
60 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E

BODY OF KNOWLEDGE

Few articles have so thoroughly entered the con-
sciousness of our profession as much as “No Sil-
ver Bullet: Essence and Accidents of Software
Engineering” by Frederick P. Brooks. Though the

article is ranked 15th on the list of the most influential
Computer articles, it has the rare distinction of being ref-
erenced in the title of 152 articles in the IEEE library. By
choosing a clever title, one that referenced both the legend
of the werewolf and the popular story of the Lone Ranger,
Brooks was able to engage the imagination of a large audi-
ence. However, his message is fundamental and touches
fundamental issues of our field.

In this article, Brooks argued that
software development was a complex,
difficult, multidimensional task. Be-
cause of that complexity, there was no
simple approach that would make soft-
ware development easy or inexpensive.
“There is no single development, in
either technology or in management
technique,” he wrote, “that by itself
promises even one order-of-magnitude
improvement in productivity, in reliabil-
ity, in simplicity.”2

When he wrote “No Silver Bullet” in 1986, Brooks had
established himself as one of the pioneers of computer

Digital Object Identifier 10.1109/MC.2020.3042682
Date of current version: 11 February 2021

There Is Still No
Silver Bullet
David Alan Grier , Djaghe, LLC

Throughout its existence, Computer has been at

the center of discussion over how software should

be engineered and how it should be developed.

No article has been so central to the discussion as

“No Silver Bullet” by Frederick P. Brooks.

ARTICLE FACTS
» Article: “No Silver Bullet: Essence and Accidents of

Software Engineering”

» Author: Frederick P. Brooks

» Citation: Computer, vol. 20, no. 4, pp. 10–19, Apr.

1987

» Computer influence rank: #15 with 15,686

downloads and 1,463 citations

F E B R U A R Y 2 0 2 1 61

EDITOR DAVID ALAN GRIER
Djaghe, LLC; grier@gwu.edu

science. He studied for his doctorate at
Harvard under Howard Aiken, the de-
signer of the Mark I mechanical com-
puter. After graduating, Brooks joined
IBM, where he first worked on the IBM
Stretch and then led the development
of the OS/360 operating system.

The OS/360 project was one of the
watershed activities in computer sci-
ence. Though the product eventually
became quite successful, it had a long
and difficult birth. “The magnitude of
the task of developing the proposed op-
erating system was grossly underesti-
mated,” wrote Emerson Pugh, the IBM
historian.4 It was “a very educational
experience, albeit a very frustrating
one,” Brooks would later admit. “The
product was late, it took more memory
than planned, the costs were several
times the estimate, and it did not per-
form very well until several releases
after the first.”3

After completing his work on OS/360,
Brooks wrote The Mythical Man-Month,3

a book that became an important early
contribution to the software engineer-
ing literature. The basic argument
of the book is that an intellectual
task involves a substantial amount
of education and learning. It is fool-
hardy to treat it as aggregated labor
that can be easily measured in man-
months and divided among a group
of undifferentiated workers. Every
time you add a new worker to a soft-
ware project, you face new problems
of communication among the staff,
familiarization with the details of
the project, and testing and coordi-
nation of results.

In his book, Brooks articulated his
most famous observation about soft-
ware engineering: “Adding manpower
to a late software project makes it later.”
When a schedule “slippage is recog-
nized,” he wrote, the natural “response
is to add manpower. Like dousing a fire
with gasoline, this makes matters
worse, much worse.”3

Over the history of our field, hard-
ware designers have been much more
successful than software engineers in
exploiting economies of scale. They’ve
been able to turn hardware develop-
ment into a mass production process
that has a fixed development cost and
becomes prof itable by delivering
large numbers of identical shipped
items or circuits.

In theory, software engineers should
be able to achieve the same kind of re-
sult. Software, after all, has a very low
reproduction cost. One can produce

copies of an original master very inex-
pensively and easily distribute them
to customers. This was the goal of
the software industry as it emerged
in the early 1970s. The pioneers
of that field felt that it should be
straightforward to produce a prod-
uct t hat cou ld f i nd a l a rge m a r-
ket and hence allow companies to
amortize their development over a
large base of customers.

