
Several tools have been devel-
oped to help manage software
evolution and maintenance
and assist with architecture

conformance and quality analysis. Most
advances in automation and tooling
have been variations on providing static
analysis metrics at the level of code,
object-oriented design, and module
view of an architecture, although some
have focused on version control history
to understand the impact of change or
discover architecture smells.1,2 Our ex-
perience shows that a multiview archi-
tectural dependency analysis approach
is more effective in conducting change
impact analysis than approaches lim-
ited to the module view of an architec-
ture.3,4 The focus on syntactic depen-
dencies related to data and control flow
in a module view precludes dependen-

cies from other perspectives, such as those that express seman-
tic transformation associated with performance, availability,
safety and testing (for instance, understanding the impact of
splitting a module or using a module as a standard interface

Digital Object Identifier 10.1109/MC.2021.3050538
Date of current version: 12 March 2021

C
O

P
Y

R
IG

H
T

 IS
T

O
C

K
P

H
O

T
O

, C
R

E
D

IT
:L

V
C

A
N

D
Y

Architectural
Dependency Analysis:
Addressing the
Elephant in the Room
Raghvinder S. Sangwan , Pennsylvania State University

Robert L. Nord and Ipek Ozkaya , Carnegie Mellon University

Dependency analysis is typically limited to the

static analysis of code structures. We applied

this practice to safety-critical systems that

were re-engineered to reduce safety testing

and technology upgrade cost. We discuss

the need for a well-defined description of

architectural dependencies to address the

observed gaps.

SOFTWARE ENGINEERING
EDITOR PHIL LAPLANTE
Penn State, plaplante@psu.edu

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E M A R C H 2 0 2 1 73

74	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

intermediary that provides a generalized
publish-subscribe capability between mod-
ules to improve performance, availability,
and safety while reducing cost related to
safety-critical testing).

A CASE OF TWO SYSTEMS
Consider a general-purpose shared com-
puting resource architecture.3 The use
of shared resources, such as memory,
processing, display graphics, network

communication, and storage in safety-crit-
ical systems, requires the careful balanc-
ing of performance and safety qualities.
Applications that access a shared comput-
ing resource must be partitioned based
on their function, their interface to the
resource, and how safety critical they are.
Figure 1(a) depicts an instance of such
an architecture.

The module view in Figure 1(a) conveys
the principal units of implementation,
and the component-and-connector (C&C)

FIGURE 1. (a) A shared computing resource architecture. (b) A distributed shared computing resource architecture. C&C: compo-
nent-and-connector; App: application; DM: data mover; VR: virtual resource; MGR: manager.

(b)

(a)

App0

Data Data Data Data

App1 App2 App3Application Layer

App0

App0_DM App1_DM App2_DM
App0_DM

VR

MGR

Format
List

Command/
Control

Command/
Control

Command/
Control

Command/
Control

Format
List

Format
List

Format
List

App1_DM App2_DM App3_DM
App3_DM

System
Services

Network
Services

Data
Services

Communication
Services

App1 App2 App3 VR MGR

Service Layer

Application Layer

App0

System
Services

Network
Services

Data
Services

Communication
Services

App1 App2 App3 DM VR
App0

Data Data Data Data

DM

VR

Format List

i) Module View ii) C&C View

App1 App2 App3

Service Layer

Key

Layer

i) Module View ii) C&C View

Module

Decomposition
Dependency

Uses
Dependency

Key

Component Port

Pub/Sub
Connector

Pub/Sub Message
Flow Direction

Command/
Control

Most advances in automation and tooling have
been variations on providing static analysis metrics

at the level of code, object-oriented design, and
module view of an architecture.

	 M A R C H 2 0 2 1 � 75

view illustrates how these units interact
at runtime. Together, these views show
the application layer consists of multi-
ple functional applications (App0, App1,
App2, and App3) that send their data to
a separate centralized data mover (DM).
The DM transforms application data into
a specialized resource-specific format.
The DM then forwards the data to a vir-
tual resource (VR), which interfaces with
the physical resources (for example, stor-
age, network, display). The modules in
the application layer use one or more ser-
vices (system, network, data, or commu-
nication) from the service layer during
the course of their interactions.

