
10 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 1 © 2 0 2 1 I E E E

50 & 25
YEARS AGO

EDITOR ERICH NEUHOLD
University of Vienna
erich.neuhold@univie.ac.at

 NOVEMBER/DECEMBER 1971
 www.computer.org/csdl/mags/co/1971/06/index.html

Distributed Intelligence in Terminal Systems; Robert
V. Dickinson (p. 17) “One trend that became clearly visible
during the course of the workshop is the increasing tendency
to distribute intelligence throughout a terminal system rather
than concentrating it at its center. This can be done through
the use of small stored program processors as front end com-
munication processors and remote concentrators and the
use of stored program controllers within the terminals them-
selves. … Although there is not total agreement that the dis-
tribution of intelligence is the best system design solution,
it is clear that the next several years will see many systems
based on this philosophy.” [Editor’s note: “Terminals,” of course,
came to include more and more processing power, but they never
became part of a really distributed system. Instead, they were
replaced by minicomputers as parts of networks.]

An Outlook for the Terminal Industry in the United
States; Roy M. Salzman (p. 18) “Many vendors in the ter-
minal industry believe—not too illogically—that their route
to success lies in finding out from the user community what
kind of terminal characteristics they desire for their projected
applications and then simply building a terminal to suit the
most prevalent of those needs.” (p. 21) “Basic input to a termi-
nal has been and probably always will be primarily through
a manual keyboard of some form. … Visual display methods
are rapidly changing to give users more capacity, economy,
and esthetic appeal. The use of television technology for dig-
ital display has been an important advance which could well
be refined further to provide a good display capability at an
extremely low cost.” (p. 25) “While up to now, we have been
able to speak of terminals as teletypes, CRT’s, remote-batch
devices, etc., and generally are able to envision what such a
device consists of, we expect that by 1975, this picture will

become a great deal more fuzzy and distinct terminal types
may not be recognizable as such.” [Editor’s note: The article
foresees the wealth of different input and output devices that
would appear in later years but of course misses some that are now
common in, for example, smartphones such as cameras.]

Distributed Intelligence in Data Communications Net-
works; Stanford R. Amstutz (p. 26) “Today, however, it is
desirable to distribute the power of large, fast, and expen-
sive computers to many terminals, but the variety of installed
terminals makes their administration difficult.” (p. 28) “ Fig-
ure 2 illustrates a transformation of the Figure 1 network by
the addition of programmable processors, represented by
squares, at three different levels in the network; Level 1—the
central sites, Level 2—remote sites between the central sites
and the terminals, and Level 3—at the terminals.” (p. 32) “The
kinds of communication functions which can be performed
by a communications processor have already been discussed
above in the central site context. … We have discussed the
particular ways in which a minicomputer can be useful in
reducing the operating costs of a computer/communications
network, by use at central sites and at remote sites.” [Editor’s
note: It is interesting to note that this lengthy article discusses
quite a number of ways to interconnect computers and terminals
into networks but does not explain/utilize the bus concepts that
were rather new in 1971.]

The Rationale for Smart Terminals; L.C. Hobbs (p. 33)
“Viewed from a strictly functional standpoint, there is no
justification for centralizing the computing and processing
functions, but frequently there is a strong functional reason
for centralizing the data base. In general, the question of
whether a particular computation or processing operation is
carried out in the local terminal or in a large central computer
system is an economic one.” (p. 35) “Future trends: These
technology trends can also reasonably be expected to provide
a larger $50,000 to $200,000 smart terminal including: a
32,000 to 64,000 word minicomputer, a 9600 baud modem, a
keyboard, a character serial printer or other hard copy device,

Digital Object Identifier 10.1109/MC.2021.3055916
Date of current version: 22 October 2021

 N O V E M B E R 2 0 2 1 11

a magnetic tape cassette, a graphic cathode ray tube display, a
light pen.” [Editor’s note: Just think of it and compare it to today’s
networks and computation powers.]

Database Management in a Multi-Access Environment;
Arthur J. Collmeyer (p. 36) “Viewed from a strictly functional
standpoint, there is no justification for centralizing the com-
puting and processing functions, but frequently there is a
strong functional reason for centralizing the data base.” (p. 37)
“The basic elements of a Database Management System are
described in Figure 1. Two logically distinct user interfaces are
provided. The first is database definition. This interface, defined
implicitly in the Database Definition Language (DDL), enables
the creation of a (dataless) database. The second user interface is
the interface to an existing database. This interface provides the
means for the manipulation of data … the Database Manager
(DBM).” [Editor’s note: This article continues to describe the var-
ious concepts that have to be considered in a multiuser database
environment, mostly using its own terminology. It is interesting
to note that the article refers only once to the CODASYL database
standard and not at all to the papers on relational databases that
had been published, staring with Ted Codd’s Association for Com-
puting Machinery paper of June 1970.]

