
In Computer, virtual roundtables (VRTs) are virtual 
panels. We ask a series of questions to a group of ex-
perts via email to ascertain the panelists’ thoughts 
about a topic du jour. One difference between VRTs 

and face-to-face panels is that no expert knows who the 
others are. That is different from an in-person arrange-
ment, where answers from one participant can affect the 
responses of others. In this VRT, our topic of discussion 
is the formal verification (FV) of cyberphysical systems 
(CPSs). FV is the act of proving the correctness of algo-
rithms with respect to certain formal specifications, us-
ing formal methods. Correctness may mean logical defi-
nitions of safety, liveliness, and other objectives such as 
confidentially, integrity, availability, and some version 
of privacy.

FV has its roots in formal reason-
ing, dating back at least to Gottfried 
Wilhelm Leibniz’s work on algo-
rithms, computing machines, and 
mathematical logic in the 17th cen-
tury.1 FV as we know it has its roots 
in the 1960s and 1970s with the 
contributions of E.W. Dijkstra, who 
famously coined the phrase, “Pro-
gram testing can be used to show the 

presence of bugs, but never to show their absence.”2 Some 
believed FV to be a silver bullet for attaining depend-
able software and hardware. The excitement over formal 
methods is evidenced by the relatively large body of pub-
lished research on the topic; a Google scholar search for 
the FV term yields approximately 180,000 results.

Nevertheless, except for a few well-funded research 
projects, industry was rather slow to adopt FV. An excep-
tion to this statement is the semiconductor design commu-
nity, also known as the electronic design automation (EDA) 
community. This community realized that the cost and de-
lays incurred by labor-intensive manual testing justified a 
different verification approach, one that applied FV. More-
over, since manual testing cannot guarantee the absence of 
bugs, there is an inevitable cost for containing the impact 
of flaws that are undetected. A classic example is the Intel 
Pentium FDIV bug, which was difficult for testing to un-
cover: containment required replacing all flawed Pentium 
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processors on request, with Intel taking 
a US$475 million charge against earn-
ings.3,4 Fast forward to 2021, and the 
EDA community has embraced FV as 
part of mainstream development and 
verification processes, languages, and 
environments. For example, formal 

specification is an integral part of the 
SystemVerilog IEEE standard.5

Two of the moderators for this 
roundtable (Michael and Drusinsky) 
were authors of an article that recom-
mended applying lightweight formal 
methods to the interfaces between 

the cyber and physical parts of a CPS.6 
This recommendation, along with our 
discussion of open questions in formal 
methods, drew a lot of interest; for 
instance, see the exchange between 
the authors and Michael Jackson.7 
The feedback we received from our 
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counterparts in the formal methods 
community, in combination with the 
third moderator’s (Wijesekera’s) expe-
riences in applying formal methods to 
software-intensive systems, inspired 
the three of us to organize a roundta-
ble in which we enlisted seven experts 
to identify the reasons for the slow 
adoption of FV by the software indus-
try, in general, and the verification of 
CPSs, in particular.

The panelists contend there are 
several factors that have slowed the 
adoption of formal methods, such as 
the sheer size and complexity of soft-
ware systems, the diversity of software 
products, the perception that FV is a 
low-return-on-investment academic 
exercise, and the fact that FV tools are 
not part of mainstream software de-
velopment and testing environments 
nor are the tools directly associated 
with mainstream programming lan-
guages. The FV of CPSs is believed to be 
particularly challenging because it is a 
hybrid on many fronts, including hard-
ware and software, classical control 
and logical reasoning, and artificial in-
telligence (AI)/machine learning (ML) 
algorithms and logical reasoning.

In this VRT, the panelists responded 
to six questions. Their written responses 
may have undergone minor edits. How-
ever, as organizers, we attempted to 
keep their words as verbatim as possi-
ble. The seven panelists are Knut Åkes-
son (Chalmers University), Dimitra Gi-
annakopoulou (NASA), Klaus Havelund 
(Jet Propulsion Laboratory), Sayan Mitra 
(University of Illinois at Urbana–Cham-
paign), Corina Pasareanu (KBR), San-
jit A. Seshia (University of California, 
Berkeley), and Oleg Sokolsky (University 
of Pennsylvania). See “Roundtable Pan-
elists” for the participants’ biographical 
sketches. Note that the opinions of the 
experts are their own, with no input 
from the editors. We hope readers who 
are concerned with the dependability 
and trustworthiness of CPSs will find the 
questions and responses enlightening.

