
88 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E

BODY OF KNOWLEDGE

We don’t tend to think of contributions to
the field as being reflective. We prefer
ideas that are novel, rigorous, and innova-
tive. Yet, Eric Brewer’s 2012 article, “CAP

Twelve Years Later: How the ‘Rules’ Have Changed,”2 is
very much a reflection on a fundamental result for da-
tabase design. This article was part of a special issue on
the CAP theorem. In the seven years since its publication,
it has become one of the more influential articles from
Computer. It ranks 21st, with 4,251 downloads and 155
citations. Yet, it presented nothing new. Instead, it tried
to get us to think differently about shared databases and
spur system designers to articulate the requirements of
their work.

At first glance, the CAP theorem seems to be one of those
grand impossibility theorems in the spirit of Kurt Gödel’s
incompleteness theorem, Alan Turing’s uncomputablity
theorem, and Ken Arrow’s impossibility theorem. Those
three results demonstrate the impossibility of achieving
some obvious and simple goals. Gödel showed that a math-
ematical system can’t be complete and consistent.6 Turing

demonstrated that some numbers
cannot be computed.7 Finally, Arrow
proved that almost any voting mecha-
nism can be dominated by a dictator.1

The CAP theorem also asserts an impossibility, but
that impossibility is not as surprising. It shows that a
distributed database cannot simultaneously have three
properties: consistency of data across the entire struc-
ture (C), immediate availability of all data (A), and toler-
ance against partitions (P). One can have two of the three
properties, but one cannot have all of them. Unlike the
theorems of Gödel, Turing, and Arrow, CAP has a fairly
straightforward proof. Those first three impossibility
results require a substantial amount of intellectual ma-
chinery and lengthy arguments. By contrast, the proof to
CAP can be written in a paragraph. One can easily present
it to a class without notes and fearing that one will make a
confounding mistake that destroys the lecture.

Part of its simplicity is obvious upon reflection. No one
wants to build a partitioned database in which one part is
not accessible to another. Some of the big Internet data-
bases, such as those belonging to the Domain Name Sys-
tem and the search-engine database, fall into geographic
clumps. They record a lot of data from local areas, store that
information in regional servers, and provide it to users who
reside in the geographic region. They are still are unified,
unpartitioned databases designed to provide data to any
query from any part of the globe.

Digital Object Identifier 10.1109/MC.2019.2958449
Date of current version: 12 February 2020

Reflecting on CAP
David Alan Grier, Djaghe, LLC

Eric Brewer’s influential 2012 Computer article

encouraged designers to think on a broader scale.

F E B R U A R Y 2 0 2 0 89

EDITOR DAVID ALAN GRIER
Djaghe, LLC; grier@gwu.edu

If no one wants to build a partitioned
database, CAP really describes how da-
tabase designers should react to the
possibility of a partition. They should
consider how to preserve consistency
and mitigate the loss of availability or
how they would preserve availability
and address the loss of consistency.
The purpose of the theorem was not to
tell us that certain things were impos-
sible, explained Brewer. It was “to open
the minds of designers to a wider range
of systems and tradeoffs.” He argued
that designers should “not blindly sac-
rifice consistency or availability when
partitions exist.” Instead, they “could
optimize both properties through care-
ful management” of their design.5

Brewer presented the CAP princi-
ple, as he then called it, at the 1999 Hot
Topics in Operating Systems con-
ference, which had a track devoted
to file systems and another that was
identified as “Potpourri.” “I was partic-
ipating in both networking and data-
bases,” Brewer explained. “I could see
the two fields had different values due
to differences in assumptions about
the likelihood of network partitions.”
The network group assumed that parti-
tions were likely and wanted to ensure
that their systems were available in the
presence of partitions. By contrast, the
database community discounted the
possibility of partitions and designed
systems that relied on full connectivity
to provide consistency and availability.
The first approach he called “AP” and
the second “AC.”

Brewer’s writing combined the prac-
tical and theoretical, a blend that should
be the goal of anyone trying to produce
an inf luential article for Computer.
This approach reflected the fact that
he was working on both the practi-
cal and theoretical sides of the field.
At the time that he wrote the original
CAP paper, “I was delivering real-world
distributed systems for Inktomi,” he
explained, and “teaching the graduate

operating-systems class at Berkeley.”
The paper makes a substantial effort to
establish a research agenda and engage
the research community. “We would
like to motivate a broader research ef-
fort,” he and his coauthor wrote at the
end of the paper, “that extends these
observations, resulting in a set of de-
sign guidelines for the construction of
large-scale robust applications.”5

To understand how the field of com-
puting works, it is useful to compare
Brewer’s 1999 paper with his 2012 Com-
puter article. His original paper quickly
established itself in the database liter-
ature and acquired 35 citations from
other authors. However, the bulk of
those citations occurred after the publi-
cation of the 2012 article. It is easy to the-
orize that the Computer article brought
attention to the original because it was
a tutorial and easier to comprehend.
The 2012 version was well written, to be
sure, but it was far from a tutorial. It is
better described as a reflection. It looked
at what the original paper did, consid-
ered how the community received those
ideas, and how the community needed
to advance from that point. In particu-
lar, it noted that designers of distributed
systems have a tendency to preserve
consistency in their databases when
they might be better served by working
toward availability.

There is a parallel between the two
publications and two other canonical
texts from the database literature: E.F.
Codd’s 1970 paper on relational data-
bases and his 1981 Turing lecture. The
1970 paper was the seminal work of
Codd’s career and developed a logical

theory of databases.3 It remains highly
influential in the computing litera-
ture, with more than 1,700 citations
and 28,000 downloads. The second pa-
per, written 11 years after the first, was
more reflective. While a Turing Award
should make any author ref lective,
Codd’s award pushed him to ask which
elements of his model worked and
which did not. While the paper was not

as technical as his first, it did present a
detailed description of data and their
relation to application programs. “We
have presented a series of arguments
to support the claim that relational
database technology offers dramatic
improvements in productivity,” Codd
wrote. The arguments center around
the data independence, structural sim-
plicity, and relational processing of the
relational database model. All “three of
these features simplify the task of de-
veloping application programs and the
formulation of queries and updates.”4

By definition, reflective papers
bask in borrowed light. They
would not be published had

their precursors not been printed. How-
ever, when well done, they add new
insights to an idea and enable authors
to explain their work more fully and
precisely because the community has
grown in response to the original. For
Codd, his reflective paper cemented
the position for his ideas. His 1970 pa-
per has been cited 35 times a year for
nearly 50 years. Few papers remain
current for that long. For the CAP the-
orem, a reflective paper has expanded

Brewer’s writing combined the practical and
theoretical, a blend that should be the goal
of anyone trying to produce an influential

article for Computer.

90 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

BODY OF KNOWLEDGE

its audience and encouraged readers to
its note its value.

REFERENCES
1. K. J. Arrow, “A difficulty in the

concept of social welfare,” J. Political
Econ., vol. 58, no. 4, pp. 328–346,
1950. doi: 10.1086/256963.

2. E. A. Brewer, “CAP twelve years later:
How the ‘rules’ have changed,” Com-
puter, vol. 45, no. 2, pp. 23–29, 2012.
doi: 10.1109/MC.2012.37.

3. E. F. Codd, “A relational model
of data for large shared data
banks,” Commun. ACM, vol. 13,
no. 6, pp. 377–387, June 1970. doi:
10.1145/362384.362685.

4. E. F. Codd, “Relational database: A
practical foundation for productiv-
ity,” Commun. ACM, vol. 25, no. 2,
pp. 109–117, Feb. 1982.

5. A. Fox and E.A. Brewer, “Harvest,
yield and scalable tolerant systems,”
in Proc. 7th IEEE CS Workshop on Hot
Topics in Operating Systems (HotOS
99), 1999, pp. 174–178. doi: 10.1109/
HOTOS.1999.798396.

6. K. Gödel, “Über formal un-
entscheidbare Sätze der Principia
Mathematica und verwandter
Systeme I,” Monatshefte für
Mathematik und Physik, vol. 38,
pp. 173–198, Dec. 1931. doi:
10.1007/BF01700692.

7. A. Turing, “On computable
numbers, with an application to the
entscheidungsproblem,” Proc.
London Math. Soc., vol. s2-42, no. 1,
pp. 230–265, 1937. doi: 10.1112/plms/
s2-42.1.230.

DAVID ALAN GRIER is a principal
at Djaghe, LLC, and former editor in
chief of Computer. He is a Fellow
of the IEEE. Contact him at grier@
gwu.edu.

For more information on paper submission, featured articles, calls for papers,
and subscription links visit: www.computer.org/tsusc

SUBSCRIBE AND SUBMIT

IEEE TRANSACTIONS ON

SUSTAINABLE COMPUTING
SUBMIT
TODAY

Digital Object Identifier 10.1109/MC.2020.2967209

