
Software is pervasive, including ways in which
it can place our lives at risk (for example, flight,
railway, and traffic control). But even noncritical
systems can have unplanned, ad hoc interac-

tions with critical ones, increasing risk exposure. Soci-
ety expects a standard of competence, professionalism,
and accountability from its doctors, nurses, and other

professionals who hold lives in trust.
Yet anyone can write software that
can appear in or interact with criti-
cal systems, so what does “software
professional” mean, and what are
society’s expectations for those in-
dividuals? The IEEE Computer Soci-
ety (CS), other professional societies,
and scholars have tackled this prob-
lem for decades. I’d like to recount
some of those efforts to place into
perspective a proposal for how so-
ciety must proceed to ensure an ap-
propriate level of professionalism,
especially from those working on

software for critical systems.

STANDARDIZING CURRICULA
In the early 1950s through the mid-1960s, software sys-
tems were significantly smaller and simpler by current
standards. There were a few critical software systems, for
example, in flight control, but they were not ubiquitous,
and the public’s general perception of computers was that
of mysterious devices used in universities and government
think tanks. Few thought that software directly affected

A Brief History
of Software
Professionalism and
the Way Forward
Phil Laplante, Pennsylvania State University

A brief history of professionalization in

software engineering, particularly in the United

States, is given. The current situation and

recommendations going forward are then

offered.

Digital Object Identifier 10.1109/MC.2020.3004017
Date of current version: 4 September 2020

SOFTWARE ENGINEERING
EDITOR PHIL LAPLANTE
Penn State, plaplante@psu.edu

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y S E P T E M B E R 2 0 2 0 97

C
O

P
Y

R
IG

H
T

 IS
TO

C
K

P
H

O
TO

, C
R

E
D

IT
:L

V
C

A
N

D
Y

98 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

their lives or put them at risk (making
the 1964 film Fail Safe, in which a com-
puter error caused a nuclear war, more
terrifying.) Professional programmers,
as they were often called, worked indi-
vidually or in small teams and had very
diverse educational backgrounds, but

they never came from any “computing”
or “software” degree programs, which
didn't exist.

A turning point occurred when
more than 50 such professionals at-
tended a 1968 NATO conference on
software engineering to address “soft-
ware, either as users, manufacturers,
or teachers at universities,” leading to
early efforts to standardize comput-
ing curricula and create a profession.
Many computer science and program-
ming curricula emerged, but they were
wildly diverse. The need to address the
inconsistency of these curricula led
the Association for Computing Ma-
chinery (ACM) to develop its “Curric-
ulum 78” on undergraduate computer
science/programming, which pre-
scribed both program and individual
course structure and details.1

In a 1980 article, Harlan Mills2 dis-
tinguished “software engineering”
from programming. Mills noted that
“the effective practice of software en-
gineering must be based on its techni-
cal foundations just as any other en-
gineering activity, in combining real
world needs and technical possibilities
into practical designs and systems.” By
“real world needs,” I think he was im-
plying that those building the systems
should have domain expertise.

In 1984, the Computer Science Ac-
crediting Board (CSAB) was formed
to accredit academic programs, and
in 1988, a joint ACM/IEEE task force
created a new model for computing

curricula. Over the next several years,
more computing programs sprang
up worldwide. The CSAB became
the authoritative body for comput-
ing programs and a member of the
Accrediting Body for Engineering
and Technology, which, among other

things, provides criteria for certifying
academic engineering programs to
license a Professional Engineer (PE).
All these efforts contributed to an el-
evated and more uniform level of ed-
ucation for computing professionals,
including software engineers.

SWEBOK AND CSDP
In 1993, the ACM/IEEE Steering Com-
mittee for the Establishment of Soft-
ware Engineering as a Profession rec-
ommended the following:

 › Adopt standard definitions
 › Define a required body of

knowledge and recommended
practices

 › Define ethical standards
 › Define educational curricula3

as a means toward greater uniformity
and professionalism in software engi-
neering. (I will save the discussion of
ethical standards for a future column.)
By 1995, the steering committee was
considering licensing and certifica-
tion issues.3 These recommendations,
and an extensive collaborative project
over many years, led to the creation of
the first Software Engineering Body of
Knowledge (SWEBOK).

In 2002, the CS introduced the Cer-
tified Software Development Profes-
sional (CSDP) designation, with test-
ing built on top of SWEBOK. While
corporations had been offering vari-
ous software certifications for years

(generally, as proficiency in some
proprietary software), the CSDP was
a vendor- (and application domain)-
agnostic certification of software en-
gineering competency. The CSDP and
SWEBOK continued to be refreshed
over the years, but, in late 2014, the
CSDP was discontinued, though all
issued certificates were capable of be-
ing converted to new, comparable ones
offered by the CS. Currently, these cer-
tifications include the Professional
Software Engineering Master (PSEM)
and Professional Software Engineer-
ing Process Master (PSEPM). An Asso-
ciate Software Developer certification
is also offered by the CS and is very
popular among students and individu-
als with less software experience than
a PSEM would require.

