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Abstract. Ensuring the safety and efficacy of Cyber-Physical Systems
(CPSs) is challenging due to the large variability of their operating en-
vironment. Model checking has been proposed for validation of CPSs,
but the models of the environment are either too specific to capture
the variability of the environment, or too abstract to provide counter-
examples interpretable by experts in the application domain. Domain-
specific solutions to this problem require expertise in both formal meth-
ods and the application domain, which prevents effective application of
model checking in CPSs validation. A domain-independent framework
based on timed-automata is proposed for abstraction and refinement
of environment models during model checking. The framework main-
tains an abstraction tree of environment models, which provides inter-
pretable counter-examples while ensuring coverage of environment be-
haviors. With the framework, experts in the application domain can ef-
fectively use model checking without expertise in formal methods.

Keywords: Abstraction Tree · Timed Automata · Formal Methods ·
UPPAAL.

1 The Emergence of Cyber-Physical Systems (CPS)

With the development of technologies, it is now possible to develop software that
can make real-time decisions under complex situations. As a result, problems in
the physical world can be solved by software-controlled physical systems with
little to none human intervention. These Cyber-Physical Systems (CPSs) are
relieving human from tedious jobs and dangerous working environment, and
have improved quality of lives and the overall efficiency of the society.

With human-operated systems, decisions are made by domain experts, who
have been trained to deal with the complexity and variability of the environment,
and are responsible for preventing safety hazards. For CPSs with increasing au-
tonomy, malfunctions of the systems cannot receive timely human intervention,
which can cause serious harm to people and properties in its operating environ-
ment, especially in safety-critical domains like medical devices [1]. Manufacturers
of CPSs are required to demonstrate the safety and efficacy of the systems, es-
pecially their software components.
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Fig. 1. Environment models are developed from two different perspectives, but neither
satisfy the need for validating CPSs. A domain-independent framework that can bal-
ance the coverage and interpretability of environment models is needed for effective
use of model checking in CPS domains.

1.1 Validation of CPS Using Model Checking

With increasing autonomy, CPS are required to make correct decisions under
ALL possible environment conditions. CPSs cannot be exhaustively tested as
the amount of environment conditions is infinite. Model checking exhaustively
examines the reachable states of a model, which is suitable for validation of
CPSs [2,3]. By modeling the CPS and its operating environment, model checking
tools can prove that the CPS satisfies safety and efficacy requirements under
conditions specified in the environment models, or provide counter-examples
when requirements are violated. Development cost can be significantly reduced
when bugs are found and safety guarantees are provided in the early development
stage.

1.2 Environment Modeling for CPS

The environment models represent assumed environment conditions, and the re-
sults of the model checking can only support safety and efficacy of CPS under
these conditions. Model(s) of the environment should satisfy the following re-
quirements:
Coverage: Environment model(s) of CPSs should either 1) cover all environ-
ment conditions, or 2) cover all environment behaviors observable to the system.
These two conditions are equivalent but the second one can be better defined
and quantified.
Interpretability: The safety and efficacy of CPS are evaluated on the states of
the environment. i.e. The patient’s condition should be improved with a medical
device compared to without the device. In order to judge whether environment
conditions have been improved, the models of the environment should have states
and executions that are interpretable by experts in the application domain.
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Fig. 2. Experts in the application domain provide a set of base environment mod-
els (1), and the framework returns a set of counter-examples with the most refined
context (3). The experts can also provide additional base models after analyzing the
returned counter-examples and their corresponding levels of abstraction (4). Inside the
framework an abstraction tree is created by abstracting the set of base models using
domain-independent abstraction rules (2), which is hidden from the domain expert.

Unfortunately, these two requirements conflict with each other in most cases,
and no single model can satisfy both. Relaxing domain-specific constraints within
the models may introduce new observable behaviors, which increases coverage
at the cost of interpretability. As shown in Fig. 1, on one hand, experts in the
application domain develop models to study the mechanisms of the problem.
These models have great interpretability, but are not suitable for model checking
due to their inadequate coverage. On the other hand, abstract models of the
environment are created in the formal methods community to cover observable
behaviors of the environment. These models are usually abstracted from the
interface between the system and the environment, and coverage can be easily
quantified.

