
68 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E

Abusiness model describes how a company op-
erates and achieves its goals. Open source
itself is not a business model, but it can be an
important strategy to help a company reach its

goals. While each firm has its own distinct plan, there are
naturally distinguishable types of business models.1–3 In
my work, I have found three distinct coarse-grain types of
open source business models, based on their value propo-
sition and the intellectual property (IP) that supports it.5

The three core models are

1. open source service and support firms
2. open source software distributors
3. single-vendor open source firms.

Service and support firms do
not necessarily own specific IP but,
rather, service users of existing open
source projects. Open source distrib-
utors provide a complex assembly
of open source components pack-
aged as one well-working product
but typically don’t own the software

they distribute. Between the two types of companies, only
distributors can earn the returns on investment that draw
the interest of venture capitalists.

SINGLE-VENDOR OPEN SOURCE
Single-vendor open source firms own some piece of soft-
ware that they provide under an open source license.
Typically, they develop the software themselves and earn
money through complementary products and services.
The companies have many options to design their business
models. To avoid confusion, I’d like clarify two strategies
they often use, called dual licensing and the open core model.

› Licensing strategy: In addition to providing an open
source project, the vendor sells the software to
customers under a proprietary license, together
with the set of services and warranties that custom-
ers usually ask for. Providing the software under

Digital Object Identifier 10.1109/MC.2020.2969672
Date of current version: 9 April 2020

OPEN SOURCE EXPANDED

Single-Vendor
Open Source Firms
Dirk Riehle, Friedrich Alexander-University of Erlangan Nüremberg

The single-vendor open source model dominates

venture-capital funding for open source software

firms. It is of high economic relevance and an

excellent example of how open source licensing

and related strategies are simply tools in the design

of business models, not philosophies.

A P R I L 2 0 2 0 69

two different licenses, one open
source and the other proprietary,
is known as the dual (or multi)
licensing strategy.

› IP modularity strategy: Some-
times, the vendor withholds
some functionality from the open
source software and provides the
feature as part of a paid version.
Drawing a distinction between
an open source core and nonopen
source extensions that customers
pay for has been called the open
core model. In more general terms,
it is named IP modularity.4

There are at least three genera-
tions of companies that utilize the sin-
gle-vendor open source model.

1. The pioneers: The idea of open
source software that is owned
and exploited by a single
vendor dates back to the 1990s.
Products such as MySQL and
companies including Sleepycat
Software and Trolltech (now Qt)
fall under this category.

2. The second wave: During the
early 2000s, entrepreneurs and
venture capitalists realized that
open source was an effective
strategy for disrupting existing
enterprise-software markets.
In 2004, newly incorporated
single-vendor open source firm
SugarCRM coined the term

“commercial open source” to
alleviate potential customers’
fears about open source soft-
ware. Other examples include
Jaspersoft and MuleSoft, both
of which have been acquired
by larger companies, provid-
ing their investors the desired
return on investment.

3. The current breed: The idea of
single-vendor open source is
alive and well in the current
generation, which roughly
dates to the 2008 recession.
Example firms are MongoDB,
Redis Labs, and Neo4j. The fo-
cus has shifted from enterprise
applications to DevOps tooling
and infrastructure, usually
with a cloud component.

Some single-vendor open source
firms have had sizable exits that in-
cluded initial public offerings, and
many of the current breed are con-
sidered to be worth more than US$1
billion. No other type of open source-
based business model has supported
so many companies that generated
such high returns on investment for
venture capitalists.

Revenue streams
Venture-capital funding flows only if
a firm can believably promise signif-
icant returns on its investors’ money.
Si ng le-vendor open sou rce f i r m s

achieve this by promising the same
revenue streams that traditional soft-
ware vendors do. Revenue streams
must be based on some complement
to the open source code; otherwise,
it makes no sense for investors to
commit their money. These revenue
streams consist of, but are not limited
to, the following:

1. commercial licenses for the
core software and possible
extensions

2. guarantees, such as warran-
ties, indemnification, and
certification

3. early and preferential access to
bug fixes and new features

4. support services, such as
hotlines and on-site assistance

5. operational services, including
hosting the software in the
vendor’s cloud

6. complementary materials for
documentation, training, and
so forth

7. access to self-help services,
such as forums and chat bots.