PROFESSIONAL SOFTWARE
ENGINEER
In 1998, the Texas Board of Profes-
sional Engineers licensed Don Bagert
as the first PE in software engineer-
ing in the United States. A few dozen
others later became licensed in Texas.
In 2008, the Software Engineering Li-
censure Consortium (SELC) launched
the development of the Principles
and Practice (P&P) of Software Engi-
neering exam, which was needed to
complete the pathway to licensing pro-
fessional software engineers in other
U.S. states. Having been a long-time
licensed electrical engineer (with em-
bedded systems software experience)
and recently having earned the CSDP
designation, I was chosen to create the
team and lead the process to develop
and maintain the P&P of Software
Engineering exam. The task of lead-
ing this development was technically,
logistically, and politically very chal-
lenging, and it consumed a significant
part of six years of my life.

The SELC was led by IEEE-USA,
through its professional licensure
committee, which supported the ef-
fort financially and administratively.
The CS was also a financial supporter
and member of the SELC, along with
the National Society of Professional

Anyone can write software that can appear in
or interact with critical systems, so what does
“software professional” mean, and what are
society’s expectations for those individuals?

 S E P T E M B E R 2 0 2 0 99

Engineers (NSPE) and Texas Board of
Professional Engineers. The National
Council of Examiners of Engineers and
Surveyors (NCEES) (this is the same
entity that develops all engineering
licensing exams in the United States)
provided in-kind staff, expertise, and
logistical support for the intensive
e x a m development a nd m a i nte-
nance process.

The CS support of the software PE
exam was largely predicated on the ex-
pectation that SWEBOK would be used
as the basis of the licensing exam body
of knowledge (BoK) and that possibly
CSDP review courses or certification
would hold some weight in the initial
licensing or at least ongoing licens-
ing requirements. Unfortunately, the
NCEES rules for the examination re-
quired development of a very specific
BoK using its standard process, so nei-
ther SWEBOK nor the CSDP could be
used as the CS intended. The details of
the development of the BoK and exam
can be found in Laplante et al.4

In 2013, the test was made avail-
able in 30 states and then in 40 states
the following year. By 2015, only a few
dozen new software engineers had
been licensed in the various states, and
by 2018, there were still fewer than 60.

Financial support for the effort
slipped. The CS had never intended to
support the effort indefinitely (only to
help achieve liftoff) and, eventually,
reduced and then eliminated its fund-
ing. Then, a significant blow occurred
when the IEEE-USA board, which had
been one of the prime movers in the
SELC and had provided more than 50%
of the financial support over the years,
voted to eliminate all funding. With
financial support only from the Texas
Board and NSPE and with few taking
the exam, the future looked grim. By
April 2019, the P&P exam for software
engineers was discontinued by the
NCEES due to the lack of examinees
and funding, effectively ending the
possibility of licensing new software
engineers in the United States.

The licensing of software engi-
neers for critical systems was quite

controversial—there were many
strongly worded articles and editorials
in support or opposition to licensure.
While chairing the exam committee,
I received some emails in support and
several nasty ones in opposition. Even
I had been in opposition to licensing
software engineers before supporting
it, I had thought it was too soon to do

so.5 There were also thorny issues with
the reciprocity of licensing between
states and countries, industrial exemp-
tion questions, grandfathering, and
more that were never fully sorted out.

But it was very disappointing to
have been involved in an intense ef-
fort to define the need for licensing
certain software engineers, create the
pathway, and then see so few willing
to take the exam or be able to meet
the qualifications, followed by the
collapse of support. I am convinced li-
censing software engineers in any way
will never happen again (at least not in
the United States). So how can we en-
sure competency and professionalism
of software engineers working on cer-
tain critical systems?

A WAY FORWARD?
Since the demise of the path for licens-
ing professional software engineers in
the United States, I have been strug-
gling with an appropriate way for-
ward for ensuring that those working
on critical software systems have the
suitable knowledge and skills and are
trustworthy and accountable. At first,
I thought the solution was a “libertar-
ian” one. Ask all software engineers
working on critical infrastructure to
swear to an appropriate code of ethics
and demonstrate applicable education
and experience and training. Leave it

up to practitioners to follow the honor
system, employers to police it, and civil
courts to enforce any transgressions.
But I later dismissed this plan because
I am distrustful of all the players just
mentioned.

