed hardware/software systems are becoming
increasingly more popular. The renewed interest in codesign
is driven by increasing design complexity and the need for
early prototypes to validate the specification and provide the
customer with feedback during the design process. … The
main steps needed to transform a system-level specification
into a mixed hardware/software specification are system par-
titioning, communication synthesis, and architecture gener-
ation.” (p. 45) “Cosmos, a codesign environment, starts from
the system-level specification language SOL and produces a
heterogeneous architecture including hardware descriptions
in VHOL and software descriptions in C.” (p. 51) “A codesign
example: Figure 8 illustrates the overall codesign process for
a real time system interface (RTSI) between sensor-produc-
ing digital signals and a storage disk. As explained above,
the codesign process includes several steps and intermedi-
ate models. The input to Cosmos is an SDL description of this
system, while the output is a mixed C/VHDL description that
can be mapped onto a target architecture to produce a pro-
totype. … Our goal is to let the user do the intelligent work
(such as deciding which part is in software and which is in
hardware) and let the system perform the fastidious and
error-prone tasks.” [Editor’s note: As in most of those systems,
the key issue is the existence of an abstract precise model of the
system to be designed. Even then, as this article points out, many
decisions are left to the human.]

A Formal Approach to Managing Design Processes (p. 54)
“Product development cycles keep speeding up. To cope
with the demands of ever-shorter design cycles, a methodol-
ogy management system controls the design process during
rapid prototyping.” (p. 56) “Our prototype system uses a
methodology specification based on process flow graphs and
design process grammars. Process flow graphs describe the
information flow of a design process, and graph grammars
are a means for transforming high-level process flow graphs
into progressively more detailed flow graphs.” (p. 58) “Figure 4
illustrates the architecture of our proposed system, which
applies the theory developed in the previous section. Deci-
sions to select or invoke tools are split between the designer
and a set of manager programs, with manager programs mak-
ing the routine decisions and the designer making decisions

 F E B R U A R Y 2 0 2 0 11

that require higher-level thinking.” [Editor’s note: As in the
other articles in this issue, the tool very much depends on the pre-
cise (formal) description of the intended system to be prototyped.
The claim here is that modifications during the prototyping pro-
cess are easily accomplished through a strong modularization of
the design.]

A Plea for Clean Software (p. 64) “About 25 years ago, an inter-
active text editor could be designed with as little as 8,000 bytes
of storage. (Modern program editors request 100 times that
much!) An operating system had to manage with 8,000 bytes,
and a compiler had to fit into 32 Kbytes, whereas their modern
descendants require megabytes. Has all this inflated software
become any faster? On the contrary. Were it not for a thou-
sand times faster hardware, modern software would be utterly
unusable. … With a touch of humor, the following two laws
reflect the state of the art admirably well—Software expands
to fill the available memory (Parkinson),—Software is getting
slower more rapidly than hardware becomes faster (Reiser).”
(p. 65) “Initial designs for sophisticated software applications
are invariably complicated, even when developed by competent
engineers. Truly good solutions emerge after iterative improve-
ments or after redesigns that exploit new insights. … Instead,
software inadequacies are typically corrected by quickly con-
ceived additions that invariably result in the well-known bulk.”
(p. 66) “Between 1986 and 1989, Jurg Gutknecht and I designed
and implemented a new software system—called Oberon—for
modern workstations, based on nothing but hardware. … The
system includes: storage management, a file system, a window
display manager, a network with servers, a compiler, and text,
graphics, and document editors.” (p. 67) “The strategy of keep-
ing the core system simple but extensible rewards the modest
user. The Oberon core occupies fewer than 200 Kbytes, includ-
ing editor and compiler. A computer system based on Oberon
needs to be expanded only if large, demanding applications
are requested, such as CAD with large memory requirements.
If several such applications are used, the system does not
require them to be simultaneously loaded.” (p. 68) “With Proj-
ect Oberon we have demonstrated that flexible and powerful
systems can be built with substantially fewer resources in less
time than usual. The plague of software explosion is not a ‘law
of nature.’ It is avoidable, and it is the software engineer’s task
to curtail it.” [Editor’s note: The statements of this article hold a lot
of truth that applies even today. What would the author say about
today’s systems? The megabyte systems of 1995, the ones he com-
plains about, have become gigabyte systems today. Despite all of the
incredible speedup in compute power, Windows needs the same time
or even longer for startup than it did 25 years ago.]

Determining Software Schedules (p. 73) “But now we can
measure these factors with reasonable accuracy and collect
empirical data on both ‘average’ and ‘best-in-class’ results.
We are particularly interested in the wide performance
gaps between laggards, average enterprises, and industry
leaders, as well as differences among the various software
domains. … Although many commercial software cost-es-
timating tools can predict schedules with fairly good accu-
racy, as of 1994 only about 15 percent of US software man-
agers—and even less abroad—were using them. … Not only
are both ends of software projects ambiguous and difficult
to determine, but the middle can get messy, too. Even with
the ‘waterfall model’ of development, there is always overlap
and parallelism between adjacent activities, so that a proj-
ect’s end-to-end schedule is never the same as the duration
of those activities. Software requirements are usually only
about 75 percent defined when design starts. Design is often
little more than 50 percent complete when coding starts.
Integration and testing can begin when coding is less than
20 percent complete. And user documentation usually starts
when coding is about 50 percent finished.” (p. 74) “But the
function-point metric provides a convenient, quick estima-
tor for schedule durations that can be applied early in a soft-
ware project’s development cycle.” [Editor’s note: The article
claims that a simple metric based on function points will give the
projects duration rather accurately. However, it does not explain
how the “power level” numbers are derived, which are instrumen-
tal for this calculation, especially since the later part of the article
clearly distinguishes between the four chosen application fields
and their requirements.]

Open Channel: Can System Integrators Learn From Bag-
gage Crisis? (p. 112) “This was a tantalizingly detailed look at
the system testing problems with the automated airport bag-
gage handling system in Denver. … I submit to the systems
engineering community that the pending government investi-
gations represent a once-in-a-decade opportunity to assemble
a benchmark/definitive study of a major system integration/
software development effort. … It can become the cornerstone
of a systems engineering knowledge base. Names of the per-
petrators could be sanitized so as not to needlessly jeopardize
their careers.” [Editor’s note: I do not know whether the suggested
analysis actually took place, but lessons learned in the analysis of
such a “disastrous” failure could clearly have helped to improve
methodologies of system development. However, looking at the
recent large systems failures that seem to occur with ever-increas-
ing frequency, such lessons have not really been adopted into our
complex systems development of today.]

