
In Computer, virtual roundtables (VRTs) are virtual
panels. We ask a series of questions to a group of ex-
perts via email to ascertain the panelists’ thoughts
about a topic du jour. One difference between VRTs

and face-to-face panels is that no expert knows who the
others are. That is different from an in-person arrange-
ment, where answers from one participant can affect the
responses of others. In this VRT, our topic of discussion
is the formal verification (FV) of cyberphysical systems
(CPSs). FV is the act of proving the correctness of algo-
rithms with respect to certain formal specifications, us-
ing formal methods. Correctness may mean logical defi-
nitions of safety, liveliness, and other objectives such as
confidentially, integrity, availability, and some version
of privacy.

FV has its roots in formal reason-
ing, dating back at least to Gottfried
Wilhelm Leibniz’s work on algo-
rithms, computing machines, and
mathematical logic in the 17th cen-
tury.1 FV as we know it has its roots
in the 1960s and 1970s with the
contributions of E.W. Dijkstra, who
famously coined the phrase, “Pro-
gram testing can be used to show the

presence of bugs, but never to show their absence.”2 Some
believed FV to be a silver bullet for attaining depend-
able software and hardware. The excitement over formal
methods is evidenced by the relatively large body of pub-
lished research on the topic; a Google scholar search for
the FV term yields approximately 180,000 results.

Nevertheless, except for a few well-funded research
projects, industry was rather slow to adopt FV. An excep-
tion to this statement is the semiconductor design commu-
nity, also known as the electronic design automation (EDA)
community. This community realized that the cost and de-
lays incurred by labor-intensive manual testing justified a
different verification approach, one that applied FV. More-
over, since manual testing cannot guarantee the absence of
bugs, there is an inevitable cost for containing the impact
of flaws that are undetected. A classic example is the Intel
Pentium FDIV bug, which was difficult for testing to un-
cover: containment required replacing all flawed Pentium

Digital Object Identifier 10.1109/MC.2021.3055883
Date of current version: 27 August 2021

VIRTUAL ROUNDTABLE

Formal Verification
of Cyberphysical
Systems
James Bret Michael and Doron Drusinsky, Naval Postgraduate School

Duminda Wijesekera, George Mason University

Computer hosts a virtual roundtable with seven

experts to discuss the formal specification and

verification of cyberphysical systems.

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E S E P T E M B E R 2 0 2 1 15

16 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

processors on request, with Intel taking
a US$475 million charge against earn-
ings.3,4 Fast forward to 2021, and the
EDA community has embraced FV as
part of mainstream development and
verification processes, languages, and
environments. For example, formal

specification is an integral part of the
SystemVerilog IEEE standard.5

Two of the moderators for this
roundtable (Michael and Drusinsky)
were authors of an article that recom-
mended applying lightweight formal
methods to the interfaces between

the cyber and physical parts of a CPS.6
This recommendation, along with our
discussion of open questions in formal
methods, drew a lot of interest; for
instance, see the exchange between
the authors and Michael Jackson.7
The feedback we received from our

ROUNDTABLE PANELISTS
Knut Åkesson is a professor of automation in the De-
partment of Electrical Engineering, Chalmers University
of Technology, Göteborg, Sweden. His research interests
include rigorous methods for verification and control
with applications in safety-critical autonomous systems,
the optimization and configuration of products and pro-
duction systems with high variability, and applications
of computer vision and deep machine learning. Åkesson
received a Ph.D. from Chalmers University of Technology
in 2002. Contact him at knut.akesson@chalmers.se.

Dimitra Giannakopoulou is a research computer
scientist at the NASA Ames Research Center, Mountain
View, California, USA, and a member of the Robust Soft-
ware Engineering Group. Her research interests include
applying modular and compositional formal verification
techniques to autonomous systems and architectures.
Giannakopoulou received a Ph.D. in computer science
from Imperial College, University of London, in 1999.
Contact her at dimitra.giannakopoulou@nasa.gov.

Klaus Havelund is a senior research scientist at Jet
Propulsion Laboratory, Pasadena, California, USA,
specifically in the Laboratory for Reliable Software. His
research interests include the development of runtime
monitoring techniques, including the design of pow-
erful monitoring logics. He is the chair of the Formal
Methods Europe industry committee, a member of
International Federation for Information Processing
1.9/2.15 working group, and a member of the Trans-
actions on Foundations for Mastering Change editorial
board. Havelund received a Ph.D. in computer science
from the University of Copenhagen in 1994. Contact
him at klaus.havelund@jpl.nasa.gov.

Sayan Mitra is a professor of electrical and computer
engineering at the University of Illinois at Urbana–Cham-
paign, Champaign, Illinois, USA. His research interests in-
clude the formal verification and synthesis of cyberphys-
ical and autonomous systems. Sayan received a Ph.D. in

computer science from the Massachusetts Institute of
Technology. Contact him at mitras@illinois.edu.

Corina Pasareanu is the technical professional leader
in data science for KBR, Houston, Texas, USA. She is
part of the NASA Ames Robust Software Engineering
group, performing research in software engineering and
is affiliated with the Carnegie Mellon University (CMU)
CyLab, CMU Silicon Valley, and the CMU Department
of Electrical and Computer Engineering. Pasareanu
received a Ph.D. in computer science from Kansas State
University. Contact her at corina.s.pasareanu@nasa.gov
or pcorina@andrew.cmu.edu.

