
Narrow Spectrum  
Software Testing 
Addressing Complexity  
and Trust

Digital Object Identifier 10.1109/MC.2020.2971813
Date of current version: 9 April 2020

Rick Kuhn, NIST

M S Raunak, Loyola University Maryland

COVER FEATURE GUEST EDITORS’ INTRODUCTION

C O M P U T E R   0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E 	 P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y   A P R I L  2 0 2 0 � 15



GUEST EDITORS’ INTRODUCTION

16	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

Focused, narrow spectrum tests can be one component 

of improved assurance for software products. Tests 

designed using knowledge of different failure types and 

fault characteristics should be more widely used.

Software testing is a delicate 
combination of art and sci-
ence. A great deal of sound 
theory has been developed, 

but in practice, this theory is often 
ignored. Most of the testing is ad hoc, 
especially for consumer-level soft-
ware, where time to market can be the 
most critical factor in development. 
In this case, tests are often aimed 
primarily at demonstrating the spe-
cific functionality of the application 
being tested, such as showing that an 
inventory program accepts and saves 
records of new products received.

But many software functions are 
more generic, such as text search, set 

membership checking, time and date 
management, and many others. Show-
ing that the software works with more 
common inputs and configuration fails 
to test the system for unexpected com-
binations of inputs, which are more 
often the causes of failure. For rou-
tine functions or common problems, 
well-developed generic test cases can 
be used. This is common in security 
testing, where a variety of specialized 
methods have been developed to test 
for buffer overflow, memory leaks, and 
other common problems. Such focused 
test ideas go back to the early days 
of software testing research; other 

examples include test catalogs for par-
ticular checks, such as in Marick.1

This focused approach, called nar-
row spectrum software testing (NSST), 
should become a more common prac-
tice. For example, a string search on 
a database is a specific functionality 
that can be tested using a narrow focus 
to discover range-of-failure scenarios 
from unusual inputs. There are many 
reasons for employing NSST beyond 
the need for better software assurance. 
Much software testing is contracted 
out, with little to evaluate the thor-
oughness of assurance beyond the basic 
requirements of tracing and demon-
strating functions (happy path testing). 

Structural coverage may be used in 
some cases, but even this is often lim-
ited to the most basic (and minimally 
effective) metric of statement coverage. 
Focused, narrow spectrum tests can be 
one component of improved assurance 
that products are free of failures. Tests 
designed using the knowledge of differ-
ent failure types and fault characteris-
tics could be made widely available and 
used by the community.

A great deal of data on software 
problems, especially for security vul-
nerabilities, exists and can be used 
for understanding and organizing 
problem types. Examples include the 

Common Weakness Enumeration,2 
which seeks to describe software flaws 
generically such that they can be bet-
ter understood and classified, with the 
ultimate goal of providing methods to 
ensure that particular weaknesses are 
not present in software. A more rigor-
ous and systematic approach to this 
goal is the Bugs Framework,3 which is 
being developed to provide a precise 
taxonomy of flaws, a sort of “periodic 
table” of software bugs. Knowledge in 
these data sets can be used to develop 
more systematic and focused tests 
for all types of flaws beyond security 
weaknesses.

What would such focused, nar-
row spectrum tests include, and how 
can their thoroughness of coverage be 
evaluated? When test coverage is mea-
sured, it typically refers to structural 
coverage (that is, code coverage), but if 
we are testing only a narrow range of 
functionality, it should not be expected 
that code is exercised outside of a few 
modules specific to the focus of the 
test, so other measures are needed. In 
particular, we need to define an input 
model for the specific functionality 
being tested and measure the degree 
to which it has been covered in tests. 
The input space model refers to the 
parameters and values tested and the 
definition of the equivalence classes 
used to select the test cases. Because 
rare combinations of input values can 
trigger failures, coverage measures 
for the input space should include the 
combination coverage achieved at each 
combination level (two- and three-way 
combinations, and so on).

To illustrate such an approach, we 
developed tests for full text search 

FOR ROUTINE FUNCTIONS OR COMMON 
PROBLEMS, WELL-DEVELOPED GENERIC 

TEST CASES CAN BE USED.



	 A P R I L  2 0 2 0 � 17

in a large, heavily used public data-
base.4 Our objective was to test the 
search functionality using not only 
the common search strings but also 
with uncommon combinations of let-
ters, keywords, numbers, and special 
characters, which may cause the data-
base-backed web application to depict 
a failure scenario. The other aspect of 
this test case selection was to model 
the input fragments and use system-
atic combinations of them to cover a 
large portion of the input space. The 
input model we developed for the text 
search included five parameters with 
both keywords and special characters, 
with 10, 4, 10, 4, and 10 enumerated 
values for the parameters. This is des-
ignated a 42103 input space configura-
tion (two parameters with four values 

each and three parameters with 10 
values). Covering all the possible input 
strings would then require 16,000 
tests, but all the two-way combina-

tions of the input fragments resulted 
in only 100 tests and all the three-way 
combinations produced 999 tests. 

