
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y J A N U A R Y 2 0 2 1 29J A N U A R Y 2 0 2 1 29

As you read the title of this
article, at least one of the
following two questions
probably occurred to you.

First, can one really use the terms
“formal methods” and “real world” so
close to each other? And second, why
such a narrow domain of application
for formal methods, namely, cryptog-
raphy? Doesn’t that restrict the scope
of discussion too much?

We are not going to answer the first
question for you here. We will let our
panelists convince you that the terms do
belong together. Actually, we are not re-
ally going to answer the second question
either, at least not directly. However, we
do want to suggest that by choosing a
specific application of formal methods,
we enable our experts to communicate
with greater detail and include more
concrete examples than would be pos-
sible using general terms. Besides, we
note that cryptographic algorithms,
protocols, and systems are increasingly

considered essential (and security-critical) infrastructure
for our virtual world, rather than merely specialized appli-
cations. Our “narrow” domain is really quite large.

Digital Object Identifier 10.1109/MC.2020.3033613
Date of current version: 14 January 2021

The Application of
Formal Methods
to Real-World
Cryptographic
Algorithms,
Protocols, and
Systems
Nicky Mouha and Asmaa Hailane, National Institute of Standards and
Technology

Computer hosts a virtual roundtable with four

experts in formal methods to discuss recent

developments in the area of cryptography.

VIRTUAL ROUNDTABLE

30	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

You may have a final question as
well. What exactly is a virtual round-
table? This question we will answer.
It is relatively straightforward: we
ask a series of questions about an
important technical topic to a group
of expert panelists via email (see
“Roundtable Panelists” for more in-
formation about the panel). This is
a simple format, but there are two
important differences between this
and an in-person panel. One is that
no expert knows who the others are.

The second is that each panelist must
answer the questions without seeing
the others’ responses. And now it is
time for us to step out of the way so
you can see what our panelists have
to say. We hope you enjoy their in-
sightful perspectives.

COMPUTER: Numerous techniques
have been referred to as formal methods.
How would you define formal methods,
either in general or more specifically
when applied to cryptography?

KARTHIKEYAN BHARGAVAN: In gen-
eral, formal methods refers to the appli-
cation of logical reasoning techniques
to understand, model, and verify com-
puter systems. For cryptography, some
of us like to use a more focused term—
computer-aided cryptography—which
describes “formal, machine-checkable
approaches to the design, analysis, and
implementation of cryptography.”1 To
me, writing a detailed formal specifi-
cation of a cryptographic algorithm or
protocol is an application of a formal

ROUNDTABLE PANELISTS

Karthikeyan Bhargavan is a research director at Inria,
Paris, France, where he leads the Prosecco project (Pro-
gramming Securely With Cryptography). Contact him at
karthikeyan.bhargavan@inria.fr.

Adam Chlipala is an associate professor of computer
science at the Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA, where he leads the
Programming Languages and Verification Group. Con-
tact him at adamc@csail.mit.edu.

Jonathan Protzenko is a senior researcher in the Re-
search in Software Engineering (RiSE) group, Microsoft
Research, Redmond, Washington, USA. Contact him at
protz@microsoft.com.

Bow-Yaw Wang is a research fellow and professor
at the Institute of Information Science, Academia Sinica,
Taipei, Taiwan. Contact him at bywang@iis.sinica
.edu.tw.

EMERGING TOOLS
Everest (https://project-everest.github.io/) is a project that
aims to build and deploy a verified version of Transport
Layer Security (TLS). There have been several serious at-
tacks on TLS, ranging from the protocol’s design to its most
commonly used ciphers and most modes of operation.

The High-Assurance Cryptographic Library (HACL*)
(https://hacl-star.github.io/), a verified library of modern
cryptographic primitives written in F*, includes modern
cryptographic algorithms that are used in Networking
and Cryptography Library (NaCl) and popular protocols,
such as Signal and TLS.

Fiat Cryptography (https://github.com/mit-plv
/fiat-crypto), based on a verified compilation scheme,
aims to generate verified field arithmetic code for
several curves, including the first verified high-per-
formance implementation of P-256, the most widely
used elliptic curve in TLS.

Cryptoline (https://github.com/fmlab-iis/cryptoline)
is a tool and a language for the verification of low-
level implementations of mathematical constructs. It
has been used to verify implementations in OpenSSL,
BoringSSL, and mbed TLS.

	 J A N U A R Y 2 0 2 1 � 31

method and so is the use of (semi)au-
tomated tools to find attacks and build
proofs for cryptographic mechanisms.

ADAM CHLIPALA: Let me give a gen-
eral definition and then touch briefly on
what’s specific to cryptography. I would
say formal methods are fundamentally
about using formal logic to characterize
behavioral similarities between different
pieces of code. If one piece of code is very
simple and if you know a more compli-
cated piece of code behaves similarly,
then you increase your confidence in the
second one. Some pieces of code are so
simple and “obviously” correct that we
decide to call them specifications, though
the defining criteria tend to be nebulous.
What’s important is that we do not rely
on humans to write or check arguments
for similarity. Instead, we should use al-
gorithms at least to check the arguments
(for example, written out in ASCII source
code) and ideally find the arguments
in the first place. At a minimum, algo-
rithms should make the construction of
arguments (proofs) less labor intensive.
With the right tools and choice of spec-
ifications, it becomes possible to trust a
complex system without needing to run
it or read its implementation.