Sanjit A. Seshia is a professor in the Department of
Electrical Engineering and Computer Sciences, University of
California, Berkeley, Berkeley, California, USA. His research
interests include formal methods for dependable and
secure computing, with application to cyberphysical sys-
tems, computer security, machine learning, and robotics.
Seshia received a Ph.D. in computer science from Carnegie
Mellon University. He is a Fellow of IEEE and the Association
for Computing Machinery. Contact him at sseshia@eecs
.berkeley.edu.

Oleg Sokolsky is a research professor in the Depart-
ment of Computer and Information Science, University
of Pennsylvania, Philadelphia, Pennsylvania, USA. He is
member of the university’s Research in Embedded Com-
puting and Integrated Systems Center and Real-Time
Systems group. His research interests include ensuring
the safety of real-time and cyberphysical systems (CPSs),
in addition to related areas of applying formal methods
to the design and verification of CPSs, formal founda-
tions and online monitoring for embedded systems
and CPSs, hybrid systems, the automated extraction of
specifications from source code, and formal methods in
software engineering, particularly embedded software.
He serves as Computer’s area editor for cyberphysical
systems. Contact him at sokolsky@seas.upenn.edu.

 S E P T E M B E R 2 0 2 1 17

counterparts in the formal methods
community, in combination with the
third moderator’s (Wijesekera’s) expe-
riences in applying formal methods to
software-intensive systems, inspired
the three of us to organize a roundta-
ble in which we enlisted seven experts
to identify the reasons for the slow
adoption of FV by the software indus-
try, in general, and the verification of
CPSs, in particular.

The panelists contend there are
several factors that have slowed the
adoption of formal methods, such as
the sheer size and complexity of soft-
ware systems, the diversity of software
products, the perception that FV is a
low-return-on-investment academic
exercise, and the fact that FV tools are
not part of mainstream software de-
velopment and testing environments
nor are the tools directly associated
with mainstream programming lan-
guages. The FV of CPSs is believed to be
particularly challenging because it is a
hybrid on many fronts, including hard-
ware and software, classical control
and logical reasoning, and artificial in-
telligence (AI)/machine learning (ML)
algorithms and logical reasoning.

In this VRT, the panelists responded
to six questions. Their written responses
may have undergone minor edits. How-
ever, as organizers, we attempted to
keep their words as verbatim as possi-
ble. The seven panelists are Knut Åkes-
son (Chalmers University), Dimitra Gi-
annakopoulou (NASA), Klaus Havelund
(Jet Propulsion Laboratory), Sayan Mitra
(University of Illinois at Urbana–Cham-
paign), Corina Pasareanu (KBR), San-
jit A. Seshia (University of California,
Berkeley), and Oleg Sokolsky (University
of Pennsylvania). See “Roundtable Pan-
elists” for the participants’ biographical
sketches. Note that the opinions of the
experts are their own, with no input
from the editors. We hope readers who
are concerned with the dependability
and trustworthiness of CPSs will find the
questions and responses enlightening.

COMPUTER : Unlike with EDA, in
which FV is well integrated into the

development of chips and printed cir-
cuit boards and where engineers with
expertise in the method are in high
demand, FV has had much less accep-
tance as a mainstream ingredient of
software development and quality
assurance. What do you think are the
reasons for that, and do you think the
situation will change with CPS proj-
ects, such as those involving autono-
mous vehicles?

KNUT ÅKESSON: A major challenge is
that the closed-loop model is described
using a combination of tools, different
modeling languages, and program-
ming languages. Significant efforts
have been made to unify how to describe

physical systems coherently. For exam-
ple, the Modelica language (https://
mo de l ic a .or g /mo de l ic a l a n g u a ge
.html) is an essential step in this direc-
tion. However, CPSs might also con-
tain ML algorithms for perception and
might run optimization for decision
making. These are all rapidly evolving
and have their dedicated languages
and tools. Thus, CPSs inherently com-
bine code written in various program-
ming languages, ML frameworks, op-
timization modules, and control logic
generated from high-level modeling
languages. FV has its place in safe-
ty-critical components but should be
complemented by rigorous automated
test methods for situations where it is
not feasible or practical to use.

DIMITRA GIANNAKOPOULOU: Soft-
ware development is more diverse and
evolves faster than EDA in terms of pro-
gramming languages, paradigms, and
patterns; data structures, algorithmic
approaches, and types of applications;
libraries and runtime environments;
and heterogeneity and distribution

across different computers. After de-
ployment, software applications get
updated to address vulnerabilities and
to include new features, and they may
even be adaptive by design. Correctness
criteria and specifications vary widely
by application domain, and quality as-
surance depends on the criticality of
software. For example, is it a game on
someone’s phone, or is it software that
controls a passenger aircraft?

For FV to become a mainstream
ingredient of software development,
it must achieve some usability goals.
First, it must be relatively easy to for-
mulate specifications for the target
system. Second, FV must be able to di-
rectly handle the languages in which

the software is written or the modeling
languages from which the software is
synthesized. Finally, FV should be able
to scale. The diversity and complexity
of software applications means that to
be successful, FV approaches must be
targeted and customized to address
specific problems within safety-criti-
cal application domains.

The expected exponential rate of
introduction of autonomous vehicles
(ground and air) puts enormous pres-
sure on ensuring their safe operation.
There is incentive for commercial and
federal stakeholders to collaborate on
developing certification and assurance
standards for these applications. As
a consequence, I expect advances in
the near future. On the one hand, FV
approaches will be developed that ef-
ficiently address specific problems of
such CPSs. On the other hand, there will
be increased incentives in CPS projects
to use programming paradigms and en-
vironments designed with FV in mind.

KLAUS HAVELUND: Electronics de-
signs have the characteristic that once

A major challenge is that the closed-loop model is
described using a combination of tools, different

modeling languages, and programming languages.