Formal relationships between the formal models and the domain models are
needed in order to balance coverage and interpretability. However, establish-
ing connections require expertise in both formal methods and the application
domain.

In [4], Jiang et. al proposed the use of over-approximation [5] to increase the
coverage of environment models in closed-loop model checking of implantable
cardiac devices, and refine the environment models to provide interpretability
to counter-examples. Unfortunately, the proposed method requires abstraction
rules based on extensive domain knowledge, which cannot be applied directly in
other domains. A domain-independent framework for environment modeling is
essential for model checking to be effectively adopted.
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2 Domain-independent Model Checking Framework with
Environment Abstraction & Refinement

In this project, we propose a model checking framework with environment ab-
straction & refinement which can balance the coverage and interpretability of
environment models during model checking. The framework is also domain-
independent such that the abstraction and refinement of environment models
do not require domain-specific information.

The framework is illustrated in Fig. 2, which involves four main steps:
Step 1: Initial Set of Environment Models:
A set of base environment models are first provided by domain experts, which
represent prior knowledge of environment conditions that the CPS may en-
counter. These base environment models does not provide adequate coverage,
but their execution traces, including counter-examples returned from the model
checker, are interpretable by domain experts.
Step 2: Construction of the abstraction tree:
Domain-independent abstraction rules are then applied to the base environment
models so that the abstract model over-approximates the original model(s), cov-
ering more observable behaviors of the environment. By abstracting and com-
bining models of the environment, an abstraction tree of environment models
can be built. This step is hidden from the experts in the application domain, so
expertise in formal methods is not required for using the framework.
Step 3: Model Checking and Counter-example Refinement:
The safety and efficacy of the system model can then be validated using the ab-
straction tree of environment models. The system model is first verified against
the root environment model. If the requirements are satisfied, the system model
is safe under all possible environment conditions. Otherwise, the system model
is then verified against the environment model(s) that are children of the root
environment model. The process traverse the abstraction tree in the Breath-First
Search (BFS) manner until 1) the leaves of the abstraction tree is reached, or
2) all children of the current environment model satisfy the requirement. The
counter-example(s) are attached to the abstraction tree, and returned to the
domain experts for further analysis.
Step 4: Environment Model Refinement:
Depending on the ”completeness” of the set of base models and the topology of
the abstraction tree, the refined counter-examples returned may not correspond
to the leaf nodes in the abstraction tree. In this case the violations of requirement
happen in environment conditions that are not included in the set of base mod-
els. Moreover, the counter-examples returned may not have adequate context
for comprehensive interpretation. Domain experts can create new base models,
which are refinements of the model that returned the counter-examples. i.e. in
Fig. 2, environment condition x can be created by ”subtracting” environment
condition 2 and 3 from Abstraction 1.2.

The framework hides domain knowledge in formal methods from experts in
the application domain, so that model checking becomes a more friendly tool for
validating CPSs.
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3 Abstraction Tree Construction with Timed Automata

In order for the framework to achieve domain-independence, the application and
selection of the abstraction rules should not contain knowledge in the applica-
tion domain. In this project, we use timed automata [6] as modeling formalism
and UPPAAL [7] as model checker. Abstraction rules targeting the structure
of timed-automata are proposed and their effect on observable environment be-
haviors are informally proved. Formal proofs of the Theorems can be found in
[].

3.1 Timed Automata and Model Checker UPPAAL

Timed-automata [6] is a formalism developed to model real-time systems. It has
the expressiveness for modeling complex system behaviors [8], and the simplic-
ity for decidable reachability. Timed automata also supports non-determinism,
which can be used to capture the uncertainty within the environment. The frame-
work proposed in this project is applicable when both the system and the envi-
ronment are modeled using timed automata.