NOVEMBER 1996
www.computer.org/csdl/mags/co/1996/11/index.html

Survivability in the Age of Vulnerable Systems; Mario
Barbacci (p. 8) “As we all become more connected, system
survivability, an issue that used to concern mostly business
or governments is now routinely covered in the mainstream
press. Survivability is defined as a system’s capacity to com-
plete its mission in a timely matter, even if significant por-
tions are incapacitated by attack or accident. … For example,
Microsoft plans to integrate the multimedia capabilities of
the World Wide Web with its Windows 95 operating system.
Microsoft’s new paradigm will abandon files and folders kept
in local storage in favor of stand-alone Web pages. Every doc-
ument, everywhere, would potentially be accessible through
hypertext links. … The good news is that there is a great deal
of research on issues related to survivability. The bad news is
that different researchers don’t hear from each other. This is
a major problem, because the concepts and practices associ-
ated with system survivability span almost the entire range of
computer science and engineering.” [Editor’s note: As we know,
all this research did not eliminate the vulnerability of our systems
and networks. It actually looks like the frequency of wide-ranging,
serious attacks—denial of service, identity theft, extortion locking,
social media distortion, and so on—is rising, not falling.]

System Test and Reliability: Techniques for Avoiding
Failure; Rohit Kapur et al. (p. 28) “Digital systems are a
combination of hardware and software. Errors in either of
these components could cause a failure. Though software

and hardware are very different from each other, the basic
concepts (viewed at a higher level of abstraction) used to test
failures and tolerate the errors are the same.” (p. 29) “Test-
ing for failures … If the output does not match the expected
response, the component is declared faulty and discarded
or repaired. … Tolerating failures … Once a failure has been
detected, the error must be masked out. This is usually per-
formed by ensuring that the redundant information out-
weighs the error.” [Editor’s note: The articles following this guest
editor’s introduction analyze different aspects of handling errors
in IT systems. As we know, of course, in the intervening years, prog-
ress has been made, but errors in IT systems exist and even enable
attacks that damage system functions beyond what an error itself
can cause. Apparently, in 1996, this was not an issue of very high
concern, as none of the following articles mention it.]

Testing ICs: Getting to the Core of the Problem; Brian T.
Murray et al. (p. 32) “This tutorial examines the market and
technology trends affecting the testing of integrated circuits
with emphasis on the role of predesigned components—cores
and built-in self-test. … Here we explain manufacturing test-
ing, as opposed to design testing, which happens before man-
ufacturing, and on-line testing, which happens after.” (p. 37)
“Testing is a major contributor to the cost of manufacturing
and maintaining digital ICs. Well-developed fault models and
test generation methods for such circuits are known, and are
widely supported by design tools. However, their applicabil-
ity to today’s increasingly fast and complex circuits is limited
by practical cost considerations. Design-for-test techniques,
especially scan design and built-in self-test, can provide a sat-
isfactory solution in many instances.” [Editor’s note: This arti-
cle provides an interesting analysis of the challenges faced with
the rapid increase in IC size and complexity.]

Built-In Self-Test: Assuring System Integrity; Bernd
Konemann et al. (p. 39) “Today’s complex electronic products
are harder to test using traditional external methods. BIST can
frequently be used without significantly increasing a product’s
size, cost, and production time.” (p. 40) “Now, semiconduc-
tor technology lets you implement comprehensive chip-level
BIST features for very little additional circuitry-related cost,
while hardware synthesis technology for BIST integration has
caused design related costs to drop. … Economy dictates that
the BIST-related stimulus-generation and response process-
ing functions that we encapsulate into product components be
very compact.” (p. 43) “Complex electronic products must be
reliable, available, and serviceable in the field. Consequently,
many products contain extensive hardware test and diagnos-
tic support functions that can be executed in the field. The
development of higher level hardware diagnostics is greatly
simplified by encapsulating comprehensive tests into each
chip.” [Editor’s note: In this article, various basic self-test principles
are explained. Today’s complex systems would not work reliably if
self-testing was not included from the early design stages on.]