18 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

they leave the factory, they usually
cannot be changed. A substantial er-
ror can cause a unit to be recalled, with
large amounts of money at stake. The
motivation is therefore high to “get
it right” before shipment. Software,
on the other hand, can often be fixed
with an update at a customer’s loca-
tion, making errors less catastrophic.
Even in space missions, errors can be
corrected by uplinking bug fixes from
a distance of millions of miles. This
relaxed view of software errors might,
however, be changing as software, to
an increasing extent, autonomously
controls equipment such as cars, which
can cause loss of life in case of failure.

Another, perhaps more important,
reason for the lesser acceptance of FV
in the software community is that
the verification problem appears less
tractable for software systems, due to
higher complexity and the possibil-
ity of more execution paths. Theorem
provers require a considerable amount
of manual effort to apply, even for
smaller models, let alone real-world
software systems, and model checkers
are challenged by the large state spaces
of realistically sized software applica-
tions. This means that the application
of FV techniques requires either a big
verification effort or a big modeling
effort, where a simplistic model is cre-
ated of the software and then verified.
A software engineer, not supported by
management to carry out such proofs/
modeling, will see very little incentive
to do so.

SAYAN MITRA: FV is being used in
mainstream software already, pro-
pelled first by major outages and
breaches at big tech firms, then by
successful applications of verification
technology in bug finding, and more
recently in the application of verifi-
cation for generating proofs as “more
extensive tests.” Static analysis tools
are part of the core developer work-
flow at Google and deployed on the
2-billion-line code base.8 Amazon Web
Services (AWS) developers are writing
formal specifications and proofs for

hypervisors, boot loaders, and Internet
of Things operating systems.9 The In-
fer static analysis engine is integrated
with the code base at Facebook and does
continuous reasoning on iOS, Android,
and Instagram and WhatsApp applica-
tions. Hundreds of bugs are reported
and fixed every month.10 Bugs in CPSs
and autonomous systems can compro-
mise safety. This raises the stakes as
well as the incentives for the adoption
of FV. But the adoption of CPS verifica-
tion also presents barriers that were not
present in the software ecosystem.

CORINA PASAREANU: The reason
is that FV for software is much harder
(for example, programs are much
larger, potentially unbounded, use
many external libraries, and contain
programming language constructs
that are hard to analyze). Yes, CPS proj-
ects are often safety critical and jus-
tify the high cost of FV. Furthermore,
the software involved in CPS projects
is simpler than general-purpose soft-
ware and therefore more amenable
to verification.

SANJIT A. SESHIA: There is a spec-
trum of FV methods, from asser-
tion-based testing and model-based
testing to static analysis and model
checking and interactive theorem
proving. So, if we define FV broadly
to include this entire spectrum, I con-
tend that FV is already used widely in
software in much the same way as it
is employed in hardware. Of course,
software comes in many different
flavors, and so we will find FV used
more for software in safety-critical,
mission-critical, and high-availability
applications. FV is also used in certain
industrial CPS applications; for exam-
ple, the simulation-based falsification
of temporal logic (TL) properties has
been successfully applied in the au-
tomotive industry.11 Over the past de-
cade, I have seen big growth in interest
from the CPS industry in applying for-
mal methods to CPS design, although
that interest has yet to fully translate
into a wider deployment of tools.

OLEG SOKOLSKY: The main reason
is that the software verification prob-
lem is inherently much harder. Soft-
ware tends to be much less structured
and much more complex compared
to hardware. Finite-state models,
which are much easier to verify than
infinite-state ones, are a more natu-
ral fit for hardware than for software.
From this perspective, CPSs are likely
to make verification problems only
harder. Embedded processors are be-
coming ever more powerful, enabling
more and more complex software on
board. In addition to software, physi-
cal environments need to be included
in the model, making the challenge
even bigger. If there is any silver lin-
ing, modern CPSs—in particular, au-
tonomous vehicles—offer more room
for lighter-weight applications of FV.
Runtime verification techniques, that
is, formally specified monitoring and
adaptation, as well as applications of
online reachability computation, ap-
pear to be very promising in autono-
mous CPSs.

COMPUTER: An often neglected issue
related to FV is the reliance of most
techniques on expressively weak and
hard-to-use formal specification lan-
guages (in the sense of creating correct
specifications), such as dialects of TL.
How serious do you think this problem
is, and how can it be addressed?

ÅKESSON: For maintenance reasons,
it is important to ensure that specifica-
tions and implementations are closely
linked. Specifications have to be un-
derstandable by the engineer doing
the implementation, and they have to
be refined during the implementation
phases. It should also be possible for
the same engineer to update them. In
our experience working with indus-
trial partners, writing correct specifi-
cations is challenging, and it is often
the case that an identified violation of a
specification is due to a mistake in the
formalization of the specification and
not in the implementation. While FV
tools have a well-defined specification

 S E P T E M B E R 2 0 2 1 19

language, it might be useful to con-
sider high-level, domain-specific spec-
ification languages that integrate well
with the implementation language
and to consider automatically trans-
lating from this domain-specific lan-
guage to the FV specification language
being used.