A timed automaton is a tuple (L, l0, X,A,E,G, I), where

1. L is a set of locations.
2. l0 ∈ L is the initial location.
3. X is the set of clocks.
4. A is a set of actions, including sending actions (a!) and receiving actions

(a?).
5. E ⊆ L×A× 2X × L.

An edge (transition) e ∈ E is a tuple (l, a, r, l′), where l is the start location,
a is the action, r is the set of clocks to be reset and l′ is the target location.

6. G : E × 2X × 2N → ΨG assigns guards to edges.
G can be written as G(E,X,N) = {gi(ei, Xi, Ni) | i ∈ N and i ≤ len(E)}.
Each gi denotes the guard of the edge ei, which constrains the set of clocks
in Xi with the set of lower bounds Ni.

7. I : L× 2X × 2N → ΨI assigns invariants to locations.
I can be written as I(L,X,M) = {invi(li, Xi,M) | i ∈ N and i ≤ len(E)}.
Each invi denotes the invariant of the location li, which constrains the set
of clocks in Xi with the set of upper bounds Ni.

8. Ψ is the clock constraints for clock variables X.
Ψ := x ⊥ n ‖ Ψ1 ∧ Ψ2, where x ∈ X, ⊥∈ {≤, ≥}, and n ∈ N.
For particular guard and invariant clock constraints, we have
– ΨG ∈ ΨX and ΨG := x ≥ n ‖ Ψ1 ∧ Ψ2

– ΨI ∈ ΨX and ΨI := x ≤ n ‖ Ψ1 ∧ Ψ2

Multiple timed automata can run in parallel and interact with each other
via actions. i.e. the system model and the environment model form a closed-loop
system. We use A1|A2 to represent automata composition. The semantics [9] is
defined as a labelled transition system < S, s0,→>, where
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Fig. 3. The composed model Speaker|Translator. The time interval between two con-
secutive action a1 is larger than 5 unit time and shorter than 10 unit time. The
Translator sends a2 immediately after receiving a1.

1. S ⊆ L×RC is the set of states,
2. s0 =< l0, u0 > is the initial state,
3. u : C → R≥0 is the function of a clock valuation and
4. →⊆ S × (R≥0 ∪A)× S is the transition relation such that:

– (l, u)
d→ (l, u+ d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u+ d′ ∈ I(l, x, n), where x ∈ 2X

and n ∈ 2N

– (l, u)
a→ (l′, u′) if there exists e = (l, a, r, l′) ∈ E s.t. u ∈ G(e, x′, n′),

u′ = [r 7→ 0]u, and u′ ∈ I (l′, n′), where x′ ∈ 2X and n′ ∈ N

UPPAAL [7] is a model checking tool using timed automata as formalism, and
is very friendly to people with little programming experience. Users can model
their system and its environment in a graphic interface, and counter-examples
returned by the model checker are visualized in the simulator.
Fig. 3 shows the composed timed automaton Speaker|Translator that interact
with each other via action a1 in UPPAAL. The sending action a1! in Speaker
is confined by guard t >= 5 and invariant t <= 10, which represents the uncer-
tainty in behaviors a1!.

3.2 Prerequisite of the Framework

Currently the framework is suitable for problems with the following constraints:

1. The environment contains multiple independent agents interacting with each
other via events.

2. The system also interacts with the environment via events. Only a subset
of events in the environment are observable to the system, and the system
operates base on the timing and patterns of these events.
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3. Both the system and the environment are modeled using timed automata.

4. At a particular state of the environment, the observable events can occur
within a timing interval [T min, T max]

5. The differences among base environment models are parameters-only.

3.3 Coverage of Environment Behaviors

The system can only observe a subset of actions Ao ⊆ A in the environment. En-
vironment behavior is defined as timed word [6] over observable actions Ao ⊆ A,
which is a pair (Σ,T ) where Σ = σ1σ2..., σi ∈ Ao represents the sequence of
actions, and T = τ1τ2..., τi ∈ R represents the global time the actions happened.
The timed language of a timed automaton A is the set of all the possible timed
words of A , which is represented as L (A ). The coverage of environment be-
haviors is then measured on the ”size” of the language.
Followings are the formal definition of timed sequence, timed word and timed
language.
Definition: Timed sequence
A timed sequence [10] τ = τ1τ2... is an infinite sequence of time values τi ∈ R
with τi > 0, satisfying the following constraints:

1. Monotonicity

– τ increases strictly monotonically, i.e. for all i ≥ 1, we have τi+1 > τi;

2. Progress

– For every t ∈ R, there is some i ≥ 1 such that τi > t.