None of these revenue streams
should surprise practitioners; they
are familiar to traditional vendors and
single-vendor firms alike. The main
difference between single-vendor and
traditional firms is that single-ven-
dor companies often forego the initial
license fee and start with what is tra-
ditionally known as a maintenance fee
for the product and service. Charging
maintenance fees is often called the
subscription model. Increasingly, com-
panies emphasize the cloud. Vendors
focus the previously listed feature
array on their cloud service as the pri-
mary customer incentive.

The challenge that makes or breaks
a single-vendor company concerns
turning nonpaying users into paying
customers. Behind each restricted fea-
ture is a motivation for a nonpaying

FROM THE EDITOR

Welcome back to “Open Source Expanded.” This column takes a broad view of
open source, even though recent articles focused on the theme of using open
source. With this article, we turn to a hot issue: commercial open source and
its licensing strategies. We will digress from the column’s themes at times to
examine controversial issues, such as commercial open source, ethical licens-
ing, meritocracy, and so forth. After this issue’s article, we plan to return to the
topic of using open source and finish with a discussion of how to manage the
supply chain, what tooling to use, and so on before starting the next theme on
open source project communities. Happy hacking! — Dirk Riehle

EDITOR DIRK RIEHLE
Friedrich Alexander-University of Erlangen Nürnberg;

dirk.riehle@fau.de

70	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

user to become a paying customer. For
example, some users may not like a
copyleft-based open source license or
need 24-h support and decide to up-
grade to the paid version or service.

Business functions
Given that single-vendor open source
products and revenues don’t look
much different from those of tradi-
tional software vendors, one might
wonder why the software is provided
as open source in the first place. What
about the downside, such as not turn-
ing a user into a customer because the
open source version is sufficient and
the services are not that important?
The short answer is that going to mar-
ket with an open source strategy drives
adoption faster, better, and cheaper
than any comparable approach. The
longer answer relates to improving
core business functions so that they
become superior to traditional com-
petitors. Marketing, sales, product
management, engineering, and so
on all are better with a single-vendor
strategy. Different business functions
utilize the community of nonpaying
users for the company’s gain.

Marketing. High-quality software
for free is a great value proposition. As a
consequence, word-of-mouth marketing
is particularly effective for single-vendor
firms. Happy users like to talk about the
software that makes their work life eas-
ier. They also make good reference mate-
rial if they are willing to talk about their
experience. This helps build a large non-
paying user base, which feeds sales and
supports more efficient and effective
product and engineering management
and support functions.

Sales. By open sourcing some or
all of its product, a single-vendor firm
enables potential customers to use its
product with minimal friction. Unlike
trials, open source licenses permit users
to employ the software as long as they
want to, for whatever purpose. As a con-
sequence, users will happily keep the
software as long as it fulfills their needs.

From a sales perspective, having
an installed base of nonpaying users

is not a problem but an opportunity.
A single-vendor firm often tracks the
organizations that download its soft-
ware and gathers email addresses,
which can indicate the potential for a
follow-up. Having email addresses for
multiple users at the same company
signals that a sales call may be fruit-
ful. This way, the open source strategy
enables the sales organization to prior-
itize where to direct its effort.

The sales process also becomes more
effective. The initial adopters of the free
version are often line-of-business (LoB)
users, particularly for hosted software
that can be subscribed to with a credit
card. If there are multiple LoB users in
one company, the IT department may
want to rein in the service and purchase
it centrally. In a comparative evaluation
of possible vendors, the single-vendor
open source firm has a leg up on its com-
petitors. Its product is already in use and
has champions inside an organization,
while its competitors do not. You can ask
yourself, “What would you rather buy, a
product from a vendor that you have yet
to test and evaluate or one that is already
in use in your organization where you
can ask for feedback about it?”

Product management. A large
user base, even one including non-
paying users, is a great resource for
product managers to draw on for new
product-feature discovery. Product
managers can do so by monitoring
user problems and requests in prod-
uct forums. They can make an issue
tracker publicly available so that users
can report bugs, and they can create
user polls to prioritize upcoming fea-
tures. Due to the large user base, this
takes place on a scale that traditional
vendors cannot match.

Engineering management. A
large user base finds problems faster
than a small one. Users that file bug
reports might also provide a patch
that fixes the problem. In general,
single-vendor open source providers
do not expect nonpaying users to help
develop their software, but they will
not reject code contributions. Patch
submitters, however, usually have to

sign over their copyright, as discussed
in the “Intellectual Property” section.
At the same time, contributions are
an excellent indicator of various de-
velopers’ capabilities and potential
interest in a position at a company.
Single-vendor open source firms use
their community edition as a recruit-
ing mechanism to identify and acquire
engineering talent.