Formal methods and cryptography
are a great match, and there tend to be a
few important kinds of behavioral simi-
larity that folks want to prove. The sim-
plest is functional correctness, where
we focus on a system that produces
correct answers. A trickier one is the
proof of traditional security properties,
such as, “An attacker who doesn’t know
the private key has little hope of figur-
ing out the contents of these encrypted
messages.” A last but also very import-
ant category is the proof that side chan-
nels can’t be used to break higher-level
properties, for example, the execution
time doesn’t leak bits of a key.

JONATHAN PROTZENKO: Formal meth-
ods is an umbrella term that has been his-
torically hard to define and, in practice,
doesn’t evoke much for people outside
our field of expertise. I generally try to
use more specific terms, such as model

checking, abstract interpretation, or pro-
gram proof. But as long as the technique
enables seeing code as a mathematical
object that can be symbolically manipu-
lated, on which you can prove theorems,
I consider it to fall under the formal
methods umbrella.

BOW-YAW WANG: In my view, formal
methods generally involve techniques
that manually or automatically apply
logical or mathematical reasoning to
achieve clearly stated goals. When ap-
plied to cryptography, formal methods
can refer to the construction of cryp-
tographic programs or proofs for math-
ematically specified security properties.

COMPUTER: Where do you see the
application of formal methods to cryp-
tographic algorithms, protocols, and
systems within five to 10 years?

BHARGAVAN: In the past few years,
we have started to see a transforma-
tion in the attitude toward formal
methods for cryptography in both
industry and academia. Part of this
change can be traced to the Trans-
port Layer Security (TLS) 1.3 stan-
dardization process, which involved
a multiyear collaboration between
the Internet Engineering Task Force
(IETF), all major browser and oper-
ating system vendors, and several
research groups that analyzed the
protocol in detail before it was pub-
lished. Considering the complexity of
the protocol, many of these analyses
relied on mechanized provers, that is,
formal methods. In the coming years,
I see this process being replicated,
and it will become understood that
a new cryptographic protocol cannot
be standardized without formal ma-
chine-checked proofs. Another new
direction has been the incorporation
of formally verified implementations
into mainstream cryptographic li-
braries. Going forward, I see more
and more of the core cryptographic
algorithms in browsers and operat-
ing systems being replaced by veri-
fied implementations.

CHLIPALA: First, I think it helps to em-
phasize how much progress has been
made already (see “Emerging Tools”).
The Project Everest2 team kicked off the
recent wave of open source adoption
with the verified High-Assurance Cryp-
tographic Library (HACL*)3 and its use
in Firefox. A verified crypto-primitive
compiler that I’ve been involved with,
Fiat Cryptography,4 has now been ad-
opted for (some aspects of) finite-field
arithmetic in both Chrome and Firefox,
the WireGuard virtual private network
(VPN) in the Linux kernel, and the pri-
mary libraries for Facebook’s Libra and
other blockchain systems.

There are two main dimensions where
I expect to see substantial progress in the
five-to-10-year time frame. First, at least
my own work with Fiat Cryptography

hasn’t involved the proof of higher-level
security properties, such as resistance
to forged signatures, and I expect the
community will make good progress on
scaling that kind of proof. Perhaps more
importantly, I expect to see a much more
satisfying integration of formal results
into full verified systems. The instances of
adoption I just mentioned involve copy-
ing and pasting formally validated code
within much larger systems (typically
not subjected to formal methods). The
boundaries among applications, libraries,
compilers, and hardware are major op-
portunities for bugs that invalidate guar-
antees. I expect to see good proofs of con-
cept with formal guarantees that stretch
from Verilog hardware designs to white-
board-level pseudocode for cryptographic
protocols, covering both functional cor-
rectness and lack-of-information leaks
through timing.

PROTZENKO: We are witnessing a
very exciting time wherein many teams
are adopting different approaches to-
ward proving cryptographic algorithms.
This has fostered a friendly competition,
and many of those teams (Fiat Cryptog-
raphy,4 Jasmine,5 Cryptoline,6 HACL*,
and others) have done wonderful work
that significantly advanced the state of
the art in the span of just a few years.
The challenge is now to rise beyond

32	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

cryptographic primitives and tackle lay-
ers that are further and further up the
software stack.

In a sense, a cryptographic prim-
itive is a pure function: data in, data
out—this was a great “warm-up” for the
software verification community. But
a large chunk of more complex critical
code sits immediately above the prim-
itives, dealing with state machines,
buffering, incremental application
programming interfaces (APIs) that
enable passing data across several API
calls, and so on, which complicates the
problem statement. And then, above
these high-level crypto APIs, there are
protocols, which typically orchestrate
many primitives, have several inter-
twined state machines, and deal with
many more pieces of state and much
more complex invariants and data
structures than just a single algorithm.

I expect that, within a few years, the
state of the art in program proofs will have
advanced enough that verifying prim-
itives will be considered mundane and
a strong requirement for any new pro-
posed algorithm; that high-level crypto
APIs will also be fully verified; and that
the latest advances will provide efficient,
fully verified implementations of com-
plete protocols, including all the primi-
tives, state machines, data structures, and
bookkeeping. By then, and on the some-
what longer horizon, I expect that we will
see large software subsystems, such as a
hypervisor, an Internet of Things device,
or an entire operating system subcompo-
nent, fully verified, of which the protocol
will be only a small chunk.

WANG: Formal methods have been used to
verify cryptographic algorithms, proto-
cols, and systems at smaller scales. With
such (limited) success, the cryptography
community has noted the advantages of
applying formal methods. Better formal
methods for cryptography will surely be
developed in the near future. I believe
theorists and practitioners in cryp-
tography will adopt formal methods
more broadly. More specifically, for-
mal methods can help theorists carry
out mathematical proofs for security.