Definition: Timed word
A timed word [10] over observable actions Ao ⊆ A is a pair (σ, τ) where σ =
σ1σ2... were each σi indicates whether an observable action is observed.
For example, let A = {ao1, ao2, au1, ao3, au2} is the set of all actions, Ao =
{ao1, ao2, ao3} is the set of observable actions, and Au = {au1, au2} is the set of
unobservable actions.
If at time τ1, no observable actions is observed, then σ1 = 〈0, 0, 0〉.
If at time τ2, ao1 and ao3 are observed, then σ2 = 〈1, 0, 1〉.
Definition: Timed language
For a timed automaton A = (L, l0, X,A,E,G, I), where A is the set of actions.
The timed language [10] of A is the set of all the possible timed words of A .

3.4 Domain-independent Abstraction Rules

A set of abstraction rules on timed automata is defined that can increase the
coverage of observable behaviors of the environment. The correctness of the
abstraction rules are informally proved to provide intuition for the audience of
this paper. Interested audience can find formal proofs in the appendix.
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R1: Increase Transition Uncertainty Intuition: A transition e =
(l, a, r, l′) is enabled when the guard assigned to the transition g(e,Xg, N) eval-
uates to true, and it has to be taken when the invariant of its source location
inv(l,Xi,M) is about to be violated due to the increase of Xi. The interval
[N,M ] represents the uncertainty when event a can occur. If the interval is ex-
panded, intuitively the constraints on sending the event a are relaxed, and the
new model covers more behaviors.
Prerequisite: None.
Rule: Given a timed automaton A1 = (L, l0, X,A,E,G, I), and two non-negative
vector ∆G = {δGi | i ∈ N and i ≤ len(G)} and ∆I = {δIi | i ∈ N and i ≤ len(I)},
create another timed automaton A2 = R1(A , ∆G, ∆I) = (L, l0, X,A,E,G

R, IR)
s.t.

– ∀gi(ei, Xi, N
1
i ) ∈ G, NR

i = N1
i − δGi for all gRi (ei, Xi, N

R
i ) ∈ GR

– ∀invi(li, Xi,M
1
i ) ∈ I, MR

i = M1
i − δIi for all invRi (li, Xi,M

R
i ) ∈ IR.

Theorem 1. L (A ) ⊆ L (R1(A , ∆G, ∆I)) for non-negative ∆G, ∆I .

Informal Proof: First we prove that R1(A , ∆G, ∆I) is a timed-simulation
of A , which further implies that L (A ) ⊆ L (R1(A , ∆G, ∆I)). True subset
can then be proved by construction, as there always exists timed words in
R1(A , ∆G, ∆I) which are not in A .

R2: Merge Models with the Same Structure Intuition: When the differ-
ences between two timed automata are confined to N in guards G(E,X,N) and
M in invariants I(L,X,M), creating a timed automaton with the minimum of
N and the maximum of M covers the behaviors of both models, as well as addi-
tional behaviors. Prerequisite: The differences between A1 and A2 should be
confined to the N of guards g(e,X,N) ∈ G and the M of invariants inv(l,X,M).
Rule: Given two timed automata A1 = (L, l0, X,A,E,G

1, I1) and
A2 = (L, l0, X,A,E,G

2, I2), create another timed automaton A3 = R2(A1,A2) =
(L, l0, X,A,E,G

3, I3) such that

– ∀g1i (ei, Xi, N
1
i ) ∈ G1 and ∀g2i (ei, Xi, N

2
i ) ∈ G2, N3

i = elm min(N1
i , N

2
i ) for

all g3i (ei, Xi, N
3
i ) ∈ G3

– ∀inv1i (li, Xi,M
1
i ) ∈ I1 and ∀inv2i (li, Xi,M

2
i ) ∈ I2,M3

i = elm max(M1
i ,M

2
i )

for all inv3i (li, Xi,M
3
i ) ∈ I3

where elm min() and elm max() calculate element-wise minimum and maxi-
mum of vectors.