While the architect had designed this
architecture appropriate for the time, as
the system evolved, adding new appli-
cations required more effort. With the
DM transforming all application data to
formats for disparate resources, includ-
ing those that were safety critical, when
a new resource-specific format for a new
application was added or an existing
one changed (whether that resource was
safety critical or not), the entire DM was
required to be tested to the highest safe-
ty-critical level. Additionally, as a mono-
lith with interdependent functionality,
the DM could not isolate safety critical
applications, which drove up the overall
safety testing cost. Reaching this tipping
point, the architect suggested a major
change to the existing architecture. Fig-
ure 1(b) depicts a distributed shared com-
puting resource architecture proposed
by the architect.

The DM from the original architec-
ture was decomposed into separate re-
source formatting clients, App0_DM,
App1_DM, App2_DM, App3_DM, and a
control-and-transform manager (MGR)
that managed user input and coordi-
nated the use of resources. App0_DM
contained the safety-critical function-
ality and received its data from App0.
Decomposing the DM in this manner
allows safety-critical clients such as
App0_DM to be isolated into their
own user space partition apart from
other software elements that could
improve testability and drive down cost
for safety-critical testing. Distributing

responsibilities, however, would in-
crease the number of publish-subscribe
messages, which would require addi-
tional measures to manage network
traffic and CPU utilization to offset any
negative impact on performance. More

importantly, however, coordinating
the use of resources to process these
messages introduces additional con-
figuration management burden, which
can affect testability and integrability.

So, is the proposed distributed archi-
tecture more effective at isolating safe-
ty-critical functionality and accom-
modating changes without increasing
the effort and cost for safety-critical
testing? Table 1 captures representative
metrics that can be used to compare the
ease of making changes to the original
shared computing resource architec-
ture and its newly proposed distributed
version. These measures can be ob-
tained through the static dependency
analysis of the module view of a system
using a static analysis tool.

Stability measures how much of the
system is affected when a change is made,
connectedness refers to reachability,

coupling measures how strongly con-
nected a system is, and system and
intercomponent cyclicity measure un-
desirable coupling. Higher values of
these measures indicate a system that
is not very effective at handling change.

Looking at the results in Table 1, it is diffi-
cult to say if the situation has improved.
Since the results are mixed, there is no
convincing evidence that the architect
can present to the management or the
development team to make an invest-
ment in the proposed distributed shared
computing resource architecture.

A similar analysis on a safety-crit-
ical engine control system that man-
ages fuel flow to an aircraft engine
also highlighted these shortcomings.4

ANALYSIS USING
ARCHITECTURAL
DEPENDENCIES
The shortcoming of an analysis, such as
the one in Table 1, is that it is based on
the module view of a system that mostly
captures data and control dependencies
among its elements and is often insuffi-
cient for understanding overarching

TABLE 1. Dependency-based metrics for the original and
distributed shared computing resource architecture.

Metric Original Distributed Health*

Stability 53.06% 50.51% −

System cyclicity 42.857% 42.857% =

Intercomponent cyclicity 42.857% 0% +

Connectedness 53.3% 53.3% =

Coupling 16.48% 16.48% =

*The ease of making changes is indicated as improved (+), deteriorated (−), or remained the same (=).

Stability measures how much of the system is
affected when a change is made, connectedness

refers to reachability, coupling measures how
strongly connected a system is, and system

and intercomponent cyclicity measure
undesirable coupling.

76	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

architectural issues within a system.5
Many of the architectural design deci-
sions and tradeoffs involve dependen-
cies other than these two.6 Elements of
a system, for instance, may not be co-
located on the same machine because

resources drained by one may impact
the performance of the other or failure
of one may have an undesirable effect
on proper functioning of the other. It
may also be the case that certain el-
ements being safety critical need to

be separated from others to contain
testing and certification costs. The lit-
erature lacks a clear description and
collection of such architectural depen-
dencies,7 and support for analyzing
these dependencies among key archi-

tectural decisions remains a gap in
the industry.8

As we analyzed the two safety-crit-
ical systems described in the previous
section, we compiled a list of frequently
encountered architectural dependency

types provided in Table 2. Using these
dependency types, Figure 2 captures
the dependency models for the original
and the distributed shared resources
architecture in a dependency structure
matrix (DSM).