The key question in such testing is 
whether the tests have been sufficient. 
Comparing faults detected at different 

coverage strengths (two way, three way, 
and so on) showed that 49 faults were 
discovered using two-way combina-
tions, but no additional faults occurred 

using higher strengths of three and 
four way. Using higher-strength t-way 
tests provide a reasonable measure 
of test completeness. When no new 
faults are discovered using (t + 2)-way 
tests, additional faults are unlikely to 

IN THIS ISSUE 

Hodges et al., the authors of “Physical Comput-
ing: A Key Element of Modern Computer Sci-

ence Education,” consider how current computer 
science education may not address the needs of 
the global student population nor the latest devel-
opments in coding and data science. This brings 
forth the idea that computer science education 
should combine both the software and hardware 
aspects into a more holistic technique that mirrors 
the real world. The authors introduce a new 
education approach, termed physical computing, 
that addresses the need for a hybrid software and 
hardware methodology that is more hands on and 
device oriented in the classroom.

In “Blockchain: Can It Be Trusted?” Ahmed 
and Pathan explain that while blockchain 
supposedly provides security and privacy of 
data, known vulnerabilities have been identified. 

Several benefits of blockchain are presented, and 
recent financial mishaps due to the application 
of blockchain are showcased. The authors do not 
argue against deploying blockchain but, rather, 
give the reader pause before large-scale block-
chain adoption. 

The last feature article in this issue is “Is Immer-
sive Virtual Reality the Ultimate Interface for 3D 
Animators?” Lamberti et al. review the application 
of virtual reality to the field of computer animation, 
which is well known to be labor and skill intensive. 
This article investigates the impact of virtual reality 
animation systems on the performance of the 
animators by using qualitative and quantitative ob-
servations. The authors also look at the impact of 
these systems on interface usability and the quality 
of the content that is eventually produced.

– Jeffrey Voas, Editor in Chief
Digital Object Identifier 10.1109/MC.2020.2974138
Date of current version: 9 April 2020

WHEN NO NEW FAULTS ARE DISCOVERED 
USING (t + 2)-WAY TESTS, ADDITIONAL 
FAULTS ARE UNLIKELY TO BE FOUND.



GUEST EDITORS’ INTRODUCTION

18	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

be found. The text search tests can be 
applied with little or no change to a 
variety of systems because text search 
is a common function. By using t-way 
factor combinations, we can show that 
the entire input space has been covered 
up to a suitable combination level.

Combination coverage-based 
narrow-spectrum testing sup-
plements basic structural cov-

erage-based test selection. It provides 
a sound test engineering method with 
defensible, quantitative measures of 
test completeness. The approach is 
particularly useful for increasing trust 
in complex functionality of software 
systems. 

REFERENCES
1.	 B. Marick, The Craft of Software Test-

ing. Englewood Cliffs, NJ: Prentice 
Hall, 1994.

2.	 CWE, “Common Weakness Enumer-
ation.” Accessed on: Feb. 1, 2020. 

[Online]. Available: https://cwe 
.mitre.org

3.	 I. Bojanova, P. E. Black, Y. Yesha,  
and Y. Wu, “The bugs framework 
(BF): A structured approach to  
express bugs,” in Proc. 2016 IEEE  
Int. Conf. Software Quality, Reliability 
and Security (QRS), pp. 175–182.  
doi: 10.1109/QRS.2016.29. [Online]. 
Available: https://www.nist.gov/
publications/bugs-framework 
-bf-structured-approach-express 
-bugs

4.	 M S Raunak, D. R. Kuhn, and R. 
Kacker, “Combinatorial testing of 

full text search in web applications,” 
in Proc. 2017 IEEE Int. Conf. Soft-
ware Quality, Reliability and Security 
Companion (QRS-C), pp. 100–107. doi: 
10.1109/QRS-C.2017.24.

DISCLAIMER
Products may be identified in this docu-

ment; however, identification does 

not imply a recommendation or an 

endorsement by the NIST nor that the 

products identified are necessarily the 

best available for the purpose.

ABOUT THE AUTHORS

RICK KUHN is a computer scientist in the Computer Security Division at NIST. His 
research interests include software failures and vulnerabilities, testing and verifi-
cation, and access control. Kuhn received an M.S. in computer science from the 
University of Maryland, College Park. He is Computer’s Cybersecurity area editor 
and a Fellow of the IEEE. Contact him at kuhn@nist.gov.

M S RAUNAK is an associate professor and the chair of the Computer Sci-
ence Department at Loyola University Maryland. His research interests include 
software verification and validation. In particular, he is interested in develop-
ing effective testing approaches for difficult-to-test software systems. Raunak 
received an M.S. and a Ph.D. from the University of Massachusetts Amherst. 
Contact him at raunak@loyola.edu.

Access all your IEEE Computer Society 
subscriptions at

computer.org 
/mysubscriptions