As Brooks discussed in his “No Sil-
ver Bullet” article, that goal for the
software industry has proven elusive
in many cases. “We hear desperate
cries for a silver bullet, something to
make software costs drop as rapidly
as computer hardware costs do,” he
wrote. The reasons for this situation
are many. It is expensive to get cus-
tomers to define their requirements.
They often find it difficult to articu-
late those requirements accurately,
and many times, they change their
minds as the software progresses.
For their part, developers routinely
underestimate the effort required

to simply design and code software.
They often realize the difficulty of a
problem only as they are working on
the software, and they encounter is-
sues that they could not have foreseen
when they began.

Once the software is operational,
the costs of product development do
not drop to zero. The software needs to
be installed and configured. Custom-
ers need to be trained. Errors need to
be corrected, and new features must be
added. It takes a very skilled organiza-
tion to develop successful software and

earn a profit in the process. “Unless a
software project has clear definitions
of its key milestones and realistic esti-
mates of the time and money it will take
to achieve them,” wrote software engi-
neer Barry Boehm, “there is no way that
a project manager can tell whether his
project is under control or not.”1

So was Brooks telling us that the
field of software engineering is a disci-
pline without hope? Of course not. But
as the title of his essay so clearly com-
municated, it is a multifaceted field
in which victories are often small and
come at the cost of substantial effort.
Certainly, in the years since Brooks
made his observations, software en-
gineering has seen some considerable
accomplishments. The family of agile
methods has brought developers closer
to their clients. Formal methods have
improved the process of requirement
engineering. A host of tools, librar-
ies, application stacks, and fast-pro-
totyping environments has improved
the process of writing code. We have
automated processes for debugging

Hardware designers have been much more
successful than software engineers in exploiting

economies of scale.

62	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

BODY OF KNOWLEDGE

and new methods of configuration
management. Financial and decision
models have reduced uncertainty and
limited costs.

Y et, almost 35 years after he
wrote this contribution to
knowledge, Brooks’s obser-

vation remains true. Software engi-
neering is a complex and demanding
field that poses a host of problems to
the practitioner, and there is no single
solution, that is, no silver bullet, that
will provide a simple way to reduce
the work required to create a software
product.

ACKNOWLEDGMENT
For these 2021 columns, “Body of
Knowledge” takes its information
from a report prepared by the IEEE
Publications office on 15 November
2019, though it updates the statistical
information to reflect the downloads
as of the date the essay was written.
Other citation services can and do give
different numbers.

REFERENCES
1.	 B. Boehm, “Software engineer-

ing economics,” IEEE Trans.
Softw. Eng., vol. SE-10, no. 1, pp.
4–21, Jan. 1984. doi: 10.1109/
TSE.1984.5010193.

2.	 F. P. Brooks, “No silver bullet
essence and accidents of software
engineering,” Computer, vol. 20,
no. 4, pp. 10–19, 1987. doi: 10.1109/
MC.1987.1663532.

3.	 F. P. Brooks, The Mythical Man-
Month. Reading, MA: Addison
Wesley, 1975.

4.	 E. Pugh, Building IBM. Cambridge,
MA: MIT Press, 1995, p. 294.

DAVID ALAN GRIER is a principal
with Djaghe, LLC, Washington, D.C.,
USA. He is a Fellow of IEEE. Contact
him at grier@gwu.edu.

CALL FOR ARTICLES
IT Professional seeks original submissions on technology
solutions for the enterprise. Topics include

•	 emerging technologies,
•	 cloud computing,
•	 Web 2.0 and services,
•	 cybersecurity,
•	 mobile computing,
•	 green IT,
•	 RFID,

•	 social software,
•	 data management and mining,
•	 systems integration,
•	 communication networks,
•	 datacenter operations,
•	 IT asset management, and
•	 health information technology.

We welcome articles accompanied by web-based demos.
For more information, see our author guidelines at
www.computer.org/itpro/author.htm.

WWW.COMPUTER.ORG/ITPRO

Digital Object Identifier 10.1109/MC.2021.3051514

