
4 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E

LETTERS

TERMINATE WITH EXTREME
PREJUDICE

To the Editor:
I am writing to raise awareness that a
pervasive software paradigm is prone
to a serious performance pitfall. At
least one widespread instance of the
problem has been remarkably adept at
evading detection.

The paradigm in question is the
work queue at the heart of myriad pro-
grams: software repeatedly dequeues
a task and performs corresponding
work, which may enqueue new tasks,
until the queue is empty. The per-
formance bug arises when output
attains its final state long before the
work queue drains; subsequent effort
to empty the queue is wasted because
it does not change the output.

The obvious solution—a “stop when
done” termination test—is not always
obvious to algorithm designers and
developers coding in the work queue
paradigm. More than once, I’ve seen
production software that descends
into a tragicomic frenzy of needless
toil merely to drain a work queue,
with no externally observable effect
whatsoever beyond raising the CPU

temperature. Work queues naturally
incline toward self-inflicted busywork
unless thoughtfully supervised.

Unfortunately, such vigilance is
itself exceptionally difficult. We might
hope that a modicum of peer review
would suffice to exorcise gratuitous
inefficiency from queue-centric designs.

One of the most widely known elemen-
tary algorithms of all time, however,
shows that extensive scrutiny is not
proof against this problem.

Top textbooks, such as t hose
by Cormen et al. (Introduction to Algo
rithms, third edition) and Sedgewick and
Wayne (Algorithms, fourth edition),
have withstood decades of intense crit-
ical attention from generati ons of aca-
demics and practitioners. The breadth-
f irst search a lgorit hm presented
in these and similar texts terminates
when its work queue drains, which may
occur long after all output is finalized.

Compared to an “efficient BFS” that
terminates when the output reaches
quiescence, the classic textbook BFS
is like a penny in a fuse box: never bet-
ter and sometimes catastrophically
worse—that is, sometimes slower by a
factor proportional to the number of
vertices in the input graph. For detailed

 evaluations, see https://queue.acm.org/
detail.cfm?id=3424304.

The root cause of the “work queue
run mad” antipattern is a confusion of
ends versus means. Work queues are
the latter. They provide reminders to be
considered, not commands to be blindly
obeyed, as computations unfold. Unfor-
tunately, experience shows that work
queues can distract attention from the
simple fact that every program’s pur-
pose is to compute its output.

Terence Kelly
tpkelly@acm.org

The paradigm in question is the work queue
at the heart of myriad programs: software
repeatedly dequeues a task and performs

corresponding work, which may enqueue new
tasks, until the queue is empty.

Digital Object Identifier 10.1109/MC.2021.3055874
Date of current version: 30 July 2021