Theorem 2. L (A1) ∪L (A2) ⊆ L (A3)

Proof: If we define ∆G = A1.G.N − elm min(A1.G.N,A2.G.N) and ∆I =
elm max(A1.I.M,A2.I.M) − A1.I.M , we have A3 = R1(A1, ∆G, ∆I). Then
according to Theorem 1, L (A1) ⊂ L (A3). Similarly we have L (A2) ⊂ L (A3),
therefore the theorem holds.



Environment Modeling During Model Checking of Cyber-Physical Systems 9

R3: Remove Internal Receiving Actions Intuition: Edges with receiving
actions can be taken only when the action is sent. Therefore receiving actions are
equivalent to guards on edges. If receiving actions are removed and the action
is not observable to the system, it is equivalent to setting the guard to True, or
setting the [N,M ] interval to [0,∞], therefore increase behavior coverage.
Prerequisite: There exists a /∈ AO and a is a broadcast channel. There is also
no guard on transition e = (l, a, r, l′)
Rule: For a timed automaton A = A1|A2| · · ·AN , if there exists
Ai = (Li, li0, X

i, Ai, Ei, Gi, Ii) and Aj = (Lj , lj0, X
j , Aj , Ej , Gj , Ij), i, j ∈ [1, N ]

such that aim is a sending action, ajn is a receiving action and aim, a
j
n /∈ AO,

create a new timed automaton A ′ = R3(A ) = A1|A2 · · ·An such that ajn = ∅
for Aj .

Theorem 3. L (A ′) ⊆ L (R3(A ))

Proof: We first prove that R3(A ) is a timed simulation of A . Since a receiving
action is removed from a transition, that transition is always enabled. Therefore
when the sending action is taken, the new transition is enabled and can be
taken at the same time, which satisfies the timed simulation requirement. Timed
simulation ensures L (A ′) ⊆ L (R3(A )). We can then use prove by construction
to show that A ′ has timed words that are not in A , therefore the theorem holds.

In the next section, we use a simple case study to demonstrate the application
of the proposed framework.

4 Case Study: Ensuring Pedestrian Safety in Autonomous
Driving

Autonomous vehicles are CPSs which are required to safely operate within com-
plex environment with large variabilities. The environment consists of multiple
agents with different states and parameters. In this case study, we focus on a
simple scenario in which an autonomous vehicle is crossing an intersection with
traffic lights, with one pedestrian who may cross the road in front of the car (Fig.
4.(a)). The environment for the autonomous vehicle contains two components:
the traffic lights and the pedestrian. The autonomous vehicle can observe the
color of the active light as well as the pedestrian’s crossing and finishing actions.
The safety property is to prevent collision with the pedestrian, such that the car
and the pedestrian cannot cross at the same time.

4.1 Step 1: Base Environment Models

Although traffic light is also part of the environment, due to its lack of variability,
only the pedestrian model will be abstracted. Domain experts can also decide to
exclude certain components based on prior knowledge. As shown in Fig. 5, we
start with two base pedestrian models: Pedestrian0 2 who complies to traffic
rules, and Pedestrian0 1 who may cross the road when the traffic light is red.
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Fig. 4. (a) The environment of the car includes a pedestrian and a traffic light. Actions
in red represent observable actions. (b) The controller of the traffic lights sends the
color of the light after receiving cross requests. (c) The model of a regular pedestrian
who crosses only during green light within [1,4] seconds. (d) A simple and faulty car
controller which crosses whenever the light is green.