GIANNAKOPOULOU: Creating spec-
ifications is typically an exploratory
process aimed at nailing down the
intended behavior of a target system,
avoiding overspecification, underspe-
cification, and ambiguity. What FV
requires is a lack of ambiguity and a
formal language to communicate with.
In terms of ambiguity, even a simple
sentence containing a condition un-
der which some system behavior is
expected has many possible interpre-
tations. Figuring out the interpreta-
tions and picking the intended one is
not straightforward. Writing a formal
specification that is precise with re-
spect to the intended interpretation is
even harder. In my experience, non-
trivial specifications are challenging
even for experts. A way to address
this problem is to build environments
that assist in the process of gradually
constructing specifications that are
unambiguous and capture user inten-
tions. Such environments would ide-
ally enable users to write and explore
their specifications through a variety
of approaches: natural language, dia-
grams, use case scenarios, and interac-
tive simulation. Formal specifications
should then be produced automatically
and through trusted algorithms. The
problem of producing specifications
can also be alleviated through the sup-
port of domain-specific specification
patterns. Even in this case, however,
it is crucial to provide a user-friendly
environment for exploring and under-
standing the details of such patterns.

HAVELUND: Two problems are men-
tioned here: expressively weak spec-
ification languages and hard-to-use
specification languages. I think the
second problem, with hard-to-use

specification languages, might be a
nonissue. Just consider the complexity
of C++, which programmers happily
learn. Specification languages are no
harder to learn, and in many cases,
they are simpler than programming
languages. Programmers have no diffi-
culty writing the programs, so they can
probably write specifications, as well.
Some of the more simplistic languages
(such as linear TL) can be hard to use
for writing more complex properties,
but there are solutions to that, such as
specification patterns and graphical
solutions, potentially translated into
the harder-to-use formalisms. The real
problem, in my view, might not be the
difficulty of learning a specification
language but the lack of willingness
among developers to deal with an-
other complex language in addition

to the programming language. There
is an argument for developing specifi-
cations in the programming language
itself. Specification languages must
be highly expressive to meet practi-
cal needs. I have developed numerous
specification languages for software
monitoring, and it is usually the lan-
guages that support an escape to a gen-
eral-purpose programming language
(when the logic formalism falls short)
that appear most attractive to users.

MITRA: Verification tools must com-
municate with developers using arti-
facts and interfaces that are already
part of their workflow. Requiring de-
velopers to learn a new language or a
formalism is a nonstarter. Chong et al.
discuss a four-year experience in which
the loss of expressive power (or not us-
ing TLs, for example) was more than
offset by the benefits of using the same
programming language for coding
and specifications.9 This is a recurring

theme at other firms adopting FV. Us-
ing common artifacts and interfaces
reduces the “developer’s cognitive
burden and allows them to view proofs
as ‘just another test suite,’ albeit a
vastly more thorough one.”9 The inte-
gration of development and verifica-
tion workflows was also a precursor
to the success of hardware verification
through description languages such as
VHDL and Verilog.

One challenge for CPS verification is
that existing tools—of which there are
many strong ones—rely on mathemati-
cal models that are disconnected from
developer workf lows. There are no
open and standard CPS languages and
development ecosystems for plugging
in verification tools. MATLAB is popu-
lar but, unfortunately, neither open nor
standardized. The solution is to move

away from model verification tools to
tools that verify CPS code written in
open languages, such as C, C++, and
Rust, and testing and verification envi-
ronments that use open simulators, in-
cluding CARLA (https://carla.org/) and
Gazebo (http://gazebosim.org/).

Second, some CPS components have
to be treated as black boxes. The code for
a component may be too complex, and it
may be proprietary. The physical models
may be impossible to represent as ẋ = f(x)
or as a hybrid automaton. For such black-
box components, verification has to rely
on statistical methods. We will need to
integrate verification approaches that
can combine black-box methods with
model-based techniques within the de-
velopment ecosystem. One approach in
this direction is discussed in our DryVR
framework, which has been used to ver-
ify several industrial-scale systems that
combine black- and white-box compo-
nents.12,13 TLs have been fundamental
in understanding the complexity of

One challenge for CPS verification is that existing tools—of
which there are many strong ones—rely on mathematical
models that are disconnected from developer workflows.

20 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

verification and synthesis problems
with respect to different specifica-
tion classes. Extrapolating those sci-
entific advances to a world in which
developers learn TLs and start using
them as specification languages for
day-to-day development, in my view, is
not realistic.

PASAREANU: Formal specification
languages are hard to understand
even for an expert in formal methods.
Natural language representations,
patterns, and tool support can perhaps
address the problem.

SESHIA: I think we can learn a lot from
hardware verification. TL-based asser-
tion languages are now widely used in

hardware design, and yet the average
developer does not need to be an ex-
pert in logic to use them. They have
been incorporated into more acces-
sible assertion languages, integrated
with user interfaces, and generated by
tools for the automated inference of
specifications. In fact, tools for spec-
ification mining, learning properties
from execution and simulation traces,
are a very promising approach for eas-
ing the specification burden. In our
own work with industry, we have seen
that a specification mining tool can
ease the initial burden of writing TL
properties, which demonstrates to in-
dustrial users the value of formal spec-
ifications, becoming a virtuous cycle
where users actively seek to learn to
write logic properties due to the added
value it brings them.14 Specifications
can also be integrated as “blocks” into
tools that industrial users already em-
ploy; for instance, see Kapinski et al.15

SOKOLSKY: There are two related prob-
lems here. One is that, indeed, formal

specification languages are hard for
engineers to fully understand and use
effectively. To a large extent, this drives
the need for formal methods experts
and stands in the way of transferring
verification technology to engineers.
The other problem is that, as specifica-
tions become more complex and harder
to grasp, they become increasingly er-
ror prone themselves. Both issues can
be partially addressed with better spec-
ification languages and tool support.

COMPUTER: There is a perception
that human involvement in the cre-
ation of formal specifications limits
our ability to apply FV to CPSs. ML-
based specifications are limited, at
present. Can specifications created by

ML algorithms be trusted? In other
words, who will guard the guard (the
first guard being ML-created formal
specifications used for FV)?