COMPUTER :  Unlike with EDA, in 
which FV is well integrated into the 

development of chips and printed cir-
cuit boards and where engineers with 
expertise in the method are in high 
demand, FV has had much less accep-
tance as a mainstream ingredient of 
software development and quality 
assurance. What do you think are the 
reasons for that, and do you think the 
situation will change with CPS proj-
ects, such as those involving autono-
mous vehicles?

KNUT ÅKESSON: A major challenge is 
that the closed-loop model is described 
using a combination of tools, different 
modeling languages, and program-
ming languages. Significant efforts 
have been made to unify how to describe  

physical systems coherently. For exam-
ple, the Modelica language (https://
mo de l ic a .or g /mo de l ic a l a n g u a ge 
.html) is an essential step in this direc-
tion. However, CPSs might also con-
tain ML algorithms for perception and 
might run optimization for decision 
making. These are all rapidly evolving 
and have their dedicated languages 
and tools. Thus, CPSs inherently com-
bine code written in various program-
ming languages, ML frameworks, op-
timization modules, and control logic 
generated from high-level modeling 
languages. FV has its place in safe-
ty-critical components but should be 
complemented by rigorous automated 
test methods for situations where it is 
not feasible or practical to use.

DIMITRA GIANNAKOPOULOU: Soft-
ware development is more diverse and 
evolves faster than EDA in terms of pro-
gramming languages, paradigms, and 
patterns; data structures, algorithmic 
approaches, and types of applications; 
libraries and runtime environments; 
and heterogeneity and distribution 

across different computers. After de-
ployment, software applications get 
updated to address vulnerabilities and 
to include new features, and they may 
even be adaptive by design. Correctness 
criteria and specifications vary widely 
by application domain, and quality as-
surance depends on the criticality of 
software. For example, is it a game on 
someone’s phone, or is it software that 
controls a passenger aircraft?

For FV to become a mainstream 
ingredient of software development, 
it must achieve some usability goals. 
First, it must be relatively easy to for-
mulate specifications for the target 
system. Second, FV must be able to di-
rectly handle the languages in which 

the software is written or the modeling 
languages from which the software is 
synthesized. Finally, FV should be able 
to scale. The diversity and complexity 
of software applications means that to 
be successful, FV approaches must be 
targeted and customized to address 
specific problems within safety-criti-
cal application domains.

The expected exponential rate of 
introduction of autonomous vehicles 
(ground and air) puts enormous pres-
sure on ensuring their safe operation. 
There is incentive for commercial and 
federal stakeholders to collaborate on 
developing certification and assurance 
standards for these applications. As 
a consequence, I expect advances in 
the near future. On the one hand, FV 
approaches will be developed that ef-
ficiently address specific problems of 
such CPSs. On the other hand, there will 
be increased incentives in CPS projects 
to use programming paradigms and en-
vironments designed with FV in mind.

KLAUS HAVELUND: Electronics de-
signs have the characteristic that once 

A major challenge is that the closed-loop model is 
described using a combination of tools, different 

modeling languages, and programming languages.
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they leave the factory, they usually 
cannot be changed. A substantial er-
ror can cause a unit to be recalled, with 
large amounts of money at stake. The 
motivation is therefore high to “get 
it right” before shipment. Software, 
on the other hand, can often be fixed 
with an update at a customer’s loca-
tion, making errors less catastrophic. 
Even in space missions, errors can be 
corrected by uplinking bug fixes from 
a distance of millions of miles. This 
relaxed view of software errors might, 
however, be changing as software, to 
an increasing extent, autonomously 
controls equipment such as cars, which 
can cause loss of life in case of failure.

Another, perhaps more important, 
reason for the lesser acceptance of FV 
in the software community is that 
the verification problem appears less 
tractable for software systems, due to 
higher complexity and the possibil-
ity of more execution paths. Theorem 
provers require a considerable amount 
of manual effort to apply, even for 
smaller models, let alone real-world 
software systems, and model checkers 
are challenged by the large state spaces 
of realistically sized software applica-
tions. This means that the application 
of FV techniques requires either a big 
verification effort or a big modeling 
effort, where a simplistic model is cre-
ated of the software and then verified. 
A software engineer, not supported by 
management to carry out such proofs/
modeling, will see very little incentive 
to do so.

