
10 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E

50 & 25
YEARS AGO

EDITOR ERICH NEUHOLD
University of Vienna
erich.neuhold@univie.ac.at

FEBRUARY 1971
In the early years, Computer was only published bimonthly.
Therefore, we will have to skip our interesting and/or infor-
mative extractions for February. The next one will appear
in the March 2021 issue of Computer, and we hope you will
eagerly wait for our next publication of this column.

FEBRUARY 1996
 https://www.computer.org/csdl/magazine/co/1996/02

Immigration Issue Divides US Computer Industry; John
Sterlicchi et al. (p. 10) “The US Labor Department and the
coalition, which is headed by the US Activity Division of
IEEE USA, claim foreign workers take jobs from US citizens
because they work for lower salaries. … On the other side
such industry powerhouses as Intel, Hewlett Packard and Sun
tell politicians that foreign workers are vital. The companies
contend … that they cannot find properly trained US work-
ers … The committee founder is Lawrence Richards, who quit
IBM and set up SoftPac last year after many colleagues were
laid off and replaced by lower paid programmers from India.”
[Editor’s note: Unfortunately, the trend to get rid of usually high-
er-paid (older) employees to replace them with usually lower-paid
(younger) employees, whether foreigners or citizens, has been going
on continuously all over the corporate world. This controversy
is still around today (hear President Trump) but far from being
resolved as long as profit remains the dominant decision factor.]

TreadMarks: Shared Memory Computing on Networks
of Workstations; Cristiana Amza et al. (p. 18) “Shared
memory facilitates the transition from sequential to paral-
lel processing. Since most data structures can be retained,
simply adding synchronization achieves correct, efficient
programs for many applications. … In terms of performance,
networked workstations approach or exceed supercomputer
performance for some applications. These loosely coupled

multiprocessors will by no means replace the more tightly
coupled designs … However, advances in networking tech-
nology and processor performance are expanding the class
of applications that can be executed efficiently on networked
workstations. … In this article, we discuss our experience
with parallel computing on networks of workstations using
the TreadMarks distributed shared memory (DSM) system.”
(p. 20) “Two simple problems (larger applications are dis-
cussed later) illustrate the TreadMarks APL Jacobi iteration
(Figure 3) shows the use of barriers, and the traveling sales-
man problem (Figure 4) shows the use of locks.” [Editor’s
note: Distributed processing problems have been around forever
and are still here; just think of the network, grid, edge, and fog
computing buzzwords and the huge computing farms around.
This article provides a very good analysis of the behavior of
DSMs for a number of nontrivial applications. However, none of
them are prone to the map-reduce type of solutions so frequently
discussed today.]

Improving System Usability Through Parallel Design;
Jakob Nielsen et al. (p. 29) “Unfortunately, testing and rede-
signing take time, thus delaying product release. Because
major delays are intolerable, much effort has gone into
improving user interface design efficiency, prototyping, and
evaluation. … To yield final designs faster, we want parts of
the usability engineering life cycle to take place at the same
time, in a process we call parallel user interface design. … A
weakness of parallel design is the waste of resources when
several designers do the same work, even though some
design ideas will not be used. … Therefore, parallel design
is best suited for projects where reduced time-to-market is
essential and makes the up-front investment acceptable.”
(p. 30) “The case study concerned screen-based user interfaces
to advanced telephone services like call forwarding, where
incoming calls are routed to another telephone, and call wait-
ing, where you are notified if somebody calls while you are on
the line.” (p. 34) “In our project, parallel design was 73% more
expensive than iterative design. We still recommend paral-
lel design because it achieves major usability improvements

Digital Object Identifier 10.1109/MC.2020.3041888
Date of current version: 11 February 2021

	 F E B R U A R Y 2 0 2 1 � 11

very fast.” [Editor’s note: I believe the case studied—user inter-
face improvements—is a typical one where alternatives can
easily be tested in parallel and the results then integrated
into the “final” design. Unfortunately, only usability improve-
ments have been evaluated and not the time saved, as was the
original claim.]

Role-Based Access Control Models; Ravi S. Sandhu et al.
(p. 38) “A family of increasingly sophisticated models shows
how RBAC works. … A role can represent specific task com-
petency, such as that of a physician or a pharmacist. A role
can embody the authority and responsibility of, say, a project
supervisor. Authority and responsibility are distinct from
competency.” (p. 40) “To explore RBAC’s various dimensions,
we have defined a family of four conceptual models. Figure
la shows the model relationships and Figure 1b portrays their
essential characteristics. RBAC0, as the base model at the
bottom, is the minimum requirement for an RBAC sys-
tem. Advanced models RBAC1 and RBAC2 include RBAC0,
but RBAC1 adds role hierarchies (situations where roles
can inherit permissions from other roles), whereas RBAC2

adds constraints (which impose restrictions on acceptable
configurations of the different components of RBAC).
RBAC1 and RBAC2 are incomparable to one another. The
consolidated model, RBAC3, includes RBAC1 and RBAC2
and, by transitivity, RBAC0.” [Editor’s note: The model
includes many aspects of access control but stays on a rather
abstract level. It would have been helpful if a sample case had
been included.]