Product support. Nonpaying users
typically understand that open source
software does not come with a right to
support. As a consequence, and in the
spirit of open source, many users are
willing to help each other. If the sin-
gle-vendor firm provides appropriate
tools, such as forums and wikis, users
may create documentation and self-
help materials. Product support can
benefit from understanding user prob-
lems and incorporating the materials
that users develop.

Community management. Most
of the benefits of open sourcing re-
sult from having a large but nonpay-
ing user base. Creating that user base
comes at a cost: The company needs
to manage the community, and that
requires labor. Community managers
must engage with users and should
provide, for example, a website, fo-
rums and wikis, and a software forge.
Most of these costs are variable and
scale with the number of users. Com-
munity managers’ primary efficiency
consideration concerns growing the
user base as much as possible with
minimal effort. They achieve this
through various best practices. Mostly,
they try to establish a community that
helps itself and to which company re-
sources are allocated as a last resort.
If, for example, a nonpaying user asks
a question in a forum, community
managers will wait for another user to
answer. If no answer is forthcoming,
they may nudge users to help out, and
if that doesn’t work, they may provide
the answer themselves.

INTELLECTUAL PROPERTY
Single-vendor open source firms face
two unique business concerns.

	 A P R I L 2 0 2 0 � 71

1.	 How do we motivate a nonpay-
ing user to buy the commercial
version of their product?

2.	 What if a competitor takes the
product and competes with
the single-vendor open source
firm?

Both problems can be addressed
by the same IP strategy. I previously
called it the IP-rights imperative of sin-
gle-vendor open source firms:

Always act in such a way that you,
and only you, possess the right to
provide the open source project
under a license of your choice.6

By remaining the sole proprietor of the
IP, a single-vendor open source firm can
multilicense, that is, provide the prod-
uct under different licenses to different
parties. Usually, there are two licenses:
an open source version to build the user
community and a commercial one for
paying customers.

Basic strategy
To remain the sole proprietor, a com-
pany must own 100% of the software,
community-developed extensions
notwithstanding. For this, it buys or
develops the software itself. Commu-
nity contributions are accepted only if
the people who make them surrender
their copyright or provide it with a reli-
censing right. Almost always, the open
source license is the most far-reaching
reciprocal one available, which at the
time of writing is the Affero General
Public License, version 3 (AGPLv3). It
has two goals:

1.	 Make the maximum number
of the licensed software’s
use cases trigger the copyleft
clause. This clause requires
that when the software is
passed along (a “distribution”),
all source code that has been
touched must be laid open.
Competitors that distribute a
modified product can, there-
fore, do so only under the

AGPLv3 license, preventing the
creation of unique IP and dam-
age to the software creator’s
competitive position.

2.	 Help to make software patents
go away through a patent-retal-
iation clause. The retaliation
clause revokes a user’s rights if
the user brings a software-patent
lawsuit against someone else.

Both commercial users and po-
tential rivals generally dislike such
licensed code. Thus, choosing this li-
cense 1) motivates nonpaying users to
become paying customers and 2) dis-
courages other companies from picking
up the product and using it to compete.
Until recently, as the venture-capital
returns show, this IP strategy worked
well, and a single-vendor firm rarely
faced serious competition from another
company using its product against it.
The advent of large public cloud infra-
structures, most notably Amazon Web
Services (AWS), has changed this.

Cloud strategy
Increasingly, software products are
hosted in public clouds. Providing
their products as cloud services is a key
strategy for many single-vendor open
source firms. Users build applications
utilizing the service. Companies that
do this include MongoDB, Redis Labs,
and Confluent, all valued at more than
US$1 billion. For this to work, the ven-
dor’s cloud service needs to provide a
better experience than what the user
would have by hosting the software
in its own cloud. This can be achieved
through additional functionality,
as discussed, or simply superior and
more cost-effective service. However,
providing a secure multi-tenant cloud
service at scale is not a trivial under-
taking: It increases the engineering
challenges of the vendor significantly.

The move to the cloud coincided
with a shift from enterprise applica-
tions (2G) to infrastructure software
(3G). For developers to incorporate open
source software into their products,
there must not be a copyleft license that

touches their own code. Otherwise,
they would have to open source their
own products, which for most com-
mercial development is not acceptable.
As a consequence, some single-vendor
open source firms packaged their co-
pyleft-licensed core using permissively
licensed shims that shielded user code
from the copyleft effect. Large cloud
operators, such as AWS, started to
compete with the firms by offering the
vendors’ products as their own by us-
ing the open source license. With pure
copyleft licensing, this would not have
happened, because no cloud operator
would like to open source its own infra-
structure software.