Protocol designers can benefit from
a rigorous analysis of corner cases.
Formal methods can also verify cryp-
tographic programs at a large scale.
Of course, it will not be possible with-
out interdisciplinary collaboration.
I also expect more communication
between formal method and cryptog-
raphy communities.

COMPUTER: How would you compare
the assurance provided by formal meth-
ods versus those from other techniques,
such as static analysis, dynamic analy-
sis (for example, fuzzing), or known-an-
swer tests? Are there types of bugs that
can be found using formal methods but
not other techniques?

BHARGAVAN: When analyzing a
cryptographic system, the first goal is
always to verify that the input–output
behavior is functionally correct. The
harder goal is to prove that the system
preserves its security invariants even in
the presence of a hostile adversary who
can use malformed inputs and employ
side-channel attacks. Classic software
analysis and testing tools can be very ef-
fective in finding bugs in cryptographic
systems and are widely used in indus-
try. However, they can miss the kind of
low-probability functional correctness
bugs that often appear in cryptographic
code, such as an integer overflow bug
that appears in only one out of, say, 264
inputs. Furthermore, these techniques
have little hope of finding side-channel
leaks or protocol flaws that depend on
cryptographic weaknesses.

Formal methods can close this gap
by providing comprehensive guaran-
tees for a cryptographic mechanism
against some well-defined set of attack-
ers, under some assumptions about the
underlying cryptographic algorithm
and about the application that uses the
mechanism. Of course, the guarantees
hold only in this model, and any attack
that exploits an attack vector that was
not covered in the model may still suc-
ceed. So, I see formal methods as yet an-
other tool in the analyst’s arsenal: they
eliminate an entire class of attacks,

enabling us to focus on others that were
not covered by the model.

CHLIPALA: Different groupings of
those techniques deserve different an-
swers. Let me start with dynamic anal-
ysis and known-answer tests lumped
together as approaches that rely on
careful execution of the code by run-
ning it under many different inputs.
The trouble here is that true exhaustive
testing of a system, under all possible
inputs, is infeasible. The lifetime of the
universe might not be enough to test all
inputs in some cases! That places the
burden on developers to devise a the-
ory of what the important corner cases
are, to be sure to exercise them all suf-
ficiently. However, in a security setting,
you always worry that your adversary
did a better job than you did at intuiting
the tricky corner cases. He potentially
just needs to find one to break all your
guarantees. In contrast, formal verifica-
tion enables the certification of correct
behavior in all scenarios. Many tech-
niques don’t even require more analysis
runtime as the scenario space grows
since they rely on symbolic proofs, not
state-space exploration.

Static analysis is another important
class that we generally consider as prov-
ing shallow properties (for example, no
null pointer dereferences) in a relatively
fast, automatic way, which is appealing
for large legacy code bases. Actually, the
boundary between static analysis and
formal methods is sort of like the one
between “artificial intelligence” (AI) and
other tasks—we call tasks “AI” when
they seem hard to us today! So, static
analysis typically falls short of establish-
ing functional correctness, and folks are
liable to call it formal methods, instead, if
it is used for functional correctness. In
my experience, compared to most com-
puting professionals, cryptographers
are relatively quick to agree that it is im-
portant to validate that every bit an im-
plementation outputs is correct, if we’re
talking about crypto libraries.

PROTZENKO: There is a whole spec-
trum of techniques, ranging from

	 J A N U A R Y 2 0 2 1 � 33

simple unit tests, moving on to fuzzing
and static analysis, and then culmi-
nating with full program proofs. Nat-
urally, they all provide different kinds
of guarantees, and some of the more
subtle bugs that would not be found by,
say, fuzzing (because the problem space
is too large or finding the bug requires
deep mathematical examination that
cannot be automated) will be found by
program proof. But more often than
not, these techniques are complemen-
tary: for instance, it is crucial to fuzz and
known-answer-test your specifications
if you want to have strong trust in your
proof that the code meets the specifica-
tion. Similarly, a quick round of fuzzing
can be a great way to make sure your ten-
tative optimization looks solid before at-
tempting to prove it. And perhaps more
pragmatically, a tool such as American
Fuzzy Lop (AFL),7 which does not re-
quire a substantial time investment, can
be a great way to get your management
to believe in formal methods.

WANG: Two types of assurances can
be made by various bug-finding tech-
niques. One is that no bug has been
found so far; the other is that any bug is
logically impossible. Engineering tech-
niques explore known corner cases to
find bugs. If the exploration is not ex-
haustive, such techniques provide the
first type of assurance. Formal methods,
on the other hand, try to find proofs for
the absence of bugs. If such a proof is
found, it is logically impossible to have
bugs under the assumptions made by
such techniques. Some formal methods
even produce witnesses (that is, bugs)
when they fail to find proofs.

Consider field arithmetic in cryp-
tographic programs. A field multipli-
cation has hundreds of bits as inputs.
Since it is computationally infeasi-
ble to exhaustively explore the input
space, engineering techniques offer
only the first type of assurance by ex-
ploring corner cases. I can give at least
two accounts where cryptographic
programmers missed a carry f lag
in their code (one intentionally, the
other unintentionally). Both buggy

programs successfully passed random
and known-answer tests. Using for-
mal methods, inputs witnessing the
missed carry and hence yielding incor-
rect answers were found. These wit-
nessing inputs become a known-an-
swer test for the program. I want to
point out that static analysis is a for-
mal method, in my opinion. It tries
to construct proofs for the absence of
bugs and hence provides the second
type of assurance as well.