ÅKESSON: Writing high-qualit y
specifications is a very challenging
task for both humans and computers.
But algorithms (AI, ML, and others)
can play an important role in assisting
humans by proposing specifications
and suggesting possible extensions.
I believe that the process of formaliz-
ing specifications is as important as
the verification process. During this,
assumptions have to be expressed ex-
plicitly, and it has to be defined what
the expected behavior should be for all
corner cases. These insights are lost if
ML is used to generate specifications.
Thus, I see that the primary role for
ML is in assisting humans by helping
with the process of identifying untold
assumptions and corner cases.

GIANNAKOPOULOU: Specification
mining is not a new idea. In fact, several

approaches have been developed that
try to bypass human involvement in
the creation of formal specifications.
Naturally, ML is also involved in this
quest. After all, it is, by now, involved
in every aspect of software engineer-
ing. In my experience, ML is extremely
tricky to get right, as it relies on the
amount and quality of available train-
ing data and may not transfer well to
other domains. One avenue that is be-
ing explored toward increasing trust
is to develop ML frameworks that ex-
plain their decisions. In general, I be-
lieve we have quite a bit of work to do
before we can trust ML to produce cor-
rect specifications, especially if we are
liable for them. On the other hand, ML
could be a valuable aid for CPS design-
ers toward discovering, formulating,
and repairing specifications.

HAVELUND: Specifications generated
by ML techniques will undoubtedly
become increasingly important. Just
from a philosophical point of view, it is
an evident trend. It is, however, nearly
impossible to predict how much such
systems can be trusted. They will, for
sure, play advisory roles and eventu-
ally safety-critical ones. The most ob-
vious approach to deal with such sys-
tems, in my view, is to monitor their
execution and ensure that they behave
within a more traditionally defined
safety region. Hence, the guards of the
guards are monitors. ML can also be
used to propose formal specifications
to be approved by humans.

MITRA: When specification writing
becomes part of the development pro-
cess, with tangible benefits, and it is no
longer seen as an isolated activity, then
the creation of specifications may not
be viewed as burdensome. One study
reports that AWS developers spend
considerable energy writing proof
harnesses, which are essentially asser-
tions written in the programming lan-
guage and that guide the verification
engine and provide much better cover-
age.9 ML-created specifications are an
intriguing idea. Obviously, generating

I believe we have quite a bit of work to do before
we can trust ML to produce correct specifications,

especially if we are liable for them.

 S E P T E M B E R 2 0 2 1 21

labeled data for any such approach will
still require curation and expertise.

PASAREANU: I believe there will al-
ways be some human involvement
and domain expertise in the creation
of formal specifications. I am not sure
what you have in mind with “ML-based
specifications.” If these are specifica-
tions mined from data and/or systems,
then I think a human expert can vali-
date them. FV tools can be used to for-
mally verify them.

SESHIA: As I mentioned earlier, learn-
ing specifications from data and other
artifacts is a promising approach to
ease the specification burden. One way
to generate trust in ML-created for-
mal specifications is to validate them
against available code and models,
with human oversight. This is exactly
the approach we took in a collaboration
with Toyota, where, when an engineer
felt our generated specification was in-
correct, the validation pointed to a cor-
ner case bug in a large Simulink model
the company was analyzing.14 In other
words, mining specifications and find-
ing corner case bugs are two sides of
the same coin. This specification min-
ing approach is a special case of a more
general methodology for high-assur-
ance ML termed oracle-guided learning
or oracle-guided inductive synthesis.16,17

SOKOLSKY: On the one hand, we
clearly need a way to keep tabs on ma-
chine-generated specifications, to
make sure they capture our intuitive
goals and that there are no unintended
aspects. On the other hand, we must
remember that human-created specifi-
cations are not perfect, either. Thus, the
question is not whether we should trust
machine-generated specifications more
or less than ones crafted by humans.
Whatever the source, we should be able
to perform sanity checks on a specifica-
tion or, better yet, verify it with respect
to higher-level requirements.

COMPUTER: How much of the veri-
fication of a CPS is physics, and how

much is logic and traditional reason-
ing tools? Where do you think this ra-
tio is headed? Similarly, how much is
logical inference versus statistical in-
ference? How much of ML algorithms
can translate into traditional reason-
ing, and what is lost in the process?

ÅKESSON: Physics plays a vital role
in restricting the behavior of a closed-
loop system. However, it is the percep-
tion and decision-making code that is
rapidly increasing in complexity.

GIANNAKOPOULOU: Instead of com-
menting on the ratio of physics to logic,
I will share some observations. In my
experience, many novel algorithms for
autonomous decision making (collision
avoidance, for example) are constructed
using models (often probabilistic) of the
physical systems involved. Finding the
right level of model abstraction to com-
bine scalability with safety is an art.
Ensuring the conformance of physical
models to the real world is key when
verifying CPSs. The need to deal with
uncertainty and optimization, which
are intrinsic in autonomy, creates a nat-
ural shift toward statistical inference.
In my opinion, the major challenge with
reasoning about ML algorithms is that
their logic is not explicit, making it hard
to formulate and assess the correctness
of their behavior.

HAVELUND: As long as there is tradi-
tional software in CPSs, it will need to
be verified and tested. Furthermore,
such systems will increase in complex-
ity, meaning even more software to be
verified and tested. A big part of such
future systems will therefore be tradi-
tional testing and logic-based reason-
ing tools to the extent that they scale
to the problem.