4.2 Step 2: Construction of the Abstraction Tree

Although the base environment models already covers uncertain behaviors of the
pedestrian (i.e. the timing of the cross intention and the duration of the cross
action), the set of base environment models does not cover all possible observable
behaviors of a pedestrian. Abstraction rules were applied to the base models to
construct the abstraction tree:
R1 was applied to both Pedestrian0 1 and Pedestrian0 2, increasing the time
range for crossing the road from [1, 4] to [1, 15] and [0, 10] respectively, re-
sulting in abstract models Pedestrian1 1 and Pedestrian1 2. R3 was then
applied to Pedestrian1 2, removing interactions between the traffic light and
the pedestrian, resulting in Pedestrian2 1. Pedestrian2 1 and Pedestrian1 1
now have the same structure, and therefore can be merged by R2, resulting in
Pedestrian3 1.



Environment Modeling During Model Checking of Cyber-Physical Systems 11

In this example we use the abstraction tree with Pedestrian3 1 as root, al-
though the behavior coverage of Pedestrian3 1 can still be improved by applying
R1.

Fig. 5. Abstraction tree of the environment (pedestrian) and two counter-examples
returned from Pedestrian0 1 and Pedestrian1 2.

4.3 Step 3: Model Checking and Counter-example Refinement

The abstraction tree of pedestrian models can then be used for closed-loop model
checking of control algorithms of the autonomous vehicle. In order to demon-
strate the advantage of using the abstraction tree, we use a simple and faulty
controller that crosses the road whenever the traffic light on its side is green
(Fig. 4.(d)). This safety property is specified using TCTL language as A[] not
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(P.Crossing and C.Crossing). After traversing the abstraction tree, two refined
counter-examples were returned which correspond to node Pedestrian0 1 and
Pedestrian1 2 in the abstraction tree (Fig. 5).

The counter-example from Pedestrian0 1 is as expected since the pedestrian
may cross the road when the traffic light is red ((2) in Fig. 5), while the car is
already crossing the road ((1) in Fig. 5).

The counter-example from Pedestrian1 2 shows a different mechanism. Both
the pedestrian and the car started to cross the road when the traffic light on their
corresponding side was green ((3) and (5) in Fig. 5). The traffic light switched
when the pedestrian was still crossing the road ((4) in Fig. 5), triggering the
crossing of the car and collision with the pedestrian.

4.4 Step 4: Environment Model Refinement

The safety property was violated in Pedestrian1 2, but was satisfied in its child
Pedestrian0 2. In order to pinpoint the environment condition in which the
counter-example occurred, a new base model Pedestrian0 3 can be obtained by
”subtracting” Pedestrian0 2 from Pedestrian1 2 (Fig. 5), and the property was
also violated with the same counter-example mechanism. From Pedestrian0 3
we can see that the collision happened due to the long crossing time of the
pedestrian, which provided more interpretation to the counter-example.

5 CONCLUSION

Model checking of CPSs requires environment models that not only cover all
possible environment conditions, but also provide interpretablity to the counter-
examples. Balancing these conflicting requirements requires expertise in both
formal methods and the application domain, which prevents model checking
from being effectively adopted for validation of CPSs. In this project, a set of
domain-independent abstraction rules for timed automata were developed to in-
crease the coverage of environment models. A domain-independent framework
for abstraction and refinement of environment models was proposed for model
checking of CPSs. The framework balances coverage and interpretability in envi-
ronment models, and experts in the application domain can use model checking
effectively without expertise in formal methods.