COMPUTER: For cryptographic appli-
cations, there are large existing code
bases such as open source crypto li-
braries. Are there effective and efficient
ways that formal methods can be ap-
plied here?

BHARGAVAN: The past few years have
seen a number of successful projects ap-
plying formal methods to cryptographic
code. Code from the Fiat Cryptography4
project has been integrated into Bor-
ingSSL (used in Google Chrome). Code
used in OpenSSL has been verified us-
ing Verified Software Toolchain,8 Vale,9
and CryptoLine.6 Code from my own
project, HACL*,3 is deployed in Network
Security Services (NSS) (used in Mozilla
Firefox) as well as the Linux kernel, Wi-
reGuard VPN, Microsoft MsQuic, and
the Tezos blockchain. These projects
take a variety of approaches; some ver-
ify C code, others verify assembly code,
and still others generate low-level C
or assembly code from verified cryp-
tographic code in domain-specific high-
level languages. These techniques are
used to prove memory safety, functional
correctness, and resistance against
some kinds of timing side channels.

CHLIPALA: I’d say there are two main
ways. One is to apply formal method
tools that work on source code in
widely deployed languages, such as C.
For a good example that meets a high
standard of functional correctness
and a higher-level security proof, see
Beringer et al.10 The other main strat-
egy is to use formal tools to generate
cryptographic code in the first place,

ideally outputting C or assembly code
for easy integration with legacy code
bases. All the adoptions I highlighted
earlier went this route.

PROTZENKO: The adoption of formal
methods is happening right before our
very eyes: BoringSSL and NSS both have
replaced large chunks of their code with
formally verified variants. New libraries
(for example, Linux’s Zinc) make it an
explicit goal to use as many verified
implementations as possible. My hope
is that this creates friendly peer pres-
sure and that more legacy libraries are
nudged into adopting formally verified
implementations.

WANG: I think automated or automatic
formal methods are more effective and
efficient for such libraries. I personally
would recommend model checking or
static analysis, among others. These two
techniques are perhaps the well-estab-
lished formal methods that have the least
human intervention. They have also been
used in the hardware industry for de-
cades and in the software industry more
recently. Academic and commercial tools
are also available. Of course, these tech-
niques are not immediately applicable
to crypto libraries at the moment. Using
these techniques, successful case studies
of selected crypto libraries have been re-
ported. They are the most promising to
be applied to open source crypto libraries
at large scale, in my opinion.

COMPUTER: Can formal methods be
used to synthesize implementations of
cryptographic algorithms that have se-
curity properties other than provable
correctness?

BHARGAVAN: For low-level algorit
hms, such as the Advanced Encryption
Standard (AES) and Secure Hash Al-
gorithm 3 (SHA-3), the main security
goal (beyond function correctness) is
side-channel resistance. There are var-
ious formal techniques for proving the
absence of secret-independent code (for
example, see Barthe et al.11), which
eliminates various kinds of remote

34	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

timing attacks. More recently, formal
techniques have also been proposed to
find and prevent microarchitectural at-
tacks on cryptographic code.

Beyond low-level algorithms, there
are many other security properties
of interest. One may want to prove
that a composite construction [for
example, authenticated encryption
with associated data (AEAD) and the
Rivest–Shamir–Adleman probabilistic
signature scheme (RSA-PSS)] provides
strong security guarantees, given
some assumptions about the underly-
ing algorithms. For example, most of
the postquantum key encapsulation
mechanism submissions to the Na-
tional Institute of Standards and Tech-
nology competition include a proof
of indistinguishability under chosen
plaintext attack (IND-CCA) security,
and these proofs have been buggy in
the past and could benefit from mech-
anized provers. Going even further,
formal methods can be used to synthe-
size verified implementations of cryp-
tographic protocols, such as TLS,12
providing strong authentication and
secrecy guarantees against powerful
network attackers.

CHLIPALA: Absolutely! I think freedom
from information leaks through timing
is a good example (and, no doubt, we
will increasingly see work extending
results to other potential side channels,
such as electromagnetic emissions).
Our Fiat Cryptography4 tool generates
code in a restricted language that is
constant time by construction, and we
hope to explore the extension of such
guarantees to a richer output language.
The HACL*3 team has applied a type sys-
tem to establish such properties.

PROTZENKO: There are many prop-
erties of interest beyond functional
correctness, notably side-channel re-
sistance. One of the main challenges
for the next generation of tools will be
to evolve our models and techniques to
be able to deal with the latest results in
microarchitectural and side-channel
attacks, notably Spectre and Meltdown.

WANG: It is not entirely clear what
“security properties other than prov-
able correctness” means. I will simply
interpret the statement as referring
to security properties that cannot be
proved. By definition, formal methods
entail proofs associated with goals. Any
security property that can be ensured by
formal methods needs to be provable.
Subsequently, formal methods cannot
synthesize implementations with se-
curity properties other than provable
correctness. Let me elaborate my points
a bit. When formal methods claim that
a synthesized program has a security
property, there must be an explicit or
implicit proof for the claim, by defini-
tion. Subsequently, any claimed security
property is provable and, in fact, proved.
For unprovable security properties,
there is neither mathematical nor logi-
cal reasoning to prove or disprove such
properties. Formal methods just cannot
claim whether such security properties
hold on synthesized programs.