MITRA: The physics-to-logic ratio in
CPS verification evolves across devel-
opment stages. As physical processes
become better understood and con-
trolled, design and verification com-
plexity shifts to the computing stack,
with the goals of achieving better

efficiency, less energy use, and uti-
lization. The early adopted methods
are usually the ones that are stable
and easier to interpret. My view is that
the early adoption of CPS verification
will be dominated by the more tradi-
tional proofs, logical inference, and
absolute guarantees, while statistical
approaches will dominate testing.
For end-to-end and system-level ver-
ification, the verification results of
heterogenous components have to be
composed. There are very interesting
ideas about incorporating ML in ver-
ification, particularly for handling
black-box components we mentioned
earlier, but these approaches are still
in their infancy.

PASAREANU: I think it is hard to
quantify. It seems, indeed, that we
have a bit of all of them.

SESHIA: Your first question goes to
the crux of how CPSs are defined. Ac-
cording to Edward Lee and myself,
CPSs are integrations of computation
with physical processes whose behav-
ior is defined by both cyber and phys-
ical components.18 Thus, every CPS
verification problem involves reason-
ing about the “physics” and reasoning
about computation. Now, to achieve
scalability, we typically must take a
modular approach, where we break up
the CPS verification problem into sev-
eral subproblems, some purely cyber,
some purely physical, and some cyber-
physical. With respect to your second
question, I think inductive learning,
also known as ML, is central to the
process of proof. The combination of
inductive and deductive reasoning has
been at the heart of many advances
in FV over the past 20 years, includ-
ing counterexample-guided abstrac-
tion refinement and techniques for
invariant synthesis, where inductive
learning is combined with deductive
reasoning by using hypotheses about
the structure of proof artifacts being
synthesized.16 So, ML algorithms do
fit in a natural way into “traditional”
reasoning. It remains to be seen how

22 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

useful deep learning, specifically, will
be in FV.

SOKOLSKY: It seems hard to separate
the effects of physics and logic in CPS
verification challenges. While physics
verification seems harder, or at least
less scalable than logic verification,
it is the interaction between physics
and logic that makes CPS verification
so difficult. The balance between log-
ical and statistical inference depends
on the verification approach, with sta-
tistical inference becoming ever more
prominent in recent years.

COMPUTER: Should the FV of a CPS
be conducted on the interface between
the cyber and physical partitions in-
stead of directly on them?

ÅKESSON: There is a need to do both.
During early development phases, the
components and their interfaces are
defined, and the implementation and
models might be missing or incomplete.
During these phases, the interfaces’ ex-
pectations and guarantees toward the
environment can be defined and veri-
fied. Later in the development process,
FV and other rigorous test methods,
such as falsification, should be used to
verify the closed-loop behavior.

GIANNAKOPOULOU: This falls under
the standard topic of unit versus integra-
tion testing/verification. The answer is
that it should be conducted at all levels.
However, given the complexity of CPSs,
it is worthwhile to invest in studying the
interface between the cyber and physi-
cal partitions first. Understanding and
specifying the intended interactions
between the two provides a solid founda-
tion for developing systems that will in-
tegrate seamlessly. Integration as an af-
terthought usually results in expensive

redesigns and modifications late in the
software development life cycle.

HAVELUND: As I pointed out, I think
a large part of the verification of CPSs
will still be the validation of traditional
code bases. However, specifically
monitoring techniques, also referred
to as runtime verification, can be used
to oversee the interface between the
software and the physical system and
potentially prevent the software from
doing any harm, a subfield of runtime
verification referred to as runtime en-
forcement. Here, the monitor will pre-
vent the software from issuing harm-
ful commands to the physical system.

MITRA: Carefully defining CPS model
interfaces can help achieve a separation

of concerns, for example, farming out
the physics models or components
and the software elements to different
proof engines in such a way that their
results can be soundly combined to
verify the overall model. Our Koord19
lang uage and t he CyPhyHouse20
verification framework are tailored
to address this issue in the context
of distributed CPSs written using
shared memory.

PASAREANU: Perhaps on both. Com-
positional reasoning can be helpful in
putting together results from separate
verifications.

SESHIA: Since CPSs are fundamentally
about the intersection between cyber
and physical worlds, some verification
will always need to be on the interface
between the two. For compositional
analysis, some verification may need
to be on individual cyber and physical
“partitions.” But the overall proof will
always involve the interface. And if a

counterexample is to be demonstrated,
it must be a full CPS counterexample.
Our experience working with industrial
users in the automotive sector is that,
first, integration testing is the biggest
challenge, and second, people care much
more about system-level counterexam-
ples than “unit” counterexamples; for in-
stance, see the work of Yamaguchi et al.11

SOKOLSKY: I try to avoid being pre-
scriptive in the choice of verification
approaches. Whatever works should
be used. I would imagine that inter-
face-based techniques may offer better
scalability, in general, at the expense
of more significant conservatism. A
lot depends on the system design, and
the verification engineer should be
prepared to apply the whole range of
available tools as needed.

COMPUTER: Of the current impedi-
ments—technical or otherwise—that
make it challenging to formally ver-
ify a CPS in an effective and efficient
manner, which do you think is the
most pressing to address and why?

ÅKESSON: Scalability and ease of use
are limiting the industrial acceptance
of the FV of CPSs. The limitations
of formal and rigorous verification
methods signify the importance of a
modular approach, such as combin-
ing ML components with correct-by-
construction approaches and software
modules with manageable complexity.
A significant challenge is combining
the white-box approaches of FV with
the black-box methods used in falsifi-
cation to handle systems where parts
are fully known while for others, only
incomplete information is available.

