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Edge computing is recognized as a key enabling 
technology for Internet of Things (IoT) applica-
tions to achieve energy-efficient, ultralow-la-
tency, and high-performance computing ser-

vice beyond 5G/6G. IoT devices of limited computing 
power and onboard battery life can significantly improve 
their data processing capability by offloading intensive 

computation tasks to a nearby edge 
server for remote execution. Con-
strained by the available computa-
tion and communication resources 
in an edge access network, efficient 
provisioning of edge computing ser-
vices requires judiciously deciding 
the set of IoT devices allowed to off-
load as well as the assets allocated 
to them based on real-time edge 
parameters. Achieving optimal on-
line provisioning of edge services is 
challenging in a large IoT network 
under fast-varying wireless channel 

conditions. In particular, it requires repeatedly solving 
mixed-integer nonlinear programming (MINLP) prob-
lems, each to be finished within a channel coherence time 
of at most several seconds. Conventional model-based in-
teger optimization methods are too slow in their numeri-
cal iterations to search large solution vector spaces, while 
model-free learning-based methods suffer from slow 
learning convergence or even divergence in finding an op-
timal hybrid integer-continuous online policy.

In “Deep Reinforcement Learning for Online Com-
putation Offloading in Wireless Powered Mobile–Edge 
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propose a novel integrated optimi-
zation and learning approach, deep 
reinforcement learning-based online 
off loading (DROO). That can provi-
sion close-to-optimal computing ser-
vices that are adaptive to fast-vary-
ing wireless channels. As shown in 
Figure 1, instead of solving for the 
hybrid integer-continuous solution 
altogether, DROO decomposes the 
original optimization problem into 
a zero–one binary offloading deci-
sion subproblem and a continuous 
resource allocation subproblem and 
then tackles them separately through 
a model-free learning module and 
a model-based optimization module, 
respectively. In each time slot, the 
actor module uses a fully connected 
deep neural network (DNN) to map 
the input instant system parameters 
to multiple binary offloading action 
vectors, and the critic module opti-
mizes the resource allocation for each 
action vector and selects the best one. 
DROO uses the selected binary off-
loading action and the correspond-
ing resource allocation as the control 
decision in the current time slot and 
then stores the selected binary action 
in a replay buffer for updating the 

policy of the DNN in the future. With 
a new input channel condition in the 
next time slot, the update of the DNN 
model parameters repeats until con-
verging to the optimal online policy.

Compared with model-based opti-
mization, DROO takes negligible com-
putation time, as it can directly map 
any new channel input to the optimal 
output control action without the need 
for numerical optimization. On the 
other hand, compared with conven-
tional deep reinforcement learning 
(DRL) methods that treat both the in-
teger of f load i ng a nd cont i nuous 
resource allocation decisions as the 
action, DROO significantly reduces 
the action space of the DNN, which 
greatly simplifies the learning task 
to a classical classification problem. 
Perhaps more importantly, the opti-
mization-based critic module provides 
precise evaluation of the integer off-
loading decisions generated by the 

actor module. This greatly improves 
the convergence of the training pro-
cess as compared with conventional 
DRL, whose convergence is often jeop-
ardized by the inaccurate evaluation 

of actions before the critic network is 
sufficiently trained. Simulation results 
show that DROO quickly converges 
in fewer than 3,000 iterations in a 
30-user network, and the provisioned 
computing service achieves 99.9% 
of the optimum in less than 0.1 s af-
ter convergence.

Besides edge service provision-
ing, DROO has important ap-
plications in a wide range of ar-

eas, such as wireless communications 
and industrial control, where MINLP 
instances need to be frequently re-
solved. I n add it ion , it s decoupled 
structure facilitates simple modifi-
cations to handle more complicated 

FIGURE 1. A schematic of DROO.1
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To better approximate the submanifold, their 
method considers only a few basis modes in the 

vicinity of the desired deformation.
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use cases. For instance, by slightly 
modif ying the critic module with 

a Lyapunov optimization technique, 
DROO can effectively tackle stochastic 
MINLP with long-term performance 
constraints2; by replacing the DNN in 
the actor module with a convolutional 
neural network, recursive neural net-
work, or state-of-the-art transformer, 
DROO can improve its convergence 
performance and handle more sophis-
ticated learning tasks. In this sense, 

DROO makes it truly viable to obtain 
real-time and optimal solutions to a 

variety of hard MINLP problems in 
fast-varying environments. 
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Model-free learning-based methods suffer from slow 
learning convergence or even divergence in finding an 

optimal hybrid integer-continuous online policy.
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