COMPUTER: To what extent do we
need to sacrifice the speed of cryp-
tographic algorithms to obtain provable
properties of the implementations?
How much do we need to sacrifice in
terms of portability?

BHARGAVAN: Perhaps surprisingly,
one does not really need to sacrifice
speed. Projects such as Vale9 and Jas-
min5 have been used to build and ver-
ify assembly code for cryptographic
algorithms that are faster than un-
verified crypto. CryptoLine6 verifies
manually optimized assembly code
from OpenSSL. Fiat Cryptography4 and
HACL*3 generate portable C code that
is faster than unverified C implemen-
tations, and HACL* can even get very
close to assembly speeds.13 In general,
one can choose to forego portability and
verify assembly code or sacrifice some
performance and verify portable C code.
More recently, EverCrypt14 shows how
to mix and match verified assembly
from Vale with verified C from HACL*,
hence obtaining portable code that is
faster than all prior implementations.

CHLIPALA: I don’t think there’s any in-
herent performance or portability pen-
alty, and, indeed, I expect that, longer
term, the adoption of formal methods
will improve performance. Yes, as new
implementations are written to bet-
ter support formal methods, they will
start out less optimized, and we still
need to come up with clever ideas to
make some well-known optimizations
compatible with tractable correctness
proofs. However, I’m confident that the
world of formally verified implementa-
tions will catch up with the mainstream
in the next few years.

At that point, developers will feel
freer to experiment with new optimi-
zations since they will be able to rel-
atively quickly patch their old proofs
to apply to new code. Don’t underes-
timate how even the experts can be
afraid to modify dusty code bases! For
instance, we worked with Google to
adopt Fiat Cryptography in the Bor-
ingSSL library used in Chrome and
elsewhere. They had an idea for a new
optimization (based on lookup tables)
for the Curve25519 elliptic curve but
had been hesitant to touch the AMD64
assembly code for it. Armed with our
tool, they generated a C version that,
linked with handwritten lookup table
code, was actually twice as fast as the
original—leaving them happy to re-
tire the largely inscrutable assem-
bly code.

PROTZENKO: Recent work by many
teams (including our work on Ever-
Crypt) shows that fully verified imple-
mentations match or exceed the per-
formance of state-of-the-art unverified
implementations. The compromise is
no longer about speed but about the ef-
fort required to get there and the loss of
portability that may result.

I see two compromises emerging.
If your goal is to get the fastest im-
plementation at any cost, then this
is achievable with sufficient man-
power. However, the code may not
be reusable for other architectures
or instruction sets and will thus have
to be duplicated, which creates an

	 J A N U A R Y 2 0 2 1 � 35

additional maintenance burden in
the long run. (Side note: maintain-
ing verified code is something that
is currently not discussed enough in
the community.) If being within a few
percentage points of the best perfor-
mance is acceptable, then a relatively
modest effort may get you a long
way. The idea is to stay at a somewhat
higher level of abstraction and leave
it up to the rest of your toolchain to
automatically synthesize, meta-eval-
uate away, or simply compile this
high-level code down to specific tar-
get architectures or instruction sets.
Such approaches have been advo-
cated by Fiat Cryptography and, in a
different context, by our latest work
on vectorized HACL*.

WANG: The answers to both questions
depend on the implementations under
verification. As an extreme case, formal
methods have been applied to prove
properties of assembly implementa-
tions in open source crypto libraries.
Such implementations are manually
optimized and very efficient. Different
implementations are needed to ex-
ploit assembly instructions from vari-
ous architectures. They are hence not
portable. Every implementation must
be separately verified. At the other ex-
treme, formal methods have been used
to verify portable C implementations
without any compiler extension. Such
implementations are very portable but
may not be as efficient as assembly
implementations. A number of formal
methods are available. I guess it is for
cryptographic programmers to decide
the tradeoff between efficiency and por-
tability, not formal methods.

COMPUTER: In cryptographic appli-
cations, do some programming lan-
guages lend themselves better to for-
mal methods? How do formal methods
interact with manual and compiler
optimizations?

BHARGAVAN: Cryptographic applica-
tions used to always be written in a mix
of C and assembly, but more recently,

programmers have started to use high-
er-level languages such as Java, Rust,
and Go. The benefit of these languages
is that it becomes easy to eliminate
common programming errors, includ-
ing buffer overruns, using static or dy-
namic type systems. To apply stronger
formal methods, one typically ends up
targeting even higher-level verifica-
tion-oriented languages such as OCaml
or F*. The main disadvantage of using
high-level languages is that we now
have to verify or trust the compiler.
Projects such as the CompCert verified
C compiler15 can help close this trust
gap by using only verified optimiza-
tion, but this comes at some loss in per-
formance. An alternative is to develop
a domain-specific crypto-oriented lan-
guage, such as Cryptol16 or Jasmin, and
build a targeted verified compiler for it.

CHLIPALA: Yes, it tends to be more
pleasant to do rigorous reasoning about
higher-level languages. Proof tools are
often built around purely functional
languages—think Haskell but even
purer! It is especially straightforward to
state and prove correctness properties
on code written in similar languages. At
the same time, it is possible to build up
libraries supporting effective and rather
automated reasoning about languages
as diverse as C, Verilog, and Structured
Query Language (SQL)—with all argu-
ments justified from first principles, us-
ing the same proof-checking algorithm.
Many formal method approaches work
well as foundations for ecosystems of
verified tools, where we expect most
work to be done on programs in high-
level languages but where it is worth-
while and feasible to invest in more
involved proofs of programs in low-
er-level languages, and all the proofs fit
together in the end.