A DSM is a matrix where all ele-
ments of a system appear in both the
rows and columns, and dependen-
cies are signaled at their intersection
points in the matrix. Given that the
responsibilities within DM (App0_DM,
App1_DM, App2_DM, App3_DM, and
MGR) are not visible in any of the views
of the original architecture in Fig-
ure 1(a), we assume the worst case—
that they are fully connected—and we
present them as such in Figure 2(a).

Several aspects of the DSMs pro-
vided are worth noting.

1.	 The DSMs use letters from the
dependency table to distin-
guish the types of dependencies
among the modules.

2.	 Control (C) and data (D)
dependencies can be deter-
mined through static analysis,
but the others can be easily
missed.

3.	 An individual cell can be mul-
tivalued to indicate different
types of dependencies among
the modules involved in that
relationship.

4.	 The location (L−) dependency
on the diagonal indicates that
each component is contained in
its own user space at runtime,
and availability is achieved
by isolating modules rather
than through any relationship
among modules. The testing (Ta,
Tc) dependency on the diagonal
indicates the testing level for
each component, and lower
testing cost is achieved by sep-
arating safety-critical modules
(tested at level A represented
as Ta) from non-safety-critical
modules (tested at level C repre-
sented as Tc).

5.	 The location (L), quality-of-
service (Q), resource (R), and

TABLE 2. Architectural dependencies to reason about change impact.

Dependency type Description

A Aggregation Data Element A and Data Element B have a semantic coherence
that can be aggregated as Module AB.

C Control Module A depends on the presence of a correctly functioning
Module B.

D Data For Module B to execute correctly, the syntax (type or format)
and semantics of the data produced by Module A must be
consistent with the assumptions of Module B.

L Location For B to execute correctly, the runtime location of A must be
consistent with the assumptions of B.

S Sequence of
flow

For B to execute correctly, it must receive the data produced by
A in a fixed sequence (data flow).
For B to execute correctly, A must have executed within
certain timing constraints (control flow).

P Physical
resource
behavior

For B to execute correctly, the resource behavior of A must be
consistent with B’s assumptions about physical resource (such
as bandwidth, memory, storage capacity, and CPU) usage or
ownership.

Q Quality of
service

For B to execute correctly, some property involving the quality
of the data or service provided by A must be consistent with B’s
assumptions.

T Testing To lower the overall testing cost, safety-critical aspects
must be split into child modules that are separate from their
non-safety-critical aspects of the parent module.

V Virtual
resource
behavior

For B to execute correctly, the resource behavior of A must be
consistent with B’s assumptions about virtual resource usage
or ownership.

More importantly, however, coordinating the use of
resources to process these messages introduces

additional configuration management burden, which
can affect testability and integrability.

	 M A R C H 2 0 2 1 � 77

sequence-of-control (S) depen-
dencies are not visible in the orig-
inal architecture. These runtime
and deployment decisions are pre-
determined by decisions made in
the module view and constrained
by the centralized nature of the
design and the requirements it
was meant to support.

Architectural dependencies pro-
vide additional information that can
be used for a more refined analysis of
the following:

1.	 Safety-critical testing: We can
look at the criticality levels of
the components along the di-
agonals of the DSMs in Figure 2
to understand the testing cost
of the system. Level Ta is the
strongest, requiring inten-
sive code review and testing
efforts. The code of compo-
nents classified with this level
shall be fully covered using the
modified condition/decision
coverage (MC/DC) method.
Components classified at lower
levels (such as Tc) need only be
validated against the statement
coverage method, which is less
costly and time-consuming.
Figure 2(a) illustrates Ta-level
testing for all elements within
the DM module. Figure 2(b)
shows fewer elements requir-
ing testing level Ta, indicating
a marked improvement in the
distributed architecture with
respect to the cost and effort
of testing.