SAYAN MITRA: FV is being used in 
mainstream software already, pro-
pelled first by major outages and 
breaches at big tech firms, then by 
successful applications of verification 
technology in bug finding, and more 
recently in the application of verifi-
cation for generating proofs as “more 
extensive tests.” Static analysis tools 
are part of the core developer work-
flow at Google and deployed on the 
2-billion-line code base.8 Amazon Web 
Services (AWS) developers are writing 
formal specifications and proofs for 

hypervisors, boot loaders, and Internet 
of Things operating systems.9 The In-
fer static analysis engine is integrated 
with the code base at Facebook and does 
continuous reasoning on iOS, Android, 
and Instagram and WhatsApp applica-
tions. Hundreds of bugs are reported 
and fixed every month.10 Bugs in CPSs 
and autonomous systems can compro-
mise safety. This raises the stakes as 
well as the incentives for the adoption 
of FV. But the adoption of CPS verifica-
tion also presents barriers that were not 
present in the software ecosystem.

CORINA PASAREANU: The reason 
is that FV for software is much harder 
(for example, programs are much 
larger, potentially unbounded, use 
many external libraries, and contain 
programming language constructs 
that are hard to analyze). Yes, CPS proj-
ects are often safety critical and jus-
tify the high cost of FV. Furthermore, 
the software involved in CPS projects 
is simpler than general-purpose soft-
ware and therefore more amenable 
to verification.

SANJIT A. SESHIA: There is a spec-
trum of FV methods, from asser-
tion-based testing and model-based 
testing to static analysis and model 
checking and interactive theorem 
proving. So, if we define FV broadly 
to include this entire spectrum, I con-
tend that FV is already used widely in 
software in much the same way as it 
is employed in hardware. Of course, 
software comes in many different 
flavors, and so we will find FV used 
more for software in safety-critical, 
mission-critical, and high-availability 
applications. FV is also used in certain 
industrial CPS applications; for exam-
ple, the simulation-based falsification 
of temporal logic (TL) properties has 
been successfully applied in the au-
tomotive industry.11 Over the past de-
cade, I have seen big growth in interest 
from the CPS industry in applying for-
mal methods to CPS design, although 
that interest has yet to fully translate 
into a wider deployment of tools.

OLEG SOKOLSKY: The main reason 
is that the software verification prob-
lem is inherently much harder. Soft-
ware tends to be much less structured 
and much more complex compared 
to hardware. Finite-state models, 
which are much easier to verify than 
infinite-state ones, are a more natu-
ral fit for hardware than for software. 
From this perspective, CPSs are likely 
to make verification problems only 
harder. Embedded processors are be-
coming ever more powerful, enabling 
more and more complex software on 
board. In addition to software, physi-
cal environments need to be included 
in the model, making the challenge 
even bigger. If there is any silver lin-
ing, modern CPSs—in particular, au-
tonomous vehicles—offer more room 
for lighter-weight applications of FV. 
Runtime verification techniques, that 
is, formally specified monitoring and 
adaptation, as well as applications of 
online reachability computation, ap-
pear to be very promising in autono-
mous CPSs.

COMPUTER: An often neglected issue 
related to FV is the reliance of most 
techniques on expressively weak and 
hard-to-use formal specification lan-
guages (in the sense of creating correct 
specifications), such as dialects of TL. 
How serious do you think this problem 
is, and how can it be addressed?

ÅKESSON: For maintenance reasons, 
it is important to ensure that specifica-
tions and implementations are closely 
linked. Specifications have to be un-
derstandable by the engineer doing 
the implementation, and they have to 
be refined during the implementation 
phases. It should also be possible for 
the same engineer to update them. In 
our experience working with indus-
trial partners, writing correct specifi-
cations is challenging, and it is often 
the case that an identified violation of a 
specification is due to a mistake in the 
formalization of the specification and 
not in the implementation. While FV 
tools have a well-defined specification 
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language, it might be useful to con-
sider high-level, domain-specific spec-
ification languages that integrate well 
with the implementation language 
and to consider automatically trans-
lating from this domain-specific lan-
guage to the FV specification language 
being used.

GIANNAKOPOULOU: Creating spec-
ifications is typically an exploratory 
process aimed at nailing down the 
intended behavior of a target system, 
avoiding overspecification, underspe-
cification, and ambiguity. What FV 
requires is a lack of ambiguity and a 
formal language to communicate with. 
In terms of ambiguity, even a simple 
sentence containing a condition un-
der which some system behavior is 
expected has many possible interpre-
tations. Figuring out the interpreta-
tions and picking the intended one is 
not straightforward. Writing a formal 
specification that is precise with re-
spect to the intended interpretation is 
even harder. In my experience, non-
trivial specifications are challenging 
even for experts. A way to address 
this problem is to build environments 
that assist in the process of gradually 
constructing specifications that are 
unambiguous and capture user inten-
tions. Such environments would ide-
ally enable users to write and explore 
their specifications through a variety 
of approaches: natural language, dia-
grams, use case scenarios, and interac-
tive simulation. Formal specifications 
should then be produced automatically 
and through trusted algorithms. The 
problem of producing specifications 
can also be alleviated through the sup-
port of domain-specific specification 
patterns. Even in this case, however, 
it is crucial to provide a user-friendly 
environment for exploring and under-
standing the details of such patterns.