Here is my current thinking. For
critical infrastructure, I believe the
software professional (or engineer)

must demonstrate sufficient educa-
tion, competency, currency, and ac-
countability of such in both the domain
discipline (of the application) and
software engineering. The software
engineer needs to know what he or
she doesn’t know about the domain,
and the only way to approach that is to
have substantial domain knowledge.
For example, one can be an “excellent”
software engineer but have very little
knowledge of avionics. A software en-
gineer simply writing flight-control
software based on an algorithm given
to him by an aerospace engineer is not
enough—there are too many domain
nuances that are often the source of
critical faults.6

While software engineering gen-
eral knowledge and skills are portable
across domains, domain knowledge is
not. So one might even be an engineer
with competency in software and have
a good understanding of avionics but
not of medical devices. Thus, if you
are going to work in two or more crit-
ical domains, you need to demonstrate
competency in software and in all crit-
ical domains in which you are going
to work. Having earned a degree in ei-
ther the domain discipline or software
engineering could serve one purpose
or the other in contributing toward
that credibility. But I think it is better
for the relevant custodians of critical

Mills noted that “the effective practice of software
engineering must be based on its technical

foundations just as any other engineering activity,
in combining real world needs and technical

possibilities into practical designs and systems.”

100 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

infrastructure systems to enforce the
requirements for domain expertise ac-
cordingly. For example, in the United
States, the Federal Aviation Adminis-
tration (FAA) would establish criteria

for avionics systems, the Nuclear Reg-
ulatory Commission (NRC) for nuclear
power generation and distribution,
and the Food and Drug Administration
(FDA) for medical devices. These enti-
ties might keep a registry of such com-
petent and accountable individuals.

The critical systems software engi-
neer must also be competent, current,
and accountable in the principles and
practice of software engineering. This
truth holds both for software engi-
neers with domain competency and for
domain experts who write software,
potentially with no formal training
in software engineering. For software
engineering, the PE license was sup-
posed to demonstrate competency and
enforce accountability for software
engineers. With the demise of the PE
license, we are left with alternative
mechanisms for demonstrating com-
petency in software engineering. The
PSEM or PSEPM, along with an appro-
priate education and experience, can
do that. Graduate degrees in software
engineering can demonstrate that,
but again, these proof points can be
determined by the customer, whether
it’s the FAA, NRC, FDA, or their inter-
national and commercial equivalents.

And what about experience alone?
What about that person writing flight
software with no formal training in

either software or avionics? Experience
is great, but it is not necessarily proof
of mastery, expertise, or even compe-
tency. That’s why the standardized
testing, vetting of experience, and

 refreshment and revalidation of knowl-
edge and skills required for PE licen-
sure and certain certifications (such
as PSEM) are essential. The domain
custodians can set these standards
and police them. If a person claims on
a resume that he or she has worked on
such-and-such a system, even if true,
it does not demonstrate what contri-
butions that individual made to the
project. Even background checking is
unreliable. So having a license, certifi-
cation, or pledge of ethics, which puts
someone at risk for violating those
principles (for example, loss of mem-
bership, fines, and even imprisonment
in the case of real injury) helps provide
some level of assurance to the public.

I am not saying this is the only way
forward, nor have I worked out all the
details. But it’s one approach that’s
worth considering.

And what about every other per-
son writing software and inserting it
into the public domain in some way?
T hat’s a d i f ferent problem for a n-
ot her column.

Speaking of which, I invite contri-
butions for this column that are inter-
esting, informative, possibly contro-
versial, vendor agnostic, and accessible
(to all readers of Computer). Ping me if
you think you have an idea that could
meet these criteria.

REFERENCES
1. P. Nauer, B. Randell, and F. L. Bauer,

Software Engineering: Report on a Con-
ference Sponsored by the NATO Science
Committee, Garmisch, Germany, 7th to
11th October 1968. Brussels, Belgium:
Scientific Affairs Division, NATO, 1969.

2. H. D. Mills, “Software engineering
education,” Proc. IEEE, vol. 68, no.
9, pp. 1158–1162, 1980. doi: 10.1109/
PROC.1980.11814.

3. N. R. Mead, “Issues in licensing and
certification of software engi-
neers,” in Proc. 10th Conf. Software
Engineering Education and Training,
1997, pp. 150–160. doi: 10.1109/
SEDC.1997.592449.

4. P. A. Laplante, B. Kalinowski, and M.
Thornton, “A principles and prac-
tices exam specification to support
software engineering licensure in the
United States of America,” Softw. Qual.
Prof., vol. 15, no. 1, pp. 4–15, Jan. 2013.

5. P. A. Laplante, “Professional licens-
ing and the social transformation of
software engineers,” Technol. Soc.,
vol. 24, no. 2, pp. 40–45, Summer
2005. doi: 10.1109/MTAS.2005
.1442380.

6. E. Wong, X. Li, and P. Laplante, “Be
more familiar with our enemies and
pave the way forward: A review of the
roles bugs played in software failures,”
J. Syst. Softw., vol. 133, pp. 68–94, Oct.
2017. doi: 10.1016/j.jss.2017.06.069.

PHIL LAPLANTE is a professor
at Pennsylvania State University.
Contact him at plaplante@psu.edu.

Standardized testing, vetting of experience,
and refreshment and revalidation of knowledge
and skills required for PE licensure and certain

certifications are essential.

IEEE Computer
Society Election

www.computer.org/election2020

VOTE BEFORE 21 SEPT.