2.	 Propagating faults: If we follow
the dependencies for possible
ripple effects, we see that an
element requiring testing level
Ta, App0_DM, depends on MGR,
which, in turn, depends on
VR, which depends on all the
other App_DMs. If any of these
elements change, they might
trigger Ta-level testing. The
module that has to be tested is
smaller, but the frequency of

testing when a change occurs is
the same. Looking to Figure 2
offers a more accurate interpre-
tation of propagation. App0_DM
depends on MGR through a DRS
dependency, MGR depends on

VR through a DS dependency,
and VR depends on the App_DM
through a DQ dependency.

3.	 Cost of change: Should the exist-
ing architecture be refactored,
the additional dependencies can

FIGURE 2. DSMs showing dependencies among elements of the (a) shared comput-
ing resource architecture and (b) distributed shared computing resources architecture.

Tc

Ta

Ta

Ta

Ta

Ta

Ta

Tc

Tc

Tc

Tc

Tc

Tc

Tc

VR

V
R

DM

App0

App1

App2

App3

Network Services

N
et

w
or

k
S

er
vi

ce
s

C
om

m
. S

er
vi

ce
s

S
ys

te
m

 S
er

vi
ce

s

D
at

a
S

er
vi

ce
s

Comm. Services

Data Services

System Services

(a)

(b)

App0_DM

A
pp

0_
D

M

A
pp

1_
D

M

A
pp

2_
D

M

A
pp

3_
D

M

M
G

R

A
pp

0

A
pp

1

A
pp

2

A
pp

3

D D D D

D

D

D

D

D D D

D

D

D

D

D D

D

D

D

D D D

D

D

D

D

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C C C

D

D

App1_DM

App2_DM

App3_DM

MGR

A
pp

lic
at

io
n

La
ye

r
P

la
tfo

rm
 L

ay
er

TcL-

TaL-

TcL-

TcL-

TcL-

TcL-

TaL-

TcL-

TcL-

TcL-

Tc

Tc

Tc

Tc

VR

V
R

App0

App1

App2

App3

Network Services

N
et

w
or

k
S

er
vi

ce
s

C
om

m
. S

er
vi

ce
s

S
ys

te
m

 S
er

vi
ce

s

D
at

a
S

er
vi

ce
s

Comm. Services

Data Services

System Services

App0_DM

A
pp

0_
D

M

A
pp

1_
D

M

A
pp

2_
D

M

A
pp

3_
D

M

M
G

R

A
pp

0

A
pp

1

A
pp

2

A
pp

3

DQ

DQ

DQ

DQ

DS DRS

DS

L+
L+

L+

L+
DRSDRS

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C C C

DRS

App1_DM

App2_DM

App3_DM

MGR

A
pp

lic
at

io
n

La
ye

r
P

la
tfo

rm
 L

ay
er

DSL+
DSL+

DSL+

DSL+

78	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

SOFTWARE ENGINEERING

be used to determine the mod-
ules that a change may affect.

The visual representation of the
safety-critical testing information on
the DSM structure, while not quanti-
fied, provides additional information
to compare the architectures before
and after the evolution. Relying solely
on metrics such as those in Table 1
proves to be insufficient and does not
demonstrate that the refactoring en-
ables reduction of testing and hence
reduces overall life-cycle costs.

BUILDING ARCHITECTURAL
DEPENDENCY ANALYSIS
INTO SOFTWARE PROJECTS
When left unmanaged, architectural
dependencies create cost overruns and
degraded qualities in systems. Archi-
tecture dependency analysis in prac-
tice, however, is typically performed in
retrospect, missing important depen-
dencies that surface earlier in the devel-
opment life cycle. Moreover, the tools
used focus primarily on module struc-
tures and/or the runtime image that
provide only a limited view of a system.

The motivational example of a shared
resource architecture illustrates how
existing dependency analysis tools fall
short of demonstrating the benefits
of the rearchitected systems and fail
to capture multiple quality attribute
tradeoffs when focusing primarily on
module structure dependencies.