HAVELUND: Two problems are men-
tioned here: expressively weak spec-
ification languages and hard-to-use 
specification languages. I think the 
second problem, with hard-to-use 

specification languages, might be a 
nonissue. Just consider the complexity 
of C++, which programmers happily 
learn. Specification languages are no 
harder to learn, and in many cases, 
they are simpler than programming 
languages. Programmers have no diffi-
culty writing the programs, so they can 
probably write specifications, as well. 
Some of the more simplistic languages 
(such as linear TL) can be hard to use 
for writing more complex properties, 
but there are solutions to that, such as 
specification patterns and graphical 
solutions, potentially translated into 
the harder-to-use formalisms. The real 
problem, in my view, might not be the 
difficulty of learning a specification 
language but the lack of willingness 
among developers to deal with an-
other complex language in addition 

to the programming language. There 
is an argument for developing specifi-
cations in the programming language 
itself. Specification languages must 
be highly expressive to meet practi-
cal needs. I have developed numerous 
specification languages for software 
monitoring, and it is usually the lan-
guages that support an escape to a gen-
eral-purpose programming language 
(when the logic formalism falls short) 
that appear most attractive to users.

MITRA: Verification tools must com-
municate with developers using arti-
facts and interfaces that are already 
part of their workflow. Requiring de-
velopers to learn a new language or a 
formalism is a nonstarter. Chong et al. 
discuss a four-year experience in which 
the loss of expressive power (or not us-
ing TLs, for example) was more than 
offset by the benefits of using the same 
programming language for coding 
and specifications.9 This is a recurring 

theme at other firms adopting FV. Us-
ing common artifacts and interfaces 
reduces the “developer’s cognitive 
burden and allows them to view proofs 
as ‘just another test suite,’ albeit a 
vastly more thorough one.”9 The inte-
gration of development and verifica-
tion workflows was also a precursor 
to the success of hardware verification 
through description languages such as 
VHDL and Verilog.

One challenge for CPS verification is 
that existing tools—of which there are 
many strong ones—rely on mathemati-
cal models that are disconnected from 
developer workf lows. There are no 
open and standard CPS languages and 
development ecosystems for plugging 
in verification tools. MATLAB is popu-
lar but, unfortunately, neither open nor 
standardized. The solution is to move 

away from model verification tools to 
tools that verify CPS code written in 
open languages, such as C, C++, and 
Rust, and testing and verification envi-
ronments that use open simulators, in-
cluding CARLA (https://carla.org/) and 
Gazebo (http://gazebosim.org/).

Second, some CPS components have 
to be treated as black boxes. The code for 
a component may be too complex, and it 
may be proprietary. The physical models 
may be impossible to represent as ẋ = f(x) 
or as a hybrid automaton. For such black-
box components, verification has to rely 
on statistical methods. We will need to 
integrate verification approaches that 
can combine black-box methods with 
model-based techniques within the de-
velopment ecosystem. One approach in 
this direction is discussed in our DryVR 
framework, which has been used to ver-
ify several industrial-scale systems that 
combine black- and white-box compo-
nents.12,13 TLs have been fundamental 
in understanding the complexity of 

One challenge for CPS verification is that existing tools—of 
which there are many strong ones—rely on mathematical 
models that are disconnected from developer workflows.
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verification and synthesis problems 
with respect to different specifica-
tion classes. Extrapolating those sci-
entific advances to a world in which 
developers learn TLs and start using 
them as specification languages for 
day-to-day development, in my view, is 
not realistic.

PASAREANU: Formal specification 
languages are hard to understand 
even for an expert in formal methods. 
Natural language representations, 
patterns, and tool support can perhaps 
address the problem.