Currently the base environment models are required to have the same model
structure. The next step is developing new abstraction rules that can remove
locations, even components from environment models, so that this constraint
can be relaxed. The sequence for abstraction rule application may affect the
completeness and abstraction level of counter-examples. The next step is iden-
tifying the optimal sequence for abstraction rule application, and quantification
of coverage.
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A Formal proofs of abstractions rules

First of all, we need to refer to the definitions of timed simulation and transition
enabled interval.
Definition: Timed simulation
For two timed automata A1 = (L1, l10, C

1, A1, E1, G1, I1) and
A2 = (L2, l20, C

2, A2, E2, G2, I2), a timed simulation relation [4] is a binary rela-
tion sim ⊆ Ω1 × Ω2 where Ω1 and Ω2 are sets of states of A1 and A2. We say
A2 time simulates A1 (A1 �t A2) if the following conditions holds:

1. initial states correspondence:
(〈
l10,0

)
,
〈
l20,0

〉)
∈ sim

2. timed transition: For every (〈l1, v1〉 , 〈l2, v2〉) ∈ sim

if 〈l1, v1〉
d→ 〈l1, v1 + d〉 , there exists 〈l2, v2 + d〉

such that 〈l2, v2〉
d→ 〈l2, v2 + d〉 and (〈l1, v1 + d〉 , 〈l2, v2 + d〉) ∈ sim

3. discrete transition: for every (〈l1, v1〉 , 〈l2, v2〉) ∈ sim
1. if a is an observable action,
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if 〈l1, v1〉
a→ 〈l′1, v′1〉 , there exists 〈l′2, v′2〉 such that

〈l2, v2〉
a→ 〈l′2, v′2〉 and (〈l′1, v′1〉 , 〈l′2, v′2〉) ∈ sim

2. if a is not an observable action,
if 〈l1, v1〉

a→ 〈l′1, v′1〉 , there exists 〈l′2, v′2〉 such that

〈l2, v2〉
a|ε→ 〈l′2, v′2〉 and (〈l′1, v′1〉 , 〈l′2, v′2〉) ∈ sim

Definition: Transition Enabled Interval
Transition enabled interval is defined on an edge’s guard and its output location’s
invariant, which indicates the time interval that an edge can be enabled. For an
edge e = (l, a, r, l′), the enabled interval is I(l) ∧G(e).

For example, an edge e has the guard t ≥ 3 and l has the invariant t ≤ 6,
the enabled interval is [3, 6].

If the enabled interval of an edge e is changed from [a, b] to [a − εg, b + εi],
with εg ∈ N, εi ∈ N and εg + εi > 0, we say that the enabled interval of the edge
e is extended.

Note that as we assuming that there is no deadlock, therefore I(l) ∧G(e) ∧
I(l′) = I(l) ∧G(e).

Followings are formal proofs of the abstraction rules.

Theorem 4. A2 = R1(A1, ∆G, ∆I)⇒ A2 timed simulates A1.

Proof. After applying the R1 on A1, we get A2 = GI(A1, ∆G, ∆I) whose tran-
sition enabled intervals are extended. Because the only differences of A2 from
A1 is the guards G and invariants I.

Therefore, the proof idea is that for any timed transition or discrete transi-
tion, there exist transitions that have the same location l and clock assignment
v and differ from the transition enabled interval.

Let sim ⊆ Ω1 ×Ω2 where Ω1 and Ω2 are sets of states of A1 and A2. It can
be seen that A2 time simulates A1 (A1 �t A2) because the following conditions
holds:

1. initial states correspondence: (〈l0,0) , 〈l0,0〉) ∈ sim
2. timed transition: ∀ (〈l1, v1〉 , 〈l2, v2〉) ∈ sim, where 〈l1, v1〉 ∈ A1 and 〈l2, v2〉 ∈

A2,

we want to prove 〈l1, v1〉
d→ 〈l1, v1 + d〉 ⇒ 〈l2, v2〉

d→ 〈l2, v2 + d〉.
If 〈l1, v1〉

d→ 〈l1, v1 + d〉, then we know that v1 � inv1(l1, X1, N1).
– Because A2 = GI(A1, ∆G, ∆I), then there exists 〈l2, v2〉 = 〈l1, v1〉 such

that inv2(l2, X2, N2) = inv1(l1, X1, N1 +∆I [1]).
– Because v1 � inv1(l1, X1, N1), v2 = v1, then v2 � inv1(l1, X1, N1 +
∆I [1]) = inv2(l2, X2, N2).

