
Several tools have been devel-
oped to help manage software 
evolution and maintenance 
and assist with architecture 

conformance and quality analysis. Most 
advances in automation and tooling 
have been variations on providing static 
analysis metrics at the level of code, 
object-oriented design, and module 
view of an architecture, although some 
have focused on version control history 
to understand the impact of change or 
discover architecture smells.1,2 Our ex-
perience shows that a multiview archi-
tectural dependency analysis approach 
is more effective in conducting change 
impact analysis than approaches lim-
ited to the module view of an architec-
ture.3,4 The focus on syntactic depen-
dencies related to data and control flow 
in a module view precludes dependen-

cies from other perspectives, such as those that express seman-
tic transformation associated with performance, availability, 
safety and testing (for instance, understanding the impact of 
splitting a module or using a module as a standard interface 
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Dependency analysis is typically limited to the 

static analysis of code structures. We applied 

this practice to safety-critical systems that 

were re-engineered to reduce safety testing 

and technology upgrade cost. We discuss 

the need for a well-defined description of 

architectural dependencies to address the 

observed gaps. 
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intermediary that provides a generalized 
publish-subscribe capability between mod-
ules to improve performance, availability, 
and safety while reducing cost related to 
safety-critical testing).

A CASE OF TWO SYSTEMS
Consider a general-purpose shared com-
puting resource architecture.3 The use 
of shared resources, such as memory, 
processing, display graphics, network 

communication, and storage in safety-crit-
ical systems, requires the careful balanc-
ing of performance and safety qualities. 
Applications that access a shared comput-
ing resource must be partitioned based 
on their function, their interface to the 
resource, and how safety critical they are. 
Figure 1(a) depicts an instance of such 
an architecture.

The module view in Figure 1(a) conveys 
the principal units of implementation, 
and the component-and-connector (C&C) 

FIGURE 1. (a) A shared computing resource architecture. (b) A distributed shared computing resource architecture. C&C: compo-
nent-and-connector; App: application; DM: data mover; VR: virtual resource; MGR: manager. 
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Most advances in automation and tooling have 
been variations on providing static analysis metrics 

at the level of code, object-oriented design, and 
module view of an architecture.
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view illustrates how these units interact 
at runtime. Together, these views show 
the application layer consists of multi-
ple functional applications (App0, App1, 
App2, and App3) that send their data to 
a separate centralized data mover (DM). 
The DM transforms application data into 
a specialized resource-specific format. 
The DM then forwards the data to a vir-
tual resource (VR), which interfaces with 
the physical resources (for example, stor-
age, network, display). The modules in 
the application layer use one or more ser-
vices (system, network, data, or commu-
nication) from the service layer during 
the course of their interactions.

While the architect had designed this 
architecture appropriate for the time, as 
the system evolved, adding new appli-
cations required more effort. With the 
DM transforming all application data to 
formats for disparate resources, includ-
ing those that were safety critical, when 
a new resource-specific format for a new 
application was added or an existing 
one changed (whether that resource was 
safety critical or not), the entire DM was 
required to be tested to the highest safe-
ty-critical level. Additionally, as a mono-
lith with interdependent functionality, 
the DM could not isolate safety critical 
applications, which drove up the overall 
safety testing cost. Reaching this tipping 
point, the architect suggested a major 
change to the existing architecture. Fig-
ure 1(b) depicts a distributed shared com-
puting resource architecture proposed 
by the architect.

The DM from the original architec-
ture was decomposed into separate re-
source formatting clients, App0_DM, 
App1_DM, App2_DM, App3_DM, and a 
control-and-transform manager (MGR) 
that managed user input and coordi-
nated the use of resources. App0_DM 
contained the safety-critical function-
ality and received its data from App0. 
Decomposing the DM in this manner 
allows safety-critical clients such as 
App0_DM to be isolated into their 
own user space partition apart from 
other software elements that could 
improve testability and drive down cost 
for safety-critical testing. Distributing 

responsibilities, however, would in-
crease the number of publish-subscribe 
messages, which would require addi-
tional measures to manage network 
traffic and CPU utilization to offset any 
negative impact on performance. More 

importantly, however, coordinating 
the use of resources to process these 
messages introduces additional con-
figuration management burden, which 
can affect testability and integrability.

So, is the proposed distributed archi-
tecture more effective at isolating safe-
ty-critical functionality and accom-
modating changes without increasing 
the effort and cost for safety-critical 
testing? Table 1 captures representative 
metrics that can be used to compare the 
ease of making changes to the original 
shared computing resource architec-
ture and its newly proposed distributed 
version. These measures can be ob-
tained through the static dependency 
analysis of the module view of a system 
using a static analysis tool.