SESHIA: I think we can learn a lot from 
hardware verification. TL-based asser-
tion languages are now widely used in 

hardware design, and yet the average 
developer does not need to be an ex-
pert in logic to use them. They have 
been incorporated into more acces-
sible assertion languages, integrated 
with user interfaces, and generated by 
tools for the automated inference of 
specifications. In fact, tools for spec-
ification mining, learning properties 
from execution and simulation traces, 
are a very promising approach for eas-
ing the specification burden. In our 
own work with industry, we have seen 
that a specification mining tool can 
ease the initial burden of writing TL 
properties, which demonstrates to in-
dustrial users the value of formal spec-
ifications, becoming a virtuous cycle 
where users actively seek to learn to 
write logic properties due to the added 
value it brings them.14 Specifications 
can also be integrated as “blocks” into 
tools that industrial users already em-
ploy; for instance, see Kapinski et al.15

SOKOLSKY: There are two related prob-
lems here. One is that, indeed, formal 

specification languages are hard for 
engineers to fully understand and use 
effectively. To a large extent, this drives 
the need for formal methods experts 
and stands in the way of transferring 
verification technology to engineers. 
The other problem is that, as specifica-
tions become more complex and harder 
to grasp, they become increasingly er-
ror prone themselves. Both issues can 
be partially addressed with better spec-
ification languages and tool support.

COMPUTER: There is a perception 
that human involvement in the cre-
ation of formal specifications limits 
our ability to apply FV to CPSs. ML-
based specifications are limited, at 
present. Can specifications created by 

ML algorithms be trusted? In other 
words, who will guard the guard (the 
first guard being ML-created formal 
specifications used for FV)?

ÅKESSON:  Writing high-qualit y 
specifications is a very challenging 
task for both humans and computers. 
But algorithms (AI, ML, and others) 
can play an important role in assisting 
humans by proposing specifications 
and suggesting possible extensions. 
I believe that the process of formaliz-
ing specifications is as important as 
the verification process. During this, 
assumptions have to be expressed ex-
plicitly, and it has to be defined what 
the expected behavior should be for all 
corner cases. These insights are lost if 
ML is used to generate specifications. 
Thus, I see that the primary role for 
ML is in assisting humans by helping 
with the process of identifying untold 
assumptions and corner cases.

GIANNAKOPOULOU:  Specification 
mining is not a new idea. In fact, several 

approaches have been developed that 
try to bypass human involvement in 
the creation of formal specifications. 
Naturally, ML is also involved in this 
quest. After all, it is, by now, involved 
in every aspect of software engineer-
ing. In my experience, ML is extremely 
tricky to get right, as it relies on the 
amount and quality of available train-
ing data and may not transfer well to 
other domains. One avenue that is be-
ing explored toward increasing trust 
is to develop ML frameworks that ex-
plain their decisions. In general, I be-
lieve we have quite a bit of work to do 
before we can trust ML to produce cor-
rect specifications, especially if we are 
liable for them. On the other hand, ML 
could be a valuable aid for CPS design-
ers toward discovering, formulating, 
and repairing specifications.

HAVELUND: Specifications generated 
by ML techniques will undoubtedly 
become increasingly important. Just 
from a philosophical point of view, it is 
an evident trend. It is, however, nearly 
impossible to predict how much such 
systems can be trusted. They will, for 
sure, play advisory roles and eventu-
ally safety-critical ones. The most ob-
vious approach to deal with such sys-
tems, in my view, is to monitor their 
execution and ensure that they behave 
within a more traditionally defined 
safety region. Hence, the guards of the 
guards are monitors. ML can also be 
used to propose formal specifications 
to be approved by humans.

MITRA: When specification writing 
becomes part of the development pro-
cess, with tangible benefits, and it is no 
longer seen as an isolated activity, then 
the creation of specifications may not 
be viewed as burdensome. One study 
reports that AWS developers spend 
considerable energy writing proof 
harnesses, which are essentially asser-
tions written in the programming lan-
guage and that guide the verification 
engine and provide much better cover-
age.9 ML-created specifications are an 
intriguing idea. Obviously, generating 

I believe we have quite a bit of work to do before 
we can trust ML to produce correct specifications, 

especially if we are liable for them.
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labeled data for any such approach will 
still require curation and expertise.

PASAREANU: I believe there will al-
ways be some human involvement 
and domain expertise in the creation 
of formal specifications. I am not sure 
what you have in mind with “ML-based 
specifications.” If these are specifica-
tions mined from data and/or systems, 
then I think a human expert can vali-
date them. FV tools can be used to for-
mally verify them.