– Then we have 〈l2, v2〉
d→ 〈l2, v2 + d〉. Therefore (〈l1, v1 + d〉 , 〈l2, v2 + d〉) ∈

sim.
3. discrete transition: ∀ (〈l1, v1〉 , 〈l2, v2〉) ∈ sim, where 〈l1, v1〉 ∈ A1 and 〈l2, v2〉 ∈

A2.
We want to prove 〈l1, v1〉

a→ 〈l′1, v′1〉 ⇒ ∃〈l′2, v′2〉 ∈ A2, 〈l2, v2〉
a→ 〈l′2, v′2〉.

If 〈l1, v1〉
a→ 〈l′1, v′1〉, we know that v1 � g1(e1, X1, N1), where e1 = (l1, l

′
1).
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– Because A2 = GI(A1, ∆G, ∆I), then there exists 〈l′2, v′2〉 = 〈l′1, v′1〉 such
that g2(e2, X2, N2) = g1(e1, X1, N1 −∆G[1]).

– Because v1 � g1(e1, X1, N1), v2 = v1, then v2 � g1(e1, X1, N1−∆G[1]) =
g2(e2, X2, N2), where e2 = (l2, l

′
2).

– Then we have 〈l2, v2〉
a→ 〈l′2, v′2〉.

Therefore, (〈l′1, v′1〉 , 〈l′2, v′2〉) ∈ sim.

Theorem 5. A2 timed simulates A1 ⇒ L (A1) ⊆ L (A2).

Proof. The language of a model is defined on the observable sending actions.
Let w be any timed word of A1 then there must exist a simulation procedure
p1 =

〈
l10,0

〉 〈
l11, v

1
1

〉 〈
l12, v

1
2

〉
...
〈
l1n, v

1
n

〉
of A1 that produces w.

Let Ω1 be the sets of states of A1 and Ω2 be the sets of states of A2. Let
sim ⊆ Ω1 × Ω2 be the timed simulation relation. Because A2 timed simulates
A1, then we have
1. ∃

〈
l20,0

〉
∈ Ω2 such that (

〈
l10,0

〉
,
〈
l20,0

〉
) ∈ sim. We can set a global time

t1g = 0 for A1 and t2g = 0 for A2 at the initial state.
2. ∀ 〈li, vi〉 , 〈li+1, vi+1〉 ∈ Ω1,

(Timed Transition) If the two neighbor states have a time increase by d, i.e.

l1i+1 = l1i , v
1
i+1 = v1i + d and

〈
l1i , v

1
i

〉 d→
〈
l1i+1, v

1
i+1

〉
, then t1g increase d between

the two states.
From the timed simulation relation we know that ∃

〈
l2j , v

2
j

〉
,
〈
l2j+1, v

2
j+1

〉
∈ Ω2

such that l2j+1 = l2j , v
2
j+1 = v2j + d,

〈
l2j , v

2
j

〉 d→
〈
l2j+1, v

2
j+1

〉
, which means t2g can

increase the same time d.
(Discrete Transition with Observable Events) If the two neighbor states have

a transition that does not have an observable action, in other words,
〈
l1i , v

1
i

〉 a→〈
l1i+1, v

1
i+1

〉
, where a is an observable action.

From the timed simulation relation we know that ∃
〈
l2j , v

2
j

〉
,
〈
l2j+1, v

2
j+1

〉
∈ Ω2

such that
〈
l2j , v

2
j

〉 a→
〈
l2j+1, v

2
j+1

〉
, which means A2 can send the same observable

signal a as A1.
Until here we know 1. A1 and A2 have the same initial global time as zero.
2. For any timed transition of A1 that increases t1g by d, there is the same

procedure in A2 such that t2g increases the same time d.
3. For any transition with observable event in A1, there is the same procedure

that produces the same observable event in A2.
For any timed word w of A1 that send some observable action at some time,

A2 can simulate the same timed word, i.e. send the same observable action at
the same time.

Therefore, L (A1) ⊆ L (A2).
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