Stability measures how much of the 
system is affected when a change is made, 
connectedness refers to reachability, 

coupling measures how strongly con-
nected a system is, and system and 
intercomponent cyclicity measure un-
desirable coupling. Higher values of 
these measures indicate a system that 
is not very effective at handling change. 

Looking at the results in Table 1, it is diffi-
cult to say if the situation has improved. 
Since the results are mixed, there is no 
convincing evidence that the architect 
can present to the management or the 
development team to make an invest-
ment in the proposed distributed shared 
computing resource architecture.

A similar analysis on a safety-crit-
ical engine control system that man-
ages fuel flow to an aircraft engine 
also highlighted these shortcomings.4

ANALYSIS USING 
ARCHITECTURAL 
DEPENDENCIES
The shortcoming of an analysis, such as 
the one in Table 1, is that it is based on 
the module view of a system that mostly 
captures data and control dependencies 
among its elements and is often insuffi-
cient for understanding overarching 

TABLE 1. Dependency-based metrics for the original and 
distributed shared computing resource architecture.

Metric Original Distributed Health*

Stability 53.06% 50.51% −

System cyclicity 42.857% 42.857% =

Intercomponent cyclicity 42.857% 0% +

Connectedness 53.3% 53.3% =

Coupling 16.48% 16.48% =

*The ease of making changes is indicated as improved (+), deteriorated (−), or remained the same (=).

Stability measures how much of the system is 
affected when a change is made, connectedness 

refers to reachability, coupling measures how 
strongly connected a system is, and system  

and intercomponent cyclicity measure  
undesirable coupling.
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architectural issues within a system.5 
Many of the architectural design deci-
sions and tradeoffs involve dependen-
cies other than these two.6 Elements of 
a system, for instance, may not be co-
located on the same machine because 

resources drained by one may impact 
the performance of the other or failure 
of one may have an undesirable effect 
on proper functioning of the other. It 
may also be the case that certain el-
ements being safety critical need to 

be separated from others to contain 
testing and certification costs. The lit-
erature lacks a clear description and 
collection of such architectural depen-
dencies,7 and support for analyzing 
these dependencies among key archi-

tectural decisions remains a gap in 
the industry.8

As we analyzed the two safety-crit-
ical systems described in the previous 
section, we compiled a list of frequently 
encountered architectural dependency 

types provided in Table 2. Using these 
dependency types, Figure  2 captures 
the dependency models for the original 
and the distributed shared resources 
architecture in a dependency structure 
matrix (DSM).

A DSM is a matrix where all ele-
ments of a system appear in both the 
rows and columns, and dependen-
cies are signaled at their intersection 
points in the matrix. Given that the 
responsibilities within DM (App0_DM, 
App1_DM, App2_DM, App3_DM, and 
MGR) are not visible in any of the views 
of the original architecture in Fig-
ure  1(a), we assume the worst case—
that they are fully connected—and we 
present them as such in Figure 2(a).

Several aspects of the DSMs pro-
vided are worth noting.

1.	 The DSMs use letters from the 
dependency table to distin-
guish the types of dependencies 
among the modules.

2.	 Control (C) and data (D) 
dependencies can be deter-
mined through static analysis, 
but the others can be easily 
missed.

3.	 An individual cell can be mul-
tivalued to indicate different 
types of dependencies among 
the modules involved in that 
relationship.

4.	 The location (L−) dependency 
on the diagonal indicates that 
each component is contained in 
its own user space at runtime, 
and availability is achieved 
by isolating modules rather 
than through any relationship 
among modules. The testing (Ta, 
Tc) dependency on the diagonal 
indicates the testing level for 
each component, and lower 
testing cost is achieved by sep-
arating safety-critical modules 
(tested at level A represented 
as Ta) from non-safety-critical 
modules (tested at level C repre-
sented as Tc). 

5.	 The location (L), quality-of- 
service (Q), resource (R), and 

TABLE 2. Architectural dependencies to reason about change impact.

Dependency type Description

A Aggregation Data Element A and Data Element B have a semantic coherence 
that can be aggregated as Module AB.

C Control Module A depends on the presence of a correctly functioning 
Module B.

D Data For Module B to execute correctly, the syntax (type or format) 
and semantics of the data produced by Module A must be 
consistent with the assumptions of Module B.

L Location For B to execute correctly, the runtime location of A must be 
consistent with the assumptions of B.

S Sequence of 
flow

For B to execute correctly, it must receive the data produced by 
A in a fixed sequence (data flow).
For B to execute correctly, A must have executed within 
certain timing constraints (control flow).