SESHIA: As I mentioned earlier, learn-
ing specifications from data and other 
artifacts is a promising approach to 
ease the specification burden. One way 
to generate trust in ML-created for-
mal specifications is to validate them 
against available code and models, 
with human oversight. This is exactly 
the approach we took in a collaboration 
with Toyota, where, when an engineer 
felt our generated specification was in-
correct, the validation pointed to a cor-
ner case bug in a large Simulink model 
the company was analyzing.14 In other 
words, mining specifications and find-
ing corner case bugs are two sides of 
the same coin. This specification min-
ing approach is a special case of a more 
general methodology for high-assur-
ance ML termed oracle-guided learning 
or oracle-guided inductive synthesis.16,17

SOKOLSKY:  On the one hand, we 
clearly need a way to keep tabs on ma-
chine-generated specifications, to 
make sure they capture our intuitive 
goals and that there are no unintended 
aspects. On the other hand, we must 
remember that human-created specifi-
cations are not perfect, either. Thus, the 
question is not whether we should trust 
machine-generated specifications more 
or less than ones crafted by humans. 
Whatever the source, we should be able 
to perform sanity checks on a specifica-
tion or, better yet, verify it with respect 
to higher-level requirements.

COMPUTER: How much of the veri-
fication of a CPS is physics, and how 

much is logic and traditional reason-
ing tools? Where do you think this ra-
tio is headed? Similarly, how much is 
logical inference versus statistical in-
ference? How much of ML algorithms 
can translate into traditional reason-
ing, and what is lost in the process?

ÅKESSON: Physics plays a vital role 
in restricting the behavior of a closed-
loop system. However, it is the percep-
tion and decision-making code that is 
rapidly increasing in complexity.

GIANNAKOPOULOU: Instead of com-
menting on the ratio of physics to logic, 
I will share some observations. In my 
experience, many novel algorithms for 
autonomous decision making (collision 
avoidance, for example) are constructed 
using models (often probabilistic) of the 
physical systems involved. Finding the 
right level of model abstraction to com-
bine scalability with safety is an art. 
Ensuring the conformance of physical 
models to the real world is key when 
verifying CPSs. The need to deal with 
uncertainty and optimization, which 
are intrinsic in autonomy, creates a nat-
ural shift toward statistical inference. 
In my opinion, the major challenge with 
reasoning about ML algorithms is that 
their logic is not explicit, making it hard 
to formulate and assess the correctness 
of their behavior.

HAVELUND: As long as there is tradi-
tional software in CPSs, it will need to 
be verified and tested. Furthermore, 
such systems will increase in complex-
ity, meaning even more software to be 
verified and tested. A big part of such 
future systems will therefore be tradi-
tional testing and logic-based reason-
ing tools to the extent that they scale 
to the problem.

MITRA: The physics-to-logic ratio in 
CPS verification evolves across devel-
opment stages. As physical processes 
become better understood and con-
trolled, design and verification com-
plexity shifts to the computing stack, 
with the goals of achieving better 

efficiency, less energy use, and uti-
lization. The early adopted methods 
are usually the ones that are stable 
and easier to interpret. My view is that 
the early adoption of CPS verification 
will be dominated by the more tradi-
tional proofs, logical inference, and 
absolute guarantees, while statistical 
approaches will dominate testing. 
For end-to-end and system-level ver-
ification, the verification results of 
heterogenous components have to be 
composed. There are very interesting 
ideas about incorporating ML in ver-
ification, particularly for handling 
black-box components we mentioned 
earlier, but these approaches are still 
in their infancy.

PASAREANU: I think it is hard to 
quantify. It seems, indeed, that we 
have a bit of all of them.

SESHIA: Your first question goes to 
the crux of how CPSs are defined. Ac-
cording to Edward Lee and myself, 
CPSs are integrations of computation 
with physical processes whose behav-
ior is defined by both cyber and phys-
ical components.18 Thus, every CPS 
verification problem involves reason-
ing about the “physics” and reasoning 
about computation. Now, to achieve 
scalability, we typically must take a 
modular approach, where we break up 
the CPS verification problem into sev-
eral subproblems, some purely cyber, 
some purely physical, and some cyber-
physical. With respect to your second 
question, I think inductive learning, 
also known as ML, is central to the 
process of proof. The combination of 
inductive and deductive reasoning has 
been at the heart of many advances 
in FV over the past 20 years, includ-
ing counterexample-guided abstrac-
tion refinement and techniques for 
invariant synthesis, where inductive 
learning is combined with deductive 
reasoning by using hypotheses about 
the structure of proof artifacts being 
synthesized.16 So, ML algorithms do 
fit in a natural way into “traditional” 
reasoning. It remains to be seen how 
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useful deep learning, specifically, will 
be in FV.