GIANNAKOPOULOU: Regulatory
bodies are pressed to come up with
solutions for ensuring the safety of
autonomous vehicles, which are ex-
pected to invade our lives in massive
numbers in the near future. It is a
great opportunity to exploit this pull
for techniques that ensure trust in au-
tonomy. In many respects, CPSs share

Integration as an afterthought usually results in
expensive redesigns and modifications late in the

software development life cycle.

 S E P T E M B E R 2 0 2 1 23

verification challenges with tradi-
tional large, complex distributed sys-
tems and can benefit from advances
made in those domains. However,
they place increased emphasis on AI.
Within that domain, I believe it is
most pressing to identify and formu-
late requirements for the correctness
of adaptive and ML algorithms.

HAVELUND: The main problem, in my
view, is the algorithmic challenge in
verifying large systems. We are cur-
rently not able to automate this process
sufficiently to make it broadly attrac-
tive. To this can be added the problem
of writing specifications. However, I do
believe that if the verification problem
could be solved (highly automated) and
if specifications really captured the de-
tails of interest (requiring expressive
specification languages), there could
be enough motivation for adopting FV.
This is not to underestimate the prob-
lem of writing specifications. There is
a need to support the formal specifica-
tion and verification of programs writ-
ten in programming languages and
perhaps with specifications written in
the programming language itself, for
example, much like unit tests. Some
programming languages are now be-
ing developed with built-in support for
FV. The guaranteed short-term-winner
approach is automated testing 24/7,
in which a system is constantly bom-
barded with inputs and monitored as
it executes with advanced test oracles.
This requires trustworthy simulators
of the physical systems, which can be
rerun repeatedly on a normal desktop
or laptop.

MITRA: We need a standardized, open
development ecosystem for CPSs and
related benchmarks. Open standards
help identify problem definitions and
attract talented researchers. They
reduce friction in sharing solutions.
Benchmarks and standards also help
practitioners share hard instances
across domains, and they give a yard-
stick for the communit y to mea-
sure progress.

PASAREANU: CPSs are increasingly
built using ML components, such as
neural networks, which are hard to
specify and verify formally. I view that
as the main challenge.

SESHIA: In a sense, the CPS verifica-
tion challenge is the union of the dif-
ficulties of verifying hardware, soft-
ware, and physical systems because
CPSs integrate all of them. It is difficult
to identify a single challenge that is the
“most pressing.” My top contenders in-

clude modeling the complex environ-
ments of CPSs, developing better the-
ories of compositional reasoning for
CPSs, verifying intelligent CPSs based
on AI and ML, and creating a large and
diverse repositor y of bench ma rk s
to g u ide t he community.

SOKOLSKY: A lot of challenges to FV,
such as the computational complex-
ity of verification algorithms and the
rapidly growing scale of CPSs, are fun-
damental and thus cannot be really
addressed, in my opinion. What can be
addressed is the verifiability of CPSs.
Systems can and should be designed in
a way that makes them easier to verify,
more modular, and better structured.
To achieve that, we need better design
approaches and techniques. But even
more importantly, we need to change
the mindset of designers. Most system
designers are not experts in formal
methods and do not need to be. But they
need a better understanding, if only at
a rule-of-thumb level, of what makes a
system easier or harder to verify.

There is consensus among the
panelists that the software in-
dustry is, indeed, slow to adopt

FV, except for static analysis—which
is arguably more of a compiler tech-
nology than FV—and some projects
run by deep-pocket companies. The
reasons include software’s complexity,
rate of change, and diverse correctness
criteria. A key obstacle cited by multi-
ple experts is the FV environment and
ease of use. In contrast with the EDA
market, in which FV is a first-class
member of the development envi-
ronment and tool chain, for software
developers, FV is like a distant “nerd”

cousin that speaks a different dialect
and one that few first-class members
pay attention to.

The panel members agree that as
difficult as it is to successfully ap-
ply FV to software in general, it is
as difficult or more so to apply it to
CPSs. Some argue that the complex-
ity, scale, and opaque nature of ML
algorithms make the full application
of FV for CPSs unrealistic. However,
limited approaches, such as runtime
verification (especially on the inter-
face between the cyber and physical
partitions of a CPS) can be used. The
expectation that, inevitably, some
correctness properties themselves
will be machine learned only exacer-
bates the trust problem. Nevertheless,
despite such mounting challenges, we
recommend that the FV research com-
munity measure up by developing
techniques for dealing with the dif-
ficult nature of building dependable
CPSs. As an analogy, consider the var-
ious techniques theoretical computer
scientists have developed for coping
with intractable (NP-complete) prob-
lems, such as heuristics, Horn logic,
and Boolean satisfiability-solving
algorithms. Indeed, runtime verifica-
tion is one such approach.

Regulatory bodies are pressed to come up with
solutions for ensuring the safety of autonomous
vehicles, which are expected to invade our lives

in massive numbers.

24 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

REFERENCES
1. M. B. W. Tent, ed., Gottfried Wilhelm

Leibniz: The Polymath Who Brought Us
Calculus, 1st ed. Boca Raton, FL: CRC
Press, 2011.