P Physical 
resource 
behavior

For B to execute correctly, the resource behavior of A must be 
consistent with B’s assumptions about physical resource (such 
as bandwidth, memory, storage capacity, and CPU) usage or 
ownership.

Q Quality of 
service

For B to execute correctly, some property involving the quality 
of the data or service provided by A must be consistent with B’s 
assumptions.

T Testing To lower the overall testing cost, safety-critical aspects 
must be split into child modules that are separate from their 
non-safety-critical aspects of the parent module.

V Virtual 
resource 
behavior

For B to execute correctly, the resource behavior of A must be 
consistent with B’s assumptions about virtual resource usage 
or ownership.

More importantly, however, coordinating the use of 
resources to process these messages introduces 

additional configuration management burden, which 
can affect testability and integrability.



	 M A R C H  2 0 2 1 � 77

sequence-of-control (S) depen-
dencies are not visible in the orig-
inal architecture. These runtime 
and deployment decisions are pre-
determined by decisions made in 
the module view and constrained 
by the centralized nature of the 
design and the requirements it 
was meant to support.

Architectural dependencies pro-
vide additional information that can 
be used for a more refined analysis of 
the following:

1.	 Safety-critical testing: We can 
look at the criticality levels of 
the components along the di-
agonals of the DSMs in Figure 2 
to understand the testing cost 
of the system. Level Ta is the 
strongest, requiring inten-
sive code review and testing 
efforts. The code of compo-
nents classified with this level 
shall be fully covered using the 
modified condition/decision 
coverage (MC/DC) method. 
Components classified at lower 
levels (such as Tc) need only be 
validated against the statement 
coverage method, which is less 
costly and time-consuming. 
Figure 2(a) illustrates Ta-level 
testing for all elements within 
the DM module. Figure 2(b) 
shows fewer elements requir-
ing testing level Ta, indicating 
a marked improvement in the 
distributed architecture with 
respect to the cost and effort  
of testing.

2.	 Propagating faults: If we follow 
the dependencies for possible 
ripple effects, we see that an 
element requiring testing level 
Ta, App0_DM, depends on MGR, 
which, in turn, depends on 
VR, which depends on all the 
other App_DMs. If any of these 
elements change, they might 
trigger Ta-level testing. The 
module that has to be tested is 
smaller, but the frequency of 

testing when a change occurs is 
the same. Looking to Figure 2 
offers a more accurate interpre-
tation of propagation. App0_DM 
depends on MGR through a DRS 
dependency, MGR depends on 

VR through a DS dependency, 
and VR depends on the App_DM 
through a DQ dependency.

3.	 Cost of change: Should the exist-
ing architecture be refactored, 
the additional dependencies can 

FIGURE 2. DSMs showing dependencies among elements of the (a) shared comput-
ing resource architecture and (b) distributed shared computing resources architecture. 
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be used to determine the mod-
ules that a change may affect.

The visual representation of the 
safety-critical testing information on 
the DSM structure, while not quanti-
fied, provides additional information 
to compare the architectures before 
and after the evolution. Relying solely 
on metrics such as those in Table 1 
proves to be insufficient and does not 
demonstrate that the refactoring en-
ables reduction of testing and hence 
reduces overall life-cycle costs.

BUILDING ARCHITECTURAL 
DEPENDENCY ANALYSIS 
INTO SOFTWARE PROJECTS
When left unmanaged, architectural 
dependencies create cost overruns and 
degraded qualities in systems. Archi-
tecture dependency analysis in prac-
tice, however, is typically performed in 
retrospect, missing important depen-
dencies that surface earlier in the devel-
opment life cycle. Moreover, the tools 
used focus primarily on module struc-
tures and/or the runtime image that 
provide only a limited view of a system.

The motivational example of a shared 
resource architecture illustrates how 
existing dependency analysis tools fall 
short of demonstrating the benefits 
of the rearchitected systems and fail 
to capture multiple quality attribute 
tradeoffs when focusing primarily on 
module structure dependencies.

Our experience illustrates how 
identifying key multiview de-
pendencies allows develop-

ers to concretely assess the impact of 
change and recognize system elements 
that must be developed further. Support 
for assisting developers to easily extract 
and monitor key dependencies that 
cause ripple effects in multiple aspects 
of a system (for example, testing, prop-
agation of faults, and cost of change) is 
essential. Lightweight semantically 

well-defined techniques based on de-
pendencies described in Table 2 have 
a greater possibility of providing a fo-
cused analysis context. 
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