SOKOLSKY: It seems hard to separate 
the effects of physics and logic in CPS 
verification challenges. While physics 
verification seems harder, or at least 
less scalable than logic verification, 
it is the interaction between physics 
and logic that makes CPS verification 
so difficult. The balance between log-
ical and statistical inference depends 
on the verification approach, with sta-
tistical inference becoming ever more 
prominent in recent years.

COMPUTER: Should the FV of a CPS 
be conducted on the interface between 
the cyber and physical partitions in-
stead of directly on them?

ÅKESSON: There is a need to do both. 
During early development phases, the 
components and their interfaces are 
defined, and the implementation and 
models might be missing or incomplete. 
During these phases, the interfaces’ ex-
pectations and guarantees toward the 
environment can be defined and veri-
fied. Later in the development process, 
FV and other rigorous test methods, 
such as falsification, should be used to 
verify the closed-loop behavior.

GIANNAKOPOULOU: This falls under 
the standard topic of unit versus integra-
tion testing/verification. The answer is 
that it should be conducted at all levels. 
However, given the complexity of CPSs, 
it is worthwhile to invest in studying the 
interface between the cyber and physi-
cal partitions first. Understanding and 
specifying the intended interactions 
between the two provides a solid founda-
tion for developing systems that will in-
tegrate seamlessly. Integration as an af-
terthought usually results in expensive 

redesigns and modifications late in the 
software development life cycle.

HAVELUND: As I pointed out, I think 
a large part of the verification of CPSs 
will still be the validation of traditional 
code bases. However, specifically 
monitoring techniques, also referred 
to as runtime verification, can be used 
to oversee the interface between the 
software and the physical system and 
potentially prevent the software from 
doing any harm, a subfield of runtime 
verification referred to as runtime en-
forcement. Here, the monitor will pre-
vent the software from issuing harm-
ful commands to the physical system.

MITRA: Carefully defining CPS model 
interfaces can help achieve a separation 

of concerns, for example, farming out 
the physics models or components 
and the software elements to different 
proof engines in such a way that their 
results can be soundly combined to 
verify the overall model. Our Koord19 
lang uage and t he CyPhyHouse20 
verification framework are tailored 
to address this issue in the context 
of distributed CPSs written using 
shared memory.

PASAREANU: Perhaps on both. Com-
positional reasoning can be helpful in 
putting together results from separate 
verifications.

SESHIA: Since CPSs are fundamentally 
about the intersection between cyber 
and physical worlds, some verification 
will always need to be on the interface 
between the two. For compositional 
analysis, some verification may need 
to be on individual cyber and physical 
“partitions.” But the overall proof will 
always involve the interface. And if a 

counterexample is to be demonstrated, 
it must be a full CPS counterexample. 
Our experience working with industrial 
users in the automotive sector is that, 
first, integration testing is the biggest 
challenge, and second, people care much 
more about system-level counterexam-
ples than “unit” counterexamples; for in-
stance, see the work of Yamaguchi et al.11

SOKOLSKY: I try to avoid being pre-
scriptive in the choice of verification 
approaches. Whatever works should 
be used. I would imagine that inter-
face-based techniques may offer better 
scalability, in general, at the expense 
of more significant conservatism. A 
lot depends on the system design, and 
the verification engineer should be 
prepared to apply the whole range of 
available tools as needed.

COMPUTER: Of the current impedi-
ments—technical or otherwise—that 
make it challenging to formally ver-
ify a CPS in an effective and efficient 
manner, which do you think is the 
most pressing to address and why?

ÅKESSON: Scalability and ease of use 
are limiting the industrial acceptance 
of the FV of CPSs. The limitations 
of  formal and rigorous verification 
methods signify the importance of a  
modular approach, such as combin-
ing ML components with correct-by- 
construction approaches and software 
modules with manageable complexity. 
A significant challenge is combining 
the white-box approaches of FV with 
the black-box methods used in falsifi-
cation to handle systems where parts 
are fully known while for others, only 
incomplete information is available.

GIANNAKOPOULOU:  Regulatory 
bodies are pressed to come up with 
solutions for ensuring the safety of 
autonomous vehicles, which are ex-
pected to invade our lives in massive 
numbers in the near future. It is a 
great opportunity to exploit this pull 
for techniques that ensure trust in au-
tonomy. In many respects, CPSs share 

Integration as an afterthought usually results in 
expensive redesigns and modifications late in the 

software development life cycle.
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verification challenges with tradi-
tional large, complex distributed sys-
tems and can benefit from advances 
made in those domains. However, 
they place increased emphasis on AI. 
Within that domain, I believe it is 
most pressing to identify and formu-
late requirements for the correctness 
of adaptive and ML algorithms.