Optimizations are an interesting
question. Like my previous answer
highlighted, the chance to adapt an
existing correctness proof can make
manual optimization much less stress-
ful, especially in security-critical com-
ponents. Another headache for securi-
ty-conscious engineers in recent years

is compilers that detect undefined be-
havior and then feel free to arbitrarily
change program behavior. Almost
any correctness proof rules out unde-
fined behavior, so we can stop worry-
ing about “rogue compilers” when we
commit to a proof of our code, even in
grungy languages like C! By the way,
there are great applications of formal
methods to compilers (for example, the
CompCert C compiler15), so we can even
stop worrying about compiler bugs.

PROTZENKO: Programming languages
designed with a formal semantics from
the get-go generally lend themselves
much better to formal methods. This is
one of the reasons why the C language
remains, to this day, so hard to analyze:
debates regularly spring up about fine
points of the standard and about the le-
gality or semantics of some particularly
vicious programs. But more specifically,
functional programming languages,
which emphasize values over mutation,
lend themselves to much easier verifi-
cation. Sadly, this is sometimes at odds
with maximal performance require-
ments for cryptography.

Compiler optimizations remain a
long-standing problem because for-
mally verified compilers have not yet
been adopted by the mainstream. This
means that if you are rubber-stamping
a piece of C code as “correct,” all your
effort may be ruined by a bad compiler
optimization. On the other hand, we
have grown to depend even more on C
compiler optimizations: it is now very
easy to rewrite a convoluted piece of
C code into a simpler version that bet-
ter lends itself to formal verification,
knowing that any modern compiler will
generate code that’s just as efficient.

WANG: Certainly, some program-
ming languages enable programmers
to prove their programs during soft-
ware development. In such languages,
programmers can be forced to apply
formal methods. It is easier to adopt
formal methods in such languages.
As for manual and compiler optimiza-
tions, there are techniques for checking

36	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

program equivalence before and after
optimizations. The idea is to start with a
correct but inefficient implementation.
Formal methods can be used to estab-
lish equivalence between the correct
and optimized implementations. Such
techniques have been applied to verify
cryptographic programs.

COMPUTER: Do formal methods im-
pact the readability of software code?
How do you see the value of source
code review?

BHARGAVAN: The way you write
code for verification is sometimes quite

different and counterintuitive for pro-
grammers. This can result in code that
is not as readable. This is especially the
case when the code is synthesized from
a higher-level language. In the HACL*
project, we use the KreMLin compiler
for F*,17 and a lot of engineering effort
goes into making the generated C code
readable. This code is then manually
reviewed by engineers at Mozilla and
Linux, and we often have to modify the
tool to generate code that is acceptable
to these projects. In my opinion, formal
verification is only one component of
high-assurance cryptographic software.
It is still important for the code to be re-
viewable so that it can be easily under-
stood by programmers who may need
to make future modifications. An open
problem is how one can reflect the veri-
fied invariants in a piece of code in a way
that a programmer learns to read and
obey when making modifications.

CHLIPALA: I think this question
gives me the best soap box to spread a
public service message, so thanks for
asking it! A number of projects are au-
tomatically generating low-level cryp-
tographic code, using formal methods

to guarantee correctness. The main-
tainers of established code bases often
want to be able to audit the generated
code, even though it has been proved
correct. However, they tend to be OK
with not reading the machine code
their compilers generate or the Verilog
for the processors the code runs on! I
think we need to shift cultural norms
to “audit the lowest-level code that
doesn’t sit on top of formally verified
components.” So, for instance, when
using a formally verified compiler, au-
dit the source code it receives, not the
code it outputs in C or assembly or Ver-
ilog or whatever. I mean, do we really

trust human auditors to catch bugs in
thousands of lines of assembly? Code
review remains invaluable, but let’s do
it on code as high level as we can man-
age, where mistakes tend to jump out
at the reader.

PROTZENKO: This has historically
been a problem, as formal methods
use logic, predicates, and syntax that
may not be familiar to programmers
who have no training in this field.
Fortunately, this can be mitigated in a
variety of ways: if the source (verifica-
tion) language is “unfamiliar,” gener-
ating code that can be audited helps
tremendously. This is the approach we
use with Low*, which generates C code
from F* sources. If the source language
is merely annotated (for example, Fra-
ma-C), then this means programmers
can still understand the code, but veri-
fication is harder because the source is
not constrained as much. Formal meth-
ods should not be seen as an absolute,
elitist answer to the bugs that plague
cryptographic code: if existing main-
tainers of open source libraries cannot
figure out what it is that we’re doing
and cannot review the code one way or

another, then we still have work to do to
get there. We cannot expect our code to
be accepted with no questions asked!

WANG: The simplest impact on read-
ability would be documented specifica-
tions. Formal methods require clearly
specified properties. For instance, input
and output ranges for field arithmetic
may be slightly relaxed to save a few re-
ductions during a sequence of compu-
tation. To apply formal methods, such
specifications need to be documented by
programmers and hence improve read-
ability. Additionally, more properties can
be found and proved during verification.
Programs can be annotated with such
properties to improve their readability.
For example, formal methods may prove
that a carry bit is always zero. Such infor-
mation explains why carry propagation
is redundant and hence improves read-
ability. Source code review can bring
new insight to the correctness and effi-
ciency of programs. Formal methods can
then be applied to justify the insight and
improve implementations. I think code
review is valuable and independent of
formal methods.

COMPUTER: What are the challenges
to apply formal methods to software
projects that use continuous integra-
tion (CI)?