12 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

50 & 25 YEARS AGO

Multiprocessor Validation of the Pentium Pro; Deborah
T. Marr et al. (p. 47) “Validation was even more challenging
because Intel wanted to deliver a production system within a
year of first silicon. Presilicon validation was crucial because
it let Intel detect and fix problems before they made it into
silicon. It is easier to isolate problems in a simulation model,
where we can control events and also ‘look’ inside the proces-
sor and chipset, than on silicon.” (p. 50) “We used our presil-
icon RTL test methodology on our postsilicon test platforms.
These platforms had no operating system and consisted of
the processors and the chipset on a board with supporting
ASIC chip. … We discovered and quickly fixed a few complex
problems that had been difficult to hit in the RTL simulation
mode.” [Editor’s note: This article provides an excellent example
of the many difficulties encountered when a real-world processor
has to be tested and the many obstacles that have to be conquered.]

Safety-Critical Systems Built With COTS; Joseph A. Profeta
III et al. (p. 54) “At the same time, competitive pressure has
led to the increased use of COTS (commercial, off-the-shelf)
equipment in safety-critical systems, making it imperative
that we extend proven safety techniques to COTS-based sys-
tems as well. … The key technologies in this framework are
formal methods, information redundancy, a proprietary data
format, and a concurrent checking scheme.” (p. 57) “There are
three distinct pieces of software that must be considered in
evaluating and proving the correctness of program execution:
the application code, the compiler, and the runtime kernel. …
The proof-of-correctness mentioned above does not cover the
graphical compiler because it is difficult, if not impossible,
to quantify the compiler’s safety as we can the application’s.
Instead, we apply formal methods to prove the correctness of
the graphical compiler invocations.” [Editor’s note: The method
employed here combines, in an interesting way, formal techniques
and others, such as built-in redundancy and logging.]

Software-Reliability-Engineered Testing; John D. Musa
(p. 61) “The standard definition for software reliability is
the probability of execution without failure for some spec-
ified interval, called the mission time. This definition is
compatible with that used for hardware reliability, though
the failure mechanisms may differ. In fact, SRET is gener-
ally compatible with hardware reliability technology and
practice.” (p. 64) “Engineer reliability strategies. There are
three principal reliability strategies: fault prevention, fault
removal, and fault tolerance.” [Editor’s note: This is an inter-
esting article that covers reliability issues encountered in tele-
phone systems. In these extremely distributed systems, many
errors (racing conflicts, denial of service, and so on) play a role
that goes beyond software and hardware faults. These issues
are even more important today, and therefore this article is
worth reading.]

Predicting Software Reliability; Alan Wood (p. 69) “We
collected defect occurrence times during system test and
statistically correlated the test data with known mathemat-
ical functions, called software reliability growth models. If
the correlation is good, then the function can be used to pre-
dict future failure rates, or the number of residual defects in
the code. We found that the correlation with a simple expo-
nential model was good and that this model can reasonably
predict the number of residual defects in our delivered soft-
ware.” [Editor’s note: The article analyzes quite a number of differ-
ent models based the actual failures encountered in a sequence of
releases of Tandem software. The in-depth discussion of the mod-
els makes the article worthwhile reading even today.]

Measuring Software Quality: A Case Study; Thomas
Drake (p. 78) “To ensure cost-effective delivery of high-qual-
ity software, NSA has analyzed effective quality measures
applied to a sample code base of 25 million lines. This case
study dramatically illustrates the benefits of code-level mea-
surement activities.” (p. 79) “We use two primary measure-
ment activities to derive our code-level release criteria. The
first is code metrics analysis: We measure development pro-
ductivity indicators, predictability measures, maintainability
indicators, essential quality attributes of the code, and ‘hot
spots,’ and we identify overly complex modules that need
additional work. … The second measurement activity is cov-
erage analysis, which centers on ‘inside-the-code’ analysis (or
decision-level metrics), testability indicators through execut-
able path analysis, and predictive performance analysis based
on the number of segments per path.” [Editor’s note: This is an
interesting article not only because it analyzes numerous methods
for the two measurement activities it mentions but also because
it shows that the reengineering of problematic code led to vast
improvement in reliability and execution time.]

Why Higher Education Needs an Advanced Internet; Wil-
liam H. Graves (p. 93) “They do not wish to lose the conversa-
tional and social aspects of learning, which allow for rich sensory
cues and spontaneous give-and-take. Face-to-face, we switch
tasks and modes of communication seamlessly, but today’s com-
puters and network services do not support an integrated, seam-
lessly rich palette of communication and application capable of
supplanting proximity. … We must also recognize the distinc-
tion between instruction aimed at learning particular skills and
bodies of knowledge, and instruction supporting the residential
under-graduate experience with its goals of socialization and
learning how to learn.” [Editor’s note: Despite this fact, the article
proceeds to propose necessary technology for a “virtual” university as
a solution to higher education. Our latest experience with virtuality
(COVID-19) has shown that some (how much?) physical contact is
necessary not only for higher education but in practically all environ-
ments for the proper functioning of society.]