HAVELUND: The main problem, in my 
view, is the algorithmic challenge in 
verifying large systems. We are cur-
rently not able to automate this process 
sufficiently to make it broadly attrac-
tive. To this can be added the problem 
of writing specifications. However, I do 
believe that if the verification problem 
could be solved (highly automated) and 
if specifications really captured the de-
tails of interest (requiring expressive 
specification languages), there could 
be enough motivation for adopting FV. 
This is not to underestimate the prob-
lem of writing specifications. There is 
a need to support the formal specifica-
tion and verification of programs writ-
ten in programming languages and 
perhaps with specifications written in 
the programming language itself, for 
example, much like unit tests. Some 
programming languages are now be-
ing developed with built-in support for 
FV. The guaranteed short-term-winner 
approach is automated testing 24/7, 
in which a system is constantly bom-
barded with inputs and monitored as 
it executes with advanced test oracles. 
This requires trustworthy simulators 
of the physical systems, which can be 
rerun repeatedly on a normal desktop 
or laptop.

MITRA: We need a standardized, open 
development ecosystem for CPSs and 
related benchmarks. Open standards 
help identify problem definitions and 
attract talented researchers. They 
reduce friction in sharing solutions. 
Benchmarks and standards also help 
practitioners share hard instances 
across domains, and they give a yard-
stick for the communit y to mea-
sure progress.

PASAREANU: CPSs are increasingly 
built using ML components, such as 
neural networks, which are hard to 
specify and verify formally. I view that 
as the main challenge.

SESHIA: In a sense, the CPS verifica-
tion challenge is the union of the dif-
ficulties of verifying hardware, soft-
ware, and physical systems because 
CPSs integrate all of them. It is difficult 
to identify a single challenge that is the 
“most pressing.” My top contenders in-

clude modeling the complex environ-
ments of CPSs, developing better the-
ories of compositional reasoning for 
CPSs, verifying intelligent CPSs based 
on AI and ML, and creating a large and 
diverse repositor y of bench ma rk s 
to g u ide t he community.

SOKOLSKY: A lot of challenges to FV, 
such as the computational complex-
ity of verification algorithms and the 
rapidly growing scale of CPSs, are fun-
damental and thus cannot be really 
addressed, in my opinion. What can be 
addressed is the verifiability of CPSs. 
Systems can and should be designed in 
a way that makes them easier to verify, 
more modular, and better structured. 
To achieve that, we need better design 
approaches and techniques. But even 
more importantly, we need to change 
the mindset of designers. Most system 
designers are not experts in formal 
methods and do not need to be. But they 
need a better understanding, if only at 
a rule-of-thumb level, of what makes a 
system easier or harder to verify.

There is consensus among the 
panelists that the software in-
dustry is, indeed, slow to adopt 

FV, except for static analysis—which 
is arguably more of a compiler tech-
nology than FV—and some projects 
run by deep-pocket companies. The 
reasons include software’s complexity, 
rate of change, and diverse correctness 
criteria. A key obstacle cited by multi-
ple experts is the FV environment and 
ease of use. In contrast with the EDA 
market, in which FV is a first-class 
member of the development envi-
ronment and tool chain, for software 
developers, FV is like a distant “nerd” 

cousin that speaks a different dialect 
and one that few first-class members 
pay attention to.

The panel members agree that as 
difficult as it is to successfully ap-
ply FV to software in general, it is 
as difficult or more so to apply it to 
CPSs. Some argue that the complex-
ity, scale, and opaque nature of ML 
algorithms make the full application 
of FV for CPSs unrealistic. However, 
limited approaches, such as runtime 
verification (especially on the inter-
face between the cyber and physical 
partitions of a CPS) can be used. The 
expectation that, inevitably, some 
correctness properties themselves 
will be machine learned only exacer-
bates the trust problem. Nevertheless, 
despite such mounting challenges, we 
recommend that the FV research com-
munity measure up by developing 
techniques for dealing with the dif-
ficult nature of building dependable 
CPSs. As an analogy, consider the var-
ious techniques theoretical computer 
scientists have developed for coping 
with intractable (NP-complete) prob-
lems, such as heuristics, Horn logic, 
and Boolean satisfiability-solving 
algorithms. Indeed, runtime verifica-
tion is one such approach. 

Regulatory bodies are pressed to come up with 
solutions for ensuring the safety of autonomous 
vehicles, which are expected to invade our lives  

in massive numbers.
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