2. E. W. Dijkstra, “On the reliability of
mechanisms,” in Notes on Structured
Programming, T. H.-Report 70-WSK-03,
2nd ed. Eindhoven, The Netherlands:
ersity, Apr. 1970, p. 7. Accessed: June
1, 2021. [Online]. Available: https://
www.cs.utexas.edu/users/EWD/
ewd02xx/EWD249.PDF

3. A. Edelman, “The mathematics of
the Pentium division bug,” SIAM
Rev., vol. 39, no. 1, pp. 54–67, 1997.
doi: 10.1137/S0036144595293959

4. “Intel takes $475-million earnings
hit: Computers: The charge for replac-
ing flawed Pentium chips mars
an otherwise stellar year,” Los
Angeles Times, Jan. 18, 1995.
Available: https://www.latimes.com/
archives/la-xpm-1995-01-18-fi-21424
-story.html

5. IEEE Standard for SystemVerilog—Uni-
fied Hardware Design, Specification,
and Verification Language, IEEE
Standard 1800-2017 (Revision of IEEE
Standard 1800-2012), Feb. 22, 2018.
doi: 10.1109/IEEESTD.2018.8299595.

6. J. B. Michael, G. W. Dinolt, and D.
Drusinsky, “Open questions in
formal methods,” Computer, vol. 53,
no. 5, pp. 81–84, 2020. doi: 10.1109/
MC.2020.2978567.

7. “Letters: Another view on for-
mal methods,” Computer, vol.

53, no. 9, p. 8, 2020. doi: 10.1109/
MC.2020.3001958.

8. C. Sadowski, E. Aftandilian, A.
Eagle, L. Miller-Cushon, and C. Jaspa,
“Lessons from building static anal-
ysis tools at Google,” Commun. ACM,
vol. 61, no. 4, pp. 58–66, 2018. doi:
10.1145/3188720.

9. N. Chong et al., “Code-level model
checking in the software develop-
ment workflow,” in Proc. ACM/IEEE
42nd Int. Conf. Softw Eng.: Softw.
Eng. Pract., 2020, pp. 11–20. doi:
10.1145/3377813.3381347.

10. P. W. O’Hearn, “Continuous
reasoning: Scaling the impact of
formal methods,” in Proc. 33rd
Annu. ACM/IEEE Symp. Logic
Comput Sci., 2018, pp. 13–25. doi:
10.1145/3209108.3209109.

11. T. Yamaguchi, T. Kaga, A. Donze,
and S. A. Seshia, “Combining re-
quirement mining, software model
checking, and simulation-based
verification for industrial automo-
tive systems,” in Proc. IEEE Int. Conf.
on Formal Methods Computer-Aided
Design, Oct. 2016, pp. 201–204. doi:
10.1109/FMCAD.2016.7886680.

12. C. Fan, B. Qi, S. Mitra, and M.
Viswanathan, “DryVR: Data-driven
verification and compositional
reasoning for automotive systems,”
in Computer Aided Verification (Lec-
ture Notes in Computer Science),
R. Majumdar and V. Kunčak, Eds.
Berlin: Springer, pp. 441–461. 2017.
doi: 10.1007/978-3-319-63387-9_22.

13. S. Mitra, Verifying Cyber-Physical
Systems: A Path to Safe Autonomy.
Cambridge, MA: The MIT Press, 2021.
ISBN-13: 978-0262044806.

14. X. Jin, A. Donze, J. Deshmukh, and
S. A. Seshia, “Mining requirements
from closed-loop control models,”
IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 34, no. 11,
pp. 1704–1717, 2015. doi: 10.1109/
TCAD.2015.2421907.

15. J. Kapinski et al., “ST-Lib: A library
for specifying and classifying
model behaviors,” SAE Tech.
Paper 2016-01-0621, 2016. doi:
10.4271/2016-01-0621.

16. S. A. Seshia, “Combining induction,
deduction, and structure for verifi-
cation and synthesis,” Proc. IEEE, vol.
103, no. 11, pp. 2036–2051, 2015. doi:
10.1109/JPROC.2015.2471838.

17. S. A. Seshia, D. Sadigh, and S. S. Sas-
try, “Towards verified artificial intelli-
gence,” July 2016. [Online]. Available:
https://arxiv.org/abs/1606.08514

18. E. A. Lee and S. A. Seshia, Introduction
to Embedded Systems: A Cyber-Physical
Systems Approach, 2nd ed. Cambridge,
MA: The MIT Press, 2017.

19. R. Ghosh, C. Hsieh, S. Misailovic,
and S. Mitra, “Koord: A language for
programming and verifying distrib-
uted robotics application,” Proc. ACM
Program. Lang., vol. 4, pp. 1–30, 2020.
doi: 10.1145/3428300.

20. R. Ghosh et al., “CyPhyHouse: A pro-
gramming, simulation, and deploy-
ment toolchain for heterogeneous
distributed coordination,” in Proc.
IEEE Int. Conf. Robotics Automat.,
2020, pp. 6654–6660. doi: 10.1109/
ICRA40945.2020.9196513.

JAMES BRET MICHAEL is a profes-
sor in the Department of Computer
Science and the Department
of Electrical and Computer
Engineering, Naval Postgraduate
School, Monterey, California,
93943, USA. Contact him at
bmichael@nps.edu.

DORON DRUSINSKY is a professor
in the Department of Computer
Science, Naval Postgraduate
School, Monterey, California,
93943, USA, and the chief science
officer at Aerendir, Mountain View,
California, 94040, USA. Contact
him at ddrusins@nps.edu.

DUMINDA WIJESEKERA is a pro-
fessor in the Department of Cyber
Security Engineering, George
Mason University, Fairfax, Virginia,
22030, USA, where he is codirector
of the Center for Assured Research.
Contact him at dwijesek@gmu.edu.

DISCLAIMER
The views and conclusions con-
tained herein are those of the pan-
elists and moderators and should
not be interpreted as necessarily
representing the official policies or
endorsements, either expressed
or implied, of their employers. The
U.S. government is authorized to
reproduce and distribute reprints
for government purposes, notwith-
standing any copyright annotations
thereon.