Some single-vendor open source
firms have changed to proprietary
“almost open source” licensing. Mon-
goDB’s Server-Side Public License
(SSPL) is an example. It is similar to the
Apache 2.0 license but does not permit
companies to use MongoDB software
in competing products. After intense
discussion, the Open Source Initiative,
the provider of the open source defi-
nition and arbiter of licenses, decided
that SSPL is not an open source license.
MongoDB and firms that took similar
measures are no longer considered to
be open source companies.

The licensing change drew the ire
of the open source community at large
and generated bad publicity. How-
ever, the vendors that took this step
were mature, successful organizations
whose products could stand on their
own without an open source license.
Whether this will be possible for less
mature vendors remains to be seen.

Single-vendor open source firms
have positioned themselves
as superior successors to clas-

sic proprietary-software vendors by
utilizing an open source strateg y
to drive adoption and enable better
business functions. However, moving
applications and components to the
cloud opened the door to competition
from large cloud vendors, leading to
changes in licensing strategies, with

72	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

OPEN SOURCE EXPANDED

unclear consequences for the future
viability of the model.

ACKNOWLEDGMENTS
I would like to thank Ann Barcomb,
Andreas Bauer, Maximilian Capraro,
Michael Dorner, Nikolay Harutyunyan,
Joseph Jacks, Andreas Kaufmann,
Heather Meeker, Georg Schwarz, and
Mathias Zinnen for feedback on earlier
versions of this article.

REFERENCES
1.	 E. Capra and A. I. Wasserman,

“A framework for evaluating
managerial styles in open source
projects,” in Proc. IFIP Int. Conf.
Open Source Systems, Boston:
Springer, 2008, pp. 1–14. doi:
10.1007/978-0-387-09684-1_1.

2.	 C. Daffara, “Business models in
FLOSS-based companies,” in Proc.
Workshop Presentation 3rd Conf. Open
Source Systems (OSS 2007), 2007,
pp. 1–8.

3.	 P. J. Ågerfalk and B. Fitzgerald, “Out-
sourcing to an unknown workforce:
Exploring opensurcing as a global
sourcing strategy,” MIS Quart., vol.
32, no. 2, pp. 385–409, 2008. doi:
10.2307/25148845.

4.	 J. Henkel, C. Y. Baldwin, and W.
Shih, “IP modularity: Profiting from
innovation by aligning product
architecture with intellectual
property,” Calif. Manage. Rev., vol. 55,
no. 4, pp. 65–82, 2013. doi: 10.1525/
cmr.2013.55.4.65.

5.	 D. Riehle, “The single-vendor
commercial open course business

model,” Inform. Syst. e-Bus. Manage.,
vol. 10, no. 1, pp. 5–17, 2012. doi:
10.1007/s10257-010-0149-x.

6.	 D. Riehle, “The intellectual property
rights imperative of single-ven-
dor open source,” Software Re-
search and the Industry, July 18,
2009. [Online]. Available: https://
dirkriehle.com/2009/07/18/
the-intellectual-property
-rights-imperative-of-single
-vendor-open-source/

DIRK RIEHLE is the professor
for open source software at the
Friedrich Alexander-University of
Erlangen Nürnberg. Contact him at
dirk@riehle.org.

Rejuvenating Binary Executables ■ Visual Privacy Protection ■ Communications Jamming

January/February 2016
Vol. 14, No. 1

Policing Privacy ■ Dynamic Cloud Certification ■ Security for High-Risk Users

March/April 2016
Vol. 14, No. 2

IEEE Symposium on
Security and Privacy

Smart TVs ■ Code Obfuscation ■ The Future of Trust

May/June 2016
Vol. 14, No. 3

IEEE Symposium onIEEE Symposium onIEEE Symposium onIEEE Symposium onIEEE Symposium on
Security and PrivacySecurity and PrivacySecurity and PrivacySecurity and PrivacySecurity and PrivacySecurity and Privacy

IEEE Security & Privacy magazine provides articles
with both a practical and research bent by the top
thinkers in the fi eld.
• stay current on the latest security tools and theories and gain invaluable practical and
 research knowledge,
• learn more about the latest techniques and cutting-edge technology, and
• discover case studies, tutorials, columns, and in-depth interviews and podcasts for the
 information security industry.

computer.org/security

Digital Object Identifier 10.1109/MC.2020.2980780