BHARGAVAN: Beyond a certain size
of a project and a certain number of
users, CI becomes an essential tool, but
responding to CI failures is a time-con-
suming task that does not always work
well for formal methods. The problem
is both technical and cultural. Verifica-
tion tools take much longer than func-
tional tests, so a CI run can easily go on
for hours. Verification tools often use
heuristics, so small changes in the code
or in the version of a verification tool
can sometimes cause a verification fail-
ure that is easy to fix but hard for pro-
grammers to understand. Finally, the
failure of some verification goals can be
understood only by Ph.D.-level experts
in the verification technique. Conse-
quently, the job of formal methods is

Formal methods should not be seen as an
absolute, elitist answer to the bugs that plague

cryptographic code.

	 J A N U A R Y 2 0 2 1 � 37

not done with the development of a
verified artifact. Verification engineers
and software developers need to con-
tinue to collaborate to maintain the
artifact as it evolves. This is an ongoing
challenge for us in the HACL* project
and, more generally, an open problem
for formal verification tools.

CHLIPALA: I wouldn’t say there are dis-
tinctive challenges here. Formal tools
fit very well into CI. Many of my proj-
ects use Travis CI18 to recheck proofs on
every code check in. Sometimes that re-
checking can run for longer than devel-
opers are used to, but I expect engineer-
ing effort to dramatically reduce those
overheads during the coming years.

PROTZENKO: It really varies based
on the kind of verification you apply,
whether you verify existing code in
someone else’s repository or produce
verified code to be consumed by some
other project under CI. In my experi-
ence producing verified C code, the
challenge has been to distribute the
verified code in a way that can be eas-
ily consumed by downstream users.
It’s one thing to send a verified piece
of code through e-mail for a quick ex-
periment, but making sure the code
remains usable at all times and is pack-
aged in a way that requires no man-
ual tweaks is the real challenge. Once
this goal has been met, consumers can
choose from a variety of options, rang-
ing from rerunning the whole verifica-
tion pipeline as part of their builds to
always using the latest code or manu-
ally refreshing it periodically.

WANG: Based on my (very) limited
knowledge about CI, I believe specifica-
tions and scalability would be the main
challenges. Interfaces between compo-
nents in software projects need to be
specified for formal methods. Based on
these specifications, formal methods
can be used to prove the correctness
of components or even to synthesize
correct components. Applying formal
methods still requires significant ef-
fort. If components change too often, it

does not appear feasible to apply formal
methods for every update. Moreover,
interface specifications can be very
tedious and prone to errors. If inter-
face specifications also change during
software development, errors could be
introduced in specifications and thus
nullify formal methods. In a very dy-
namic programming paradigm such as
CI, it would not be easy to find correct
specifications and verify every update
during integration.

COMPUTER: How can we ensure that
the formally verified source code is
also the one that is deployed? Is there
value in using reproducible builds?

BHARGAVAN: Yes, this is definitely an
issue, and reproducible builds as well as
software attestation can be a solution.

CHLIPALA: Yes, reproducible builds
show their value here as elsewhere.
However, in the setting of formal meth-
ods, it’s interesting to consider repro-
ducible builds as a kind of performance
optimization of a more fundamental
process. When your applications, li-
braries, compilers, and processors are
all proved mechanically, it’s possible to
formally characterize the build process
with a theorem saying, “The output of
the following build process is low-level
code that meets the following correct-
ness and security properties.” Then, any
skeptics can run the build process them-
selves and feel confident that the re-
sulting code is legit. In fact, that method
even works for nondeterministic build
processes! To save end users the trouble
of rerunning builds, trusted authorities
can do cryptographic signing of the re-
sults of their own builds, promising that
they ran the recipes that were proved.
Then, if you trust the authority, you can
read the theorem statement and feel
confident in it, even if you didn’t run
the build yourself. This workflow is cer-
tainly streamlined if every build gener-
ates the same bits, but it’s not essential.

PROTZENKO: I believe a lot of stan-
dard practices used elsewhere in

software development should also be
applied to projects that perform formal
verification. If a verification project is
not doing reproducible builds (for ex-
ample, Docker, Vagrant, or others), has
no CI, or cannot be tried out easily by
a first-timer, then we are doing our-
selves a disservice, and we won’t look
good from the point of view of the very
people we are trying to convince!

WANG: Technically, formally verified
source codes are never deployed. They
have to be compiled into executable
binaries for deployment. From source
codes to binary executables, many com-
plicated transformations are required.
It is hence extremely difficult to ensure
that formally verified source codes
are always correctly compiled into ex-
ecutable binaries. There are, indeed,
certified C compilers with formally
verified compilation. Such compilers
still miss commonly used language
extensions and generate less-efficient
binary codes, and hence they are not
yet widely adopted by developers. I
think the best way to ensure correct bi-
nary codes is to verify assembly codes
from programmers or compilers. Even
so, assemblers can introduce errors. It
is never easy to obtain correct binary
codes before deployment.

Assume correct binary codes are
available. Formal techniques have
been developed to ensure correct de-
ployment. In proof-carrying code,
low-level codes are shipped with their
proofs of correctness. Shipped codes
will not be executed until their proofs
are verified. I am not familiar with re-
producible builds. But the technology
appears to assume the correctness of
compilation. I fail to see why repro-
ducible errors introduced by compil-
ers can ensure the correct deployment
of formally verified source codes.

T his concludes the questions
that we had for our panelists.
But Computer welcomes your

input, so we still have a few questions
left for you.

38	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

›› Have you heard about formal
methods before, and did the
panelists’ answers change your
understanding?

›› Did you know that you may
already be using formally
verified cryptography if you are
reading this article online us-
ing Google Chrome or Mozilla
Firefox?

›› What are your thoughts about
the challenges and opportu-
nities when formal methods
are applied to real-world
applications?

Feel free to let us know. We hope you
enjoyed the discussion and that you
agree that it will be interesting to
keep an eye on future developments
in this area.

REFERENCES
1.	 M. Barbosa et al., “SoK: Comput-

er-aided cryptography,” IACR Cryptol.
ePrint Arch., vol. 2019, Art. No. 1393.
Dec. 2019.

2.	 K. Bhargavan et al., “Everest:
Towards a verified, drop-in replace-
ment of HTTPS,” in Proc. 2nd Summit
Adv. Program. Lang. (SNAPL 2017),
2017, no. 1, pp. 1:1–1:12.

3.	 J.-K. Zinzindohoué, K. Bhargavan,
J. Protzenko, and B. Beurdouche,
“HACL*: A verified modern cryp-
tographic library,” in Proc. ACM SIG-
SAC Conf. Comput. Commun. Security,
2017, pp. 1789–1806.

4.	 A. Erbsen, J. Philipoom, J. Gross,
R. Sloan, and A. Chlipala, “Simple
high-level code for cryptographic
arithmetic – With proofs, with-
out compromises,” in Proc. IEEE
Symp. Security Privacy (SP), 2019,
pp. 1202–1219. doi: 10.1109/
SP.2019.00005.

5.	 J. B. Almeida et al., “Jasmin: High-as-
surance and high-speed cryptog-
raphy,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, 2017,
pp. 1807–1823.

6.	 Y.-F. Fu, J. Liu, X. Shi, M.-H. Tsai,
B.-Y. Wang, and B.-Y. Yang, “Signed
cryptographic program verification
with typed CryptoLine,” in Proc.
ACM SIGSAC Conf. Comput. Commun.
Security, 2019, pp. 1591–1606.

7.	 M. Zalewski. “American Fuzzy Lop
(AFL).” Accessed: Aug. 10, 2020.
[Online]. Available: https://lcamtuf
.coredump.cx/afl/

8.	 A. W. Appel, “Verified software
toolchain,” in European Symposium on
Programming, LNCS 6602, G. Barthe,
Ed. Berlin: Springer-Verlag, 2011, pp.
1–17.

9.	 B. Bond et al., “Vale: Verifying
high-performance cryptographic
assembly code,” in Proc. 26th USENIX
Security Symp. (USENIX Security 17),
2017, pp. 917–934.

10.	 L. Beringer, A. Petcher, Q. Y. Kath-
erine, and A. W. Appel, “Verified
correctness and security of OpenSSL
HMAC,” in Proc. 24th USENIX Secu-
rity Symp. (USENIX Security 15), 2015,
pp. 207–221.

11.	 G. Barthe, B. Grégoire, and V.
Laporte, “Secure compilation of
side-channel countermeasures:
The case of cryptographic ‘con-
stant-time’,” in Proc. IEEE 31st
Comput. Security Found. Symp. (CSF),
2018, pp. 328–343. doi: 10.1109/
CSF.2018.00031.

12.	 A. Delignat-Lavaud et al., “Imple-
menting and proving the TLS 1.3
record layer,” in Proc. IEEE Symp.
Security Privacy (SP), 2017, pp.
463–482. doi: 10.1109/SP.
2017.58.

13.	 M. Polubelova et al., “HACL×N:
Verified Generic SIMD crypto
(for all your favorite platforms),”
IACR Cryptol. ePrint Arch., vol.
2020, Art. No. 572. May 2020.

14.	 J. Protzenko et al., “EverCrypt:
A fast, verified, cross-platform
cryptographic provider,” in Proc.
IEEE Symp. Security Privacy (SP),
2020, pp. 983–1002. doi: 10.1109/
SP40000.2020.00114.

15.	 X. Leroy, “Formal verification of a
realistic compiler,” Commun. ACM,
vol. 52, no. 7, pp. 107–115, 2009. doi:
10.1145/1538788.1538814.

16.	 R. Dockins, A. Foltzer, J. Hendrix,
B. Huffman, D. McNamee, and
A. Tomb, “Constructing seman-
tic models of programs with the
software analysis workbench,” in
Proc. Working Conf. Verified Softw.:
Theories, Tools, Exper., LNCS 9971,
2016, pp. 56–72.

17.	 J. Protzenko et al., “Verified low-level
programming embedded in F*,”
in Proc. ACM Program. Lang.,
vol. 1, Aug. 2017, Art. No. 17.
doi: 10.1145/3110261.

18.	 K. Palmskog, A. Celik, and M.
Gligoric, “piCoq: Parallel regression
proving for large-scale verification
projects,” in Proc. 27th ACM
SIGSOFT Int. Symp. Software
Testing Anal., 2018, pp. 344–355.
doi: 10.1145/3213846.3213877.

NICKY MOUHA is a contractor at
the National Institute of Standards
and Technology, Gaithersburg,
Maryland, USA, employed by
Strativia, USA. Contact him at
nicky.mouha@nist.gov.

ASMAA HAILANE is a guest
researcher at the National Institute
of Standards and Technology,
Gaithersburg, Maryland, USA. Contact
her at asmaa.hailane@nist.gov.

Access all your IEEE Computer Society
subscriptions at

computer.org
/mysubscriptions