Our experience illustrates how
identifying key multiview de-
pendencies allows develop-

ers to concretely assess the impact of
change and recognize system elements
that must be developed further. Support
for assisting developers to easily extract
and monitor key dependencies that
cause ripple effects in multiple aspects
of a system (for example, testing, prop-
agation of faults, and cost of change) is
essential. Lightweight semantically

well-defined techniques based on de-
pendencies described in Table 2 have
a greater possibility of providing a fo-
cused analysis context.

ACKNOWLEDGMENT
This material is based upon work funded
and supported by the Department of De-
fense under contract FA8702-15-D-0002
with Carnegie Mellon University for
the operation of the Software Engi-
neering Institute, a federally funded
research and development center.
DM20-1188.

REFERENCES
1.	 T. Zimmermann, A. Zeller, P. Weiss-

gerber, and S. Diehl, “Mining version
histories to guide software changes,”
IEEE Trans. Softw. Eng., vol. 31, no.
6, pp. 429–445, 2005. doi: 10.1109/
TSE.2005.72.

2.	 R. Mo, Y. Cai, R. Kazman and L.
Xiao, “Hotspot patterns: The
formal definition and automatic
detection of architecture smells,”
in Proc. 2015 12th Working IEEE/
IFIP Conf. Softw. Archit., Montreal,
Canada, pp. 51–60. doi: 10.1109/
WICSA.2015.12.

3.	 R. L. Nord, I. Ozkaya, R. S. Sangwan,
and R J. Koontz, “Architectural
dependency analysis to understand
rework costs for safety-critical
systems,” in Proc. Companion 36th
Int. Conf. Softw. Eng. (ICSE Com-
panion), 2014, pp. 185–194. doi:
10.1145/2591062.2591185.

4.	 R. L. Nord, R. S. Sangwan, J. Delange,
P. Feiler, L. Thomas, and I. Ozkaya.
2016. “Missed architectural depen-
dencies: The elephant in the
room,” in Proc. 2016 13th Work.
IEEE/IFIP Conf. Softw. Archit.
(WICSA), pp. 41–50. doi: 10.1109/
WICSA.2016.32.

5.	 H. Koziolek, “Sustainability eval-
uation of software architectures:
A systematic review,” in Proc.
Joint ACM SIGSOFT Conf.–QoSA
ACM SIGSOFT Symp.–ISARCS

Qual. Softw. Archit.–QoSA Archit.
Crit. Syst.–ISARCS (QoSA-IS-
ARCS ’11), 2011, pp. 3–12. doi:
10.1145/2000259.2000263.

6.	 T. B. Callo Arias, P. Spek, and P.
Avgeriou, “A practice-driven system-
atic review of dependency analysis
solutions,” Empir. Softw. Eng., vol. 16,
no. 5, pp. 544–586, 2011. doi: 10.1007/
s10664-011-9158-8.

7.	 Z. Li, P. Liang, P. Avgeriou, N. Guelfi,
and A. Ampatzoglou, “An empirical
investigation of modularity metrics
for indicating architectural tech-
nical debt,” in Proc. 10th Int. ACM
Sigsoft Conf. Qual. Software Archit.
(QoSA ’14), 2014. pp. 119–128. doi:
10.1145/2602576.2602581.

8.	 D. Tofan, M. Galster, and P.
Avgeriou, “Difficulty of archi-
tectural decisions: A survey
with professional architects,” in
Proc. 7th Euro. Conf. Softw. Archit.
(ECSA’13), 2013, pp. 192–199. doi:
10.1007/978-3-642-39031-9_17.

RAGHVINDER S. SANGWAN is an
associate professor of software en-
gineering at the School of Graduate
Professional Studies, Pennsylvania
State University, Malvern,
Pennsylvania, 19355, USA. Contact
him at rsangwan@psu.edu.

ROBERT L. NORD is a principal
member of the technical staff at
the Software Engineering Institute,
Carnegie Mellon University,
Pittsburgh, Pennsylvania, 15213,
USA. Contact him at rn@sei.cmu.edu.

IPEK OZKAYA is a technical director
of engineering intelligent software
systems at the Software Engineering
Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, 15213,
USA. Contact her at ozkaya@sei
.cmu.edu.