Logical Time: Capturing Causality in Distributed Sys-
tems; Michel Raynal et al. (p. 49) “Causality—determining
which event happens before what others—is vital in distrib-
uted computations. Distributed systems can determine cau-
sality using logical clocks. … The notion of time is basic to
capturing the causality between events. However, distributed
systems have no built-in physical time and can only approx-
imate it. Even the Internet’s Network Time Protocols,1 which
maintain a time accurate to a few tens of milliseconds, are
not adequate for capturing causality in distributed systems.
… This article presents a general framework of a system of
logical clocks in distributed systems and discusses three

Digital Object Identifier 10.1109/MC.2020.3043063
Date of current version: 11 February 2021

12	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

50 & 25 YEARS AGO

methods—scalar, vector, and matrix—for implementing log-
ical time in these systems.” [Editor’s note: This is a very inter-
esting article that discusses in detail the properties of the various
logical time methods and refers to the original papers where these
concepts were introduced.]

Why Software Jewels Are Rare; David Lorge Parnas (p. 57)
“Occasionally, I find a real jewel, a well-structured program
written in a consistent style, free of kludges, developed so
that each component is simple and organized, and designed
so that the product is easy to change. … Most of the software
we see or buy is ugly, unreliable, hard to change, and cer-
tainly not something that Wirth or Dijkstra would admire.”
(p. 58) “Often, software has grown large and its structure has
degraded because designers have repeatedly modified it to
integrate new systems or add new features. … Offered a jewel
or a more useful tool, most customers choose utility. To sell
products, you have to add the features the market demands.”
(p. 59) “Indeed, we’d all do better if we could start with all
the knowledge we will have later when a product is mature.
Unfortunately, commercial designers don’t have that chance
very often. … When Wirth asks, rhetorically, how Oberon
could be so small, he doesn’t give the whole answer. The
Oberon design team obviously learned a great deal from the
mistakes of others, and those others have not had a chance
to return the compliment.” (p. 60) “My engineering teachers
laid down some basic rules: 1. Design before implementing.
2. Document your design. 3. Review and analyze the docu-
mented design. 4. Review implementation for consistency
with the design.” [Editor’s note: David Parnas, when discussing
this issue, raises many valid points why software does not follow
the ideals Wirth and Dijkstra promote. However, we would all be
much better off if today’s designers would always follow the four
development rules presented. Unfortunately, methods like Power
Programming and today’s development tools often stand in the
way of such processes.]

Automated Object Design: The Client-Server Case;
Philippe Desfray (p. 62) “The most difficult aspect of
large-scale applications development is not programming
but technical design. This article explores a methodology

that formalizes and automates object-based technical
design in the domain of information management sys-
tems. …So we developed a new methodology, called hyper-
genericity, which formalizes and automates object-based
technical design. … To be totally applicable, the method-
ology demands that every model element—class, attri-
bute, method, parameter, and so forth—be annotated. The
annotations, or directives, are named @name.” (p. 65) “The
implementation relies on a class library, encapsulating
monitor accesses and factoring in processing such as error
management. In this manner, monitors can be changed
without extensive rule modifications. (The same logic for
library construction is applied, whether the code is hyper-
generic or manually produced.)” [Editor’s note: This article
investigates and suggests a solution to “automatic” code gener-
ation from abstract object-oriented specifications. It discusses,
using a complex example, the problems arising when doing
that. Of course, today’s programming also relies heavily on
parameterized class libraries, especially when producing new
apps for tablets and smartphones.]

Software Change Management; Capers Jones (p. 80)
“Modern change management, or configuration control,
tools must encompass changes affecting every kind of soft-
ware deliverable and artifact: requirements, project plans,
project cost estimates, contracts, design, source code, user
documents, illustrations and graphics, test materials, and
bug reports. Ideally, these tools would use hypertext to handle
cross-references among deliverables so that when something
changes, corresponding material is modified appropriately.”
(p. 82) “Change management is one of the most important
aspects of successful software development. Evidence of
this fact are the new companies building integrated change
management tools that handle much more than source
code revisions. Certainly, function-point metrics, which
quantify the costs of change with a previously impossi-
ble precision, are partly behind the emergence of these
companies.” [Editor’s note: The article suggests that change
management should not be concerned just with design and
implementation issues but also with changes in all of the accom-
panying other documents